上海八年级第二学期数学期末考试试卷
2022-2023学年上海市虹口区八年级(下)期末数学试卷(含解析)

2022-2023学年上海市虹口区八年级(下)期末数学试卷一、选择题(本大题共6小题,共12.0分。
在每小题列出的选项中,选出符合题目的一项)1. 直线y =2x−1的截距是( )A. 1B. −1C. 2D. −22. 方程 x −2=2的解是( )A. x =4B. x =5C. x =6D. x =73. 用换元法解分式方程时x−1x −2x x−1+1=0,如果设x−1x =y ,将原方程化为关于y 的整式方程,那么这个整式方程是( )A. y 2+y−2=0B. y 2−2y +1=0C. 2y 2−y +1=0D. 2y 2−y−1=04. 下列说法中,正确的是( )A. 不可能事件的概率为0B. 随机事件的概率为0.5C. 概率很小的事件不可能发生D. 概率很大的事件一定发生5. 化简A B −A C +B C 是( )A. B CB. A CC. 0D. 06.如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD = 3.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A.33B.32C. 1D. 62二、填空题(本大题共12小题,共24.0分)7. 方程x 3+8=0的根是______.8. 将二元二次方程x 2−5xy +6y 2=0化为两个一次方程为______.9. 直线y =−x +6与x 轴的交点是______ .10. 如果直线y =2x +2m−1经过第一、三、四象限,那么m 的取值范围是______ .11. 已知一次函数y =(1−m )x +2图象上两点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,y 1>y 2,那么m 的取值范围是______ .12. 如果从多边形的一个顶点出发可以作3条对角线,那么它的内角和是______ .13. 如图,▱ABCD的对角线AC、BD相交于点O,设O A=a,O B=b,用向量a,b表示向量C B=______ .14.如图,已知在△ABC中,点D是边AC的中点,设A D=a,B D=b,用向量a、b表示向量C B=______ .15.如图,在矩形ABCD中,AC与BD相交于点O,如果∠AOD=120°,AB=6,那么AC=______ .16.如图,在梯形ABCD中,AB//CD,点E、F分别是AD、BC的中点,如果AB=2,EF=3,那么CD=______ .17. 我们如下定义:如果一个四边形中存在相邻两边的平方和等于一条对角线的平方,那么称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.如图,已知点O(0,0),A(3,0),B(0,4),如果格点四边形OAMB(即四边形的顶点都在格点上)是以OA、OB为勾股边且对角线相等的勾股四边形,那么点M的坐标是______ .18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是AB的中点.将△ADC绕点A旋转得到△AD1C1(点D与点D1对应,点C与点C1对应),当点C1落在边AB上时,联结BD1,那么线段BD1的长是______ .三、解答题(本大题共7小题,共64.0分。
2019-2020学年上海市徐汇区八年级(下)期末数学试卷 解析版

2019-2020学年上海市徐汇区八年级(下)期末数学试卷一.选择题(共6小题)1.下列方程中,有实数解的是()A.x6+1=0B.=2C.+3=0D.2.若一次函数y=kx+b(k≠0)的图象不经过第三象限,则k、b的取值范围是()A.k<0,b≥0B.k>0,b>0C.k<0,b>0D.k>0,b<0 3.在平行四边形、矩形、菱形、等腰梯形中任选一个图形,那么下列事件中为不可能事件的()A.这个图形是中心对称图形B.这个图形既是中心对称图形又是轴对称图形C.这个图形是轴对称图形D.这个图形既不是中心对称图形又不是轴对称图形4.在梯形ABCD中,AD∥BC,AB=CD,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量5.下列命题中:①有两个内角相等的梯形是等腰梯形;②顺次联结矩形的各边中点所成四边形是菱形;③两条对角线相等的梯形是等腰梯形;④对角线互相平分且相等的四边形是矩形.其中真命题有()A.1个B.2个C.3个D.4个6.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则HE:AH 等于()A.1:1B.1:2C.2:1D.3:2二.填空题(共12小题)7.若关于x的一次函数y=(2﹣k)x+1(k为常数)中,y随x的增大而减小,则k的取值范围是.8.用换元法解方程=3时,如果设=y时,那么得到关于y的整式方程为.9.方程(x+3)=0的解是.10.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是.11.袋中有两个黄球、四个白球、三个绿球,它们除颜色外其它都一样,现从中任意摸出一个球,摸出绿球的概率是.12.化简:=.13.已知一个多边形的每个外角都是72°,这个多边形是边形.14.已知菱形的周长是48cm,一条较小的对角线的长是12cm,则该菱形较大的内角是度.15.梯形的中位线长8cm,高10cm,则该梯形的面积为cm2.16.如图,矩形ABCD中,O是两对角线交点,AE⊥BD于点E.若OE:OD=1:2,AE =3cm,则BE=cm.17.函数y=和y=﹣(k≠0)的图象关于y轴对称,我们把函数y=和y=﹣(k ≠0)叫做互为“镜子”函数.类似地,如果函数y=f(x)和y=h(x)的图象关y轴对称,那么我们把函数y=f(x)和y=h(x)叫做互为“镜子”函数.则函数y=2x﹣4的“镜子”函数是.18.一次函数y=2x+4的能像与x、y轴分别用交于点A和点B,点C在直线x=4上,点D 是直角坐标平面内一点,若四边形ABCD是菱形,则点D的坐标为.三.解答题(共8小题)19.解方程:=1.20.解方程组.21.解方程:+x=7.22.某工厂储存了30吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,且储存的煤比原计划多用20天,原计划每天烧煤多少吨?23.如图,已知在梯形ABCD中,AB∥CD.(1)若AD=BC,且AC⊥BD,AC=6,求梯形ABCD的面积;(2)若CD=3,M、N分别是对角线AC、BD的中点,联结MN,MN=2,求AB的长.24.如图,已知在四边形ABCD中,AB∥CD,点O是对角线AC的中点,联结DO并延长与AB边交于点E,联结CE,设=,=,.(1)试用向量,表示下列向量:=,=.(2)求作:.(保留作图痕迹,写出结果,不要求写作法)25.如图,直线AB经过点A(﹣3,0),B(0,2),经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C.(1)求直线AB的表达式;(2)在x轴的正半轴上是否存在一点P,使得△OCP为等腰三角形,若存在,求出点P 的坐标;若不存在,请说明理由.26.已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上.(1)若BE=DF,①求证:∠BAE=∠DAF;②联结AC交EF于点O,过点F作FM∥AE,交AC的延长线于M,联结EM,求证:四边形AEMF是菱形.(2)联结BD,交AE、AF于点P、Q.若∠EAF=45°,AB=1,设BP=x,DQ=y,求y关于x的函数关系及定义域.2019-2020学年上海市徐汇区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共6小题)1.下列方程中,有实数解的是()A.x6+1=0B.=2C.+3=0D.【分析】利用乘方的意义可对A进行判断;通过解无理方程可对B进行判断;利用二次根式的性质可对C进行判断;通过解分式方程可对D进行判断.【解答】解:A、x6≥0,x6+1>0,方程x6+1=0没有实数解;B、两边平方得2﹣x=4,解得x=﹣2,经检验x=﹣2为原方程的解;C、≥0,则+3=0没有实数解;D、去分母得x=2,经检验原方程无解.故选:B.2.若一次函数y=kx+b(k≠0)的图象不经过第三象限,则k、b的取值范围是()A.k<0,b≥0B.k>0,b>0C.k<0,b>0D.k>0,b<0【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象不经过第三象限,∴直线y=kx+b经过第一、二、四象限或第二、四象限,∴k<0,b≥0.故选:A.3.在平行四边形、矩形、菱形、等腰梯形中任选一个图形,那么下列事件中为不可能事件的()A.这个图形是中心对称图形B.这个图形既是中心对称图形又是轴对称图形C.这个图形是轴对称图形D.这个图形既不是中心对称图形又不是轴对称图形【分析】根据“不可能事件”的意义,结合平行四边形、矩形、菱形、等腰梯形的性质进行判断即可.【解答】解:平行四边形是中心对称图形,不是轴对称图形,矩形既是轴对称图形,又是中心对称图形,菱形既是轴对称图形,又是中心对称图形,等腰梯形是轴对称图形,不是中心对称图形,因此选项D是不可能事件,故选:D.4.在梯形ABCD中,AD∥BC,AB=CD,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量【分析】根据等腰梯形的性质,即可得AC=BD,然后根据相等向量与相反向量,以及平行向量的定义,即可求得答案.【解答】解:A、∵AB=CD,但AB不平行于CD,≠,故本选项错误;B、∵AD∥BC,AB=CD,∴AC=BD,但AC不平行于BD,∴≠,故本选项错误;C、∵AD≠BC,∴与不是相反向量,故本选项错误;D、∵AD∥BC,∴与是平行向量,故本选项正确.故选:D.5.下列命题中:①有两个内角相等的梯形是等腰梯形;②顺次联结矩形的各边中点所成四边形是菱形;③两条对角线相等的梯形是等腰梯形;④对角线互相平分且相等的四边形是矩形.其中真命题有()A.1个B.2个C.3个D.4个【分析】根据梯形、菱形和矩形的判定判断即可.【解答】解:①有两个内角相等的梯形不一定是等腰梯形,原命题是假命题;②顺次联结矩形的各边中点所成四边形是菱形,是真命题;③两条对角线相等的梯形是等腰梯形,是真命题;④对角线互相平分且相等的四边形是矩形,是真命题.故选:C.6.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则HE:AH 等于()A.1:1B.1:2C.2:1D.3:2【分析】由DE是△ABC的中位线,即可得DE∥BC,DE=BC,AE=EC,然后由平行线分线段成比例定理,即可求得答案,注意比例变形.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,AE=EC,∵F是DE的中点,∴EF=DE=BC,∴,∴,∴.故选B.或:过D作DG平行于AC交BF于G,∵△DGF≌△EHF,∴DG=HE.而D为AB中点,∴DG=AH.于是HE:AH=1:2.二.填空题(共12小题)7.若关于x的一次函数y=(2﹣k)x+1(k为常数)中,y随x的增大而减小,则k的取值范围是k>2.【分析】根据一次函数的增减性可求得k的取值范围.【解答】解:∵一次函数y=(2﹣k)x+1(k是常数)中y随x的增大而减小,∴2﹣k<0,解得k>2,故答案为:k>2.8.用换元法解方程=3时,如果设=y时,那么得到关于y的整式方程为y2﹣3y+1=0.【分析】可根据方程特点设设=y,则原方程可化为y+=3,再去分母化为整式方程即可.【解答】解:设=y,则原方程可化为:y+=3,去分母,可得y2+1=3y,即y2﹣3y+1=0,故答案为:y2﹣3y+1=0.9.方程(x+3)=0的解是x=2.【分析】因为(x+3)=0可以得出x+3=0,x﹣2=0且x﹣2≥0,由此求得原方程的解即可.【解答】解:∵(x+3)=0,∴x+3=0,x﹣2=0且x﹣2≥0,解得x=﹣3,x=2且x≥2,∴x=2.故答案为:x=2.10.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是x<5.【分析】首先利用图象可找到图象在x轴下方时x<5,进而得到关于x的不等式kx+b<0的解集是x<5.【解答】解:由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故答案为:x<5.11.袋中有两个黄球、四个白球、三个绿球,它们除颜色外其它都一样,现从中任意摸出一个球,摸出绿球的概率是.【分析】因为球的总数为9个,即n=9,又因为有三个绿球,即m=3,利用公式p=,可求出摸出绿球的概率.【解答】解:∵n=9,m=3,∴P(摸出绿球)==,=.故答案为:.12.化简:=.【分析】利用三角形法则化简即可.【解答】解:∵=﹣=+=.故答案为.13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.已知菱形的周长是48cm,一条较小的对角线的长是12cm,则该菱形较大的内角是120度.【分析】先根据菱形的性质求出菱形的边长,然后根据对角线长为12cm,可判断出菱形一个角的度数,继而可求得该菱形较大的内角度数.【解答】解:∵菱形的周长为48cm,∴菱形的边长为:48÷4=12cm,∵一条对角线的长是12cm,∴这条对角线跟相邻的两边组成的三角形为等边三角形,则菱形的较小的内角为60°,则较大内角为180°﹣60°=120°.故答案为:120°.15.梯形的中位线长8cm,高10cm,则该梯形的面积为80cm2.【分析】根据梯形中位线定理求出梯形的上底+下底,根据梯形的面积公式计算,得到答案.【解答】解:∵梯形的中位线长8,∴梯形的上底+下底=16,∴该梯形的面积=×16×10=80(cm2),故答案为:80.16.如图,矩形ABCD中,O是两对角线交点,AE⊥BD于点E.若OE:OD=1:2,AE =3cm,则BE=3cm.【分析】由矩形的性质可得AO=BO,由线段的垂直平分线的性质可得AO=AB,可证△ABO是等边三角形,∠ABO=60°,由直角三角形的性质可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO,BO=DO,AC=BD,∴AO=BO,∵OE:OD=1:2,∴OE=OB,∴BE=OE,又∵AE⊥BD,∴AO=AB,∴AO=AB=BO,∴△ABO是等边三角形,∴∠ABO=60°,∴∠BAE=30°,∴AE=BE=3cm,∴BE=cm,故答案为:3.17.函数y=和y=﹣(k≠0)的图象关于y轴对称,我们把函数y=和y=﹣(k ≠0)叫做互为“镜子”函数.类似地,如果函数y=f(x)和y=h(x)的图象关y轴对称,那么我们把函数y=f(x)和y=h(x)叫做互为“镜子”函数.则函数y=2x﹣4的“镜子”函数是y=﹣2x﹣4.【分析】根据题目中的新定义,可以直接写出函数y=2x﹣4的“镜子”函数.【解答】解:由题意可得,函数y=2x﹣4的“镜子”函数是y=﹣2x﹣4,故答案为:y=﹣2x﹣4.18.一次函数y=2x+4的能像与x、y轴分别用交于点A和点B,点C在直线x=4上,点D 是直角坐标平面内一点,若四边形ABCD是菱形,则点D的坐标为(2,2)或(2,﹣2).【分析】根据菱形的性质找出点C的坐标即可得出D点的坐标.【解答】解:∵一次函数解析式为线y=2x+4,∴B(0,4),A(﹣2,0),∴AB==2,如图∵四边形ABCD是菱形,∴AB=BC,设C(4,n),∴=2,解得n=6或2,∴C1(4,6),C2(4,2),∴D(2,2)或(2,﹣2),故答案为(2,2)或(2,﹣2).三.解答题(共8小题)19.解方程:=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:(x+2)2﹣20=x2﹣4,整理得:x2+4x+4﹣20=x2﹣4,移项合并得:4x=12,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,则分式方程的解为x=3.20.解方程组.【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个一元一次方程,重新组合成二元一次方程组,求出的四个二元一次方程组的解就是原方程的解.【解答】解:由①,得(x﹣y)2=16,所以x﹣y=4或x﹣y=﹣4.由②,得(x+3y)(x﹣3y)=0,即x+3y=0或x﹣3y=0所以原方程组可化为:,,,解这些方程组,得,,,.所以原方程组的解为:,,,.21.解方程:+x=7.【分析】先移项得到=7﹣x,两边平方把无理方程化为整式方程,解整式方程,然后进行检验确定无理方程的解.【解答】解:=7﹣x,两边平方得x﹣1=(7﹣x)2,整理得x2﹣15x+50=0,解得x1=5,x2=10,经检验,原方程的解为x=5.22.某工厂储存了30吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,且储存的煤比原计划多用20天,原计划每天烧煤多少吨?【分析】设原计划每天烧煤x吨,由“储存的煤比原计划多用20天”,列出方程,即可求解.【解答】解:设原计划每天烧煤x吨,由题意可得:,解得:x1=3,x2=﹣1(不合题意舍去),经检验:x=3是原方程的解,答:原计划每天烧煤3吨.23.如图,已知在梯形ABCD中,AB∥CD.(1)若AD=BC,且AC⊥BD,AC=6,求梯形ABCD的面积;(2)若CD=3,M、N分别是对角线AC、BD的中点,联结MN,MN=2,求AB的长.【分析】(1)如图1,过C作CE∥BD,交AB的延长线于E,根据平行四边形的性质得到CE=BD,CD=BE,求得AC=BD,推出△ACE是等腰直角三角形,得到AC=CE=6,求得CH=AE=3,根据梯形的面积公式即可得到结论;(2)如图2,延长NM交AD于G,连接DM并延长交AB于H,根据平行线的性质得到∠DCM=∠HAM,根据线段中点的定义得到AM=CM,根据全等三角形的性质得到DM=HM,求得DN=BN,得到AG=DG,根据三角形的中位线定理即可得到结论.【解答】解:(1)如图1,过C作CE∥BD,交AB的延长线于E,∵AB∥CD,∴四边形DBEC是平行四边形,∴CE=BD,CD=BE,∵AC⊥BD,∴AC⊥CE,∵AD=BC,AB∥CD,∴AC=BD,∴AC=CE,∴△ACE是等腰直角三角形,∴AC=CE=6,∴AE=AC=6,∴CH=AE=3,∴梯形ABCD的面积=×6×3=18;(2)如图2,延长NM交AD于G,连接DM并延长交AB于H,∵CD∥AB,∴∠DCM=∠HAM,∵M是对角线AC的中点,∴AM=CM,∵∠CMD=∠AMH,∴△AMH≌△CMD(ASA),∴DM=HM,∵N是对角线BD的中点,∴DN=BN,∴MN∥AB∥CD,∴AG=DG,∴GM=CD=,∵MN=2,∴GN=,∴AB=2GN=7.24.如图,已知在四边形ABCD中,AB∥CD,点O是对角线AC的中点,联结DO并延长与AB边交于点E,联结CE,设=,=,.(1)试用向量,表示下列向量:=﹣,=﹣.(2)求作:.(保留作图痕迹,写出结果,不要求写作法)【分析】(1)首先证明四边形AECD是平行四边形,利用三角形法则求出,即可.(2)如图,过点C作CT∥DE交AE于T.即为所求.【解答】解:(1)∵CD∥AE,∴∠OCD=∠OAE,∵∠DOC=∠AOE,OC=OA,∴△DOC≌△EOA(AAS),∴CD=AE,∵CD∥AE,∴四边形ADCE是平行四边形,∴AD=CE,AD∥EC,∵=+,=,=,∴==﹣,∵=+,,∴=﹣+=﹣,故答案为﹣,﹣.(2)如图,过点C作CT∥DE交AE于T.即为所求.25.如图,直线AB经过点A(﹣3,0),B(0,2),经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C.(1)求直线AB的表达式;(2)在x轴的正半轴上是否存在一点P,使得△OCP为等腰三角形,若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)由待定系数法求出直线AB的表达式为:y=x+2;(2)求出点C的坐标为(3,4),由勾股定理求出OC=5,分三种情况,由等腰三角形的性质和勾股定理进行解答即可.【解答】解:(1)设直线AB的表达式为:y=kx+b,把A(﹣3,0)、B(0,2)代入表达式得:,解得:,∴直线AB的表达式为:y=x+2;(2)∵经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C,∴点C的纵坐标为:4,∴4=x+2,解得:x=3,∴点C的坐标为:(3,4),∴OC==5,分三种情况:如图,①当OP=PC时,设点P的坐标为:(a,0),则OP2=PC2,即a2=(a﹣3)2+42,解得:a=,∴点P的坐标为:(,0);②当OC=OP=5时,点P的坐标为:(5,0);③当OC=CP时,由点C的横坐标为3,可得点P的横坐标为6,∴点P的坐标为:(6,0);综上所述,△OCP为等腰三角形,点P的坐标为(,0)或(5,0)或(6,0).26.已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上.(1)若BE=DF,①求证:∠BAE=∠DAF;②联结AC交EF于点O,过点F作FM∥AE,交AC的延长线于M,联结EM,求证:四边形AEMF是菱形.(2)联结BD,交AE、AF于点P、Q.若∠EAF=45°,AB=1,设BP=x,DQ=y,求y关于x的函数关系及定义域.【分析】(1)①证明△ABE≌△ADF(SAS),即可推出∠BAE=∠DAF.②证明△FOM≌△EOA(ASA),推出AE=FM,由FM∥AE,可得四边形AEMF是平行四边形,再根据AE=AF可得结论.(2)如图2中,将△ADQ绕点A顺时针旋转90°得到△ABT,连接PT.证明△APQ≌△APT(SAS),推出PQ=PT,由题意BD==,推出PQ=PT=﹣x﹣y,在Rt△TBP中,根据PT2=BT2+PB2,构建关系式即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是正方形,∴∠B=∠D=90°,AB=AD,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.②证明:如图1中,∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°,∵∠BAE=∠DAF,∴∠EAO=∠F AO,∵△BAE≌△DAF,∴AE=AF,∴AC⊥EF,OE=OF,∵FM∥AE,∴∠OFM=∠OEA,∵∠FOM=∠EOA,∴△FOM≌△EOA(ASA),∴AE=FM,∵FM∥AE,∴四边形AEMF是平行四边形,∵AE=AF,∴四边形AEMF是菱形.(2)解:如图2中,将△ADQ绕点A顺时针旋转90°得到△ABT,连接PT.∵△ADQ≌△ABP,∴AQ=AT,∠ADQ=∠ABT=45°,∠DAQ=∠BAT,∵∠ABD=45°,∴∠TBP=90°,∵∠EAF=45°,∠BAD=90°,∴∠DAQ+∠BAP=∠BAT+∠BAP=45°,∴∠P AT=∠P AQ=45°,∵P A=P A,AT=AQ,∴△APQ≌△APT(SAS),∴PQ=PT,∵AB=AD=1,∠BAD=90°,∴BD==,∴PQ=PT=﹣x﹣y,在Rt△TBP中,∵PT2=BT2+PB2,∴(﹣x﹣y)2=x2+y2,∴y=(0≤x≤).。
2019-2020学年上海市松江区八年级下学期期末数学试卷 (解析版)

2019-2020学年上海市松江区八年级第二学期期末数学试卷一、选择题(共6小题).1.下列函数中,一次函数是()A.y=﹣1B.y=x2+3C.y=3x D.y=k+b(k、b是常数)2.一次函数y=2x+3的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限3.下列说法正确的是()A.+=1分式方程B.x2+3y=1是二元二次方程C.x2+x﹣1=0是无理方程D.x2+x=0是二项方程4.下列方程中,有实数根的方程是()A.=0B.+1=0C.=3D.+=1 5.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,DE∥AB交BC于点E.下列判断正确的是()A.向量和向量是相等向量B.向量和向量相反向量C.向量和向量是平行向量D.向量与向量的和向量是零向量6.下列命题中,真命题的个数是()①对角线互相垂直且相等的平行四边形是正方形;②对角线互相垂直的矩形是正方形;③对角线相等的菱形是正方形;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个二、填空题(共12小题).7.已知直线l平行于直线y=2x,且在y轴上的截距为5,那么直线l的表达式是.8.已知一次函数y=(m﹣3)x﹣2,其中y随x的增大而减小,那么m的取值范围是.9.布袋中有2个红球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是黄球的概率是.10.方程x3+64=0的实数根是.11.用换元法解方程﹣=1时,如果设=y,那么原方程可化为关于y的整式方程是.12.方程的实数根是.13.关于x的方程a2(x﹣1)=2﹣x的解为.14.方程组的解为.15.一个多边形的内角和等于900°,则这个多边形是边形.16.如果一个梯形的上底长为2cm,中位线长是5cm,那么这个梯形下底长为cm.17.如图,菱形ABCD的对角线AC与BD相交于点O.已知AB=10m,AC=12cm.那么这个菱形的面积为cm2.18.如图,已知在矩形ABCD中,点E在边BC的延长线上,且CE=BD,联结AE交BD 于点F,如果∠E=15°,那么∠AFB的度数为.三、简答题(本大题共4题,满分20分)19.解方程:﹣=1.20.解方程组:.21.如图,点E在平行四边形ABCD的对角线AC上,设=,=,=.(1)用向量,,表示下列向量:向量=;向量;(2)求作:+(不写作法,保留作图痕迹,写出结果).22.如图,在平面直角坐标系xOy中,一次函数y=﹣x+b的图象与正比例函数y=x 的图象交于点A(2,m),与x轴交于点B.(1)求m、b的值;(2)求△AOB的面积.四.解答题(本大题共4题,满分32分)23.甲,乙两人同时从A地出发,沿相同路线骑自行车前往距离A地15千米的B地,已知甲比乙平均每小时多骑1千米,但由于甲在路上修自行车耽搁了半小时,结果两人同时到达B地,求甲,乙两人每小时各骑行多少千米?24.如图线段AB是辆轿车油箱中剩余油量y(升)关于行驶时间x(小时)的函数图象,请解答下列问题:(1)写出y关于x的函数解析式,并写出函数定义域;(2)轿车行驶1小时后油箱中的剩余油量是多少升?(3)当油箱中剩余油量为12升时,轿车油表灯亮.①试问轿车行驶多少小时后油表灯亮?②如果轿车的行驶速度平均每小时80千米,问轿车油表灯亮后最多还能行驶多少千米?25.如图,已知在梯形ABCD中,AD∥BC.AD=AB,BC=2AD.E是BC边的中点,AE、BD相交于点F.(1)求证:四边形AECD是平行四边形;(2)设边CD的中点为G,联结EG.求证:四边形FEGD是矩形.26.如图,已知在正方形ABCD中,AB=2,点E为线段AC上一点(点E不与A、C重合),联结DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG.(1)求证:DE=EF;(2)联结CG、EG,设AE=x,△ECG的面积为y.求y关于x的函教关系式并写出定义域;(3)设EG、CD相交于点H,如果△EDH是等腰三角形,求线段AE的长.参考答案一、选择题(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一次函数是()A.y=﹣1B.y=x2+3C.y=3x D.y=k+b(k、b是常数)【分析】根据一次函数和正比例函数的概念解答即可.解:A、自变量在分母上,不符合一次函数定义;B、y=x2++3是二次函数,故选项错误;C、y=3x是正比例函数也是一次函数,故选项正确;D、少x,不符合一次函数定义;故选:C.2.一次函数y=2x+3的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限【分析】由于k>0,b>0,根据一次函数图象与系数的关系可判断一次函数y=2x+3的图象经过第一、二、三象限.解:∵k=2>0,∴图象经过第一、三象限,∴b=3>0,∴图象与y轴的交点在x轴上方,∴一次函数y=2x+3的图象经过第一、二、三象限.故选:A.3.下列说法正确的是()A.+=1分式方程B.x2+3y=1是二元二次方程C.x2+x﹣1=0是无理方程D.x2+x=0是二项方程【分析】根据一元二次方程的定义对A、B、C进行判断;根据二元二次方程的定义对B 进行判断,解:A、+=1为一元二次方程,所以A选项的说法错误;B、x2+3y=1为二元二次方程,所以B选项的说法正确;C、x2+x﹣1=0是一元二次方程,所以C选项的说法错误;D、x2+x=0是一元二次方程,所以D选项的说法错误.故选:B.4.下列方程中,有实数根的方程是()A.=0B.+1=0C.=3D.+=1【分析】分别解无理方程可对A、B、C进行判断;利用二次根式有意义的条件得到x=3,通过检验可对D进行判断.解:A、两边平方得x2+4=0,此方程没有实数解,原方程无解;B、变形为=﹣1,两边平方得x﹣2=1,解得x=3,经检验,原方程无解;C、两边平方得x+1=4,解得x=3,经检验,原方程的解为x=3;D、因为x﹣3≥0且3﹣x≥0,则x=3,此时方程无解.故选:C.5.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,DE∥AB交BC于点E.下列判断正确的是()A.向量和向量是相等向量B.向量和向量相反向量C.向量和向量是平行向量D.向量与向量的和向量是零向量【分析】根据等腰梯形的性质和共线平面向量的定义作答.解:A、由于向量和向量的方向不同,所以它们不是相等向量,故本选项不符合题意.B、由于||≠||,所以向量和向量不是相反向量,故本选项不符合题意.C、因为AD∥BC即AD∥EC,所以向量和向量是平行向量,故本选项符合题意.D、+=2≠,故本选项不符合题意.故选:C.6.下列命题中,真命题的个数是()①对角线互相垂直且相等的平行四边形是正方形;②对角线互相垂直的矩形是正方形;③对角线相等的菱形是正方形;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个【分析】根据正方形的判定方法对各命题进行判断.解:对角线互相垂直且相等的平行四边形是正方形,所以①正确;对角线互相垂直的矩形是正方形,所以②正确;对角线相等的菱形是正方形,所以③正确;对角线互相垂直平分且相等的四边形是正方形,所以④正确.故选:D.二、填空题(本大题共12题,每题3分,满分36分)7.已知直线l平行于直线y=2x,且在y轴上的截距为5,那么直线l的表达式是y=2x+5.【分析】根据直线l与直线y=2x平行,直线l的解析式的一次项系数等于2,再根据在y轴上的截距是5,可得直线l的解析式.解:∵直线l与直线y=2x平行,∴设直线l的解析式为:y=2x+b,∵在y轴上的截距是5,∴b=5,∴y=2x+5,∴直线l的表达式为:y=2x+5.故答案为:y=2x+5.8.已知一次函数y=(m﹣3)x﹣2,其中y随x的增大而减小,那么m的取值范围是m <3.【分析】根据一次函数的性质得m﹣3<0,然后解不等式即可.解:∵一次函数y=(m﹣3)x﹣2,其中y随x的增大而减小,∴m﹣3<0,解得m<3.故答案是:m<3.9.布袋中有2个红球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是黄球的概率是.【分析】直接根据概率公式求解.解:∵袋中有2个红球、3个黄球,共有5个球,∴从袋中任意摸出一个球是黄球的概率是.故答案为:.10.方程x3+64=0的实数根是x=﹣4.【分析】方程整理后,利用立方根性质计算即可求出解.解:方程整理得:x3=﹣64,解得:x=﹣4.故答案为:x=﹣4.11.用换元法解方程﹣=1时,如果设=y,那么原方程可化为关于y的整式方程是y2﹣y﹣2=0.【分析】把方程变形为﹣=1,再换元.解:设=y,原式可转化为y﹣﹣1=0.整理,得y2﹣y﹣2=0.故答案为:y2﹣y﹣2=0.12.方程的实数根是3.【分析】先把要求的方程进行变形,得出2x+3=x2,求出x的值,再把x的值进行检验,即可求出正确答案.解:∵,∴2x+3=x2,解得:x1=3,x2=﹣1,检验:当x=3时,==3,当x=﹣1时,=1≠﹣1,则x=﹣1不是原方程的解,x=3是方程的实数根.故答案为:3.13.关于x的方程a2(x﹣1)=2﹣x的解为x=..【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=.故答案为:x=.14.方程组的解为.【分析】设=u,=v,方程组变形后求出解得到u与v的值,即可确定出解.解:设=u,=v,方程组变形得:,①+②得:5u=15,解得:u=3,把u=3代入①得:v=﹣1,∴=3,=﹣1,则方程组的解为.故答案为:.15.一个多边形的内角和等于900°,则这个多边形是七边形.【分析】根据多边形的内角和,可得答案.解:设多边形为n边形,由题意,得(n﹣2)•180°=900,解得n=7,故答案为:七.16.如果一个梯形的上底长为2cm,中位线长是5cm,那么这个梯形下底长为8cm.【分析】根据梯形的中位线得出EF=×(AD+BC),代入求出即可.解:∵EF是梯形ABCD(AD∥BC)的中位线,∴EF=×(AD+BC),∵EF=5cm,AD=2cm,∴5cm=(2cm+BC),解得:BC=8cm,故答案为:8.17.如图,菱形ABCD的对角线AC与BD相交于点O.已知AB=10m,AC=12cm.那么这个菱形的面积为96cm2.【分析】根据菱形的性质可得AC⊥BD,然后利用勾股定理求出OB=8cm,得出BD=16cm,最后根据菱形的面积公式求解.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.18.如图,已知在矩形ABCD中,点E在边BC的延长线上,且CE=BD,联结AE交BD 于点F,如果∠E=15°,那么∠AFB的度数为45°.【分析】连接AC交BD于点O,由矩形的性质得出AC=BD,OB=OC,则∠OBC=∠OCB,证出AC=CE,则∠CAE=∠E=15°,由三角形的外角性质求出∠OBC=∠OCB =30°,再由三角形的外角性质即可得出答案.解:连接AC交BD于点O,如图所示:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵CE=BD,∴AC=CE,∴∠CAE=∠E=15°,∴∠OBC=∠OCB=∠CAE+∠E=30°,∴∠AFB=∠OBC+∠E=30°+15°=45°;故答案为:45°.三、简答题(本大题共4题,满分20分)19.解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:5x+7﹣2(x+5)=x2+4x﹣5,整理得:x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x=1或x=﹣2,经检验x=1是增根,则分式方程的解为x=﹣2.20.解方程组:.【分析】因式分解方程组中的②,转化为两个二元一次方程,与原方程组中的①组成两个一次方程组,求解即可.解:由②,得(x+3y)(x﹣2y)=0.∴x+3y=0③,x﹣2y=0④.由①③,①④组成新的方程组,解方程组,得;解方程组,得.21.如图,点E在平行四边形ABCD的对角线AC上,设=,=,=.(1)用向量,,表示下列向量:向量=+;向量﹣;(2)求作:+(不写作法,保留作图痕迹,写出结果).【分析】(1)利用平行四边形的性质以及三角形法则即可解决问题.(2)作CF∥DE,且CF=DE,连接DF,则即为所求.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴=+=+,=+=﹣.故答案为:+,﹣(2)如图,即为所求.22.如图,在平面直角坐标系xOy中,一次函数y=﹣x+b的图象与正比例函数y=x 的图象交于点A(2,m),与x轴交于点B.(1)求m、b的值;(2)求△AOB的面积.【分析】(1)将点A的坐标代入正比例函数的解析式中即可求出m的值.将点A的坐标代入一次函数的解析式中即可求出b的值.(2)先求得B的坐标,然后根据三角形面积公式求得即可.解:(1)正比例函数y=x的图象过点A(2,m).∴m=×2=3.又∵一次函数y=﹣x+b的图象过点A(2,3).∴3=﹣+b,∴b=4.(2)∵一次函数y=﹣x+4的图象与x轴交于点B,∴B(8,0),∴S△AOB==12.四.解答题(本大题共4题,满分32分)23.甲,乙两人同时从A地出发,沿相同路线骑自行车前往距离A地15千米的B地,已知甲比乙平均每小时多骑1千米,但由于甲在路上修自行车耽搁了半小时,结果两人同时到达B地,求甲,乙两人每小时各骑行多少千米?【分析】设乙每小时行驶xkm,则甲每小时行驶(x+1)km,根据乙所用时间﹣甲所用时间=小时列出方程并解答.解:设乙每小时行驶xkm,则甲每小时行驶(x+1)km,根据题意,得﹣=.解得x=5.经检验x=5是所列方程的根.所以x+1=6.答:甲每小时行驶6km,乙每小时行驶5km.24.如图线段AB是辆轿车油箱中剩余油量y(升)关于行驶时间x(小时)的函数图象,请解答下列问题:(1)写出y关于x的函数解析式,并写出函数定义域;(2)轿车行驶1小时后油箱中的剩余油量是多少升?(3)当油箱中剩余油量为12升时,轿车油表灯亮.①试问轿车行驶多少小时后油表灯亮?②如果轿车的行驶速度平均每小时80千米,问轿车油表灯亮后最多还能行驶多少千米?【分析】(1)由图象可知:A(0,60),B(4,0),根据待定系数法即可求出答案.(2)令x=1,代入y=﹣15x+60即可求出y的值.(3)①令y=12,代入y=﹣15x+60即可求出x的值.②轿车油表灯亮后,轿车还能行驶0.8小时,根据速度、路程、时间之间的关系即可求出答案.解:(1)由图象可知:A(0,60),B(4,0),设y=kx+b,∴,解得:,∴y=﹣15x+60,其中0≤x≤4.(2)当x=1时,∴y=﹣15+60=45,答:轿车行驶1小时后油箱中的剩余油量是45升(3)①当y=12,∴12=﹣15x+60,答:轿车行驶3.2小时后油表灯亮.②轿车油表灯亮后,轿车还能行驶0.8小时,∴轿车油表灯亮后最多还能行驶80×0.8=64km,答:轿车油表灯亮后最多还能行驶64km.25.如图,已知在梯形ABCD中,AD∥BC.AD=AB,BC=2AD.E是BC边的中点,AE、BD相交于点F.(1)求证:四边形AECD是平行四边形;(2)设边CD的中点为G,联结EG.求证:四边形FEGD是矩形.【分析】(1)根据“有一组对边平行且相等的四边形是平行四边形”证明;(2)根据题意,首先判定四边形DFEG是平行四边形,然后推知其有一内角为直角,此题得证.【解答】(1)证明:如图,∵AD∥BC,∴AD∥EC.∵BC=2AD,E是BC边的中点,∴AD=EC.∴四边形AECD是平行四边形;(2)证明:如图,连接GE,由(1)知,四边形AECD是平行四边形,则FE∥DG.又∵点E是BC的中点,点G是CD的中点,∴EG∥BD,即EG∥FD,∴四边形DFEG是平行四边形.∵在梯形ABCD中,AD∥BC,∴∠1=∠2.又∵AD=AB,∴∠2=∠3,即BF是∠ABE的平分线.∵BC=2AD,E是BC边的中点,∴AD=BE.∴AB=BE,∴BF⊥AE,∴平行四边形FEGD是矩形.26.如图,已知在正方形ABCD中,AB=2,点E为线段AC上一点(点E不与A、C重合),联结DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG.(1)求证:DE=EF;(2)联结CG、EG,设AE=x,△ECG的面积为y.求y关于x的函教关系式并写出定义域;(3)设EG、CD相交于点H,如果△EDH是等腰三角形,求线段AE的长.【分析】(1)作EM⊥BC,EN⊥CD,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;(2)由“SAS”可证△ADE≌△CDG,可得AE=CG,证明∠ACG=90°即可解决问题.(3)分两种情形:如图1中,当ED=EH时,如图2中,当HD=HE时,分别求解即可解决问题.解:(1)如图,作EM⊥BC,EN⊥CD.∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE.(2)∵四边形DEFG是矩形,EF=DE,∴矩形DEFG是正方形;∵四边形ABCD是正方形,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,∴△ADE≌△CDG(SAS),∴AE=CG,∠DAE=∠DCG=45°,∵∠ACD=45°,∴∠ACG=∠ACD+∠DCG=90°,∵AD=DC=2,∠ADC=90°,∴AC==2,∴y=•EC•CG=•x•(2﹣x)=﹣x2+x(0<x<2).(3)如图1中,当ED=EH时,∵ED=EH,∴∠EDH=∠EHD,∵∠EHD=∠HEC+∠ECH=45°+∠CEH,∠CED=∠CEH+∠DEG=∠CEH+45°,∴∠CDE=∠CEH+45°,∴∠CDE=∠CED,∴CD=CE=2,∴AE=AC﹣EC=2﹣2.如图2中,当HD=HE时,点C与F重合,此时AE=EC=.综上所述,满足条件的AE的值为2﹣2或2.。
2020-2021学年上海市徐汇区八年级(下)期末数学试卷(含解析)

2020-2021学年上海市徐汇区八年级(下)期末数学试卷一、选择题(每题2分,满分12分).1.一次函数y=﹣2x+1的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限2.下列方程,有实数解的是()A.B.C.(x+2)4﹣1=0D.3.如果=,那么下列结论中正确的是()A.||=||B.与是相等向量C.与是相反向量D.与是平行向量4.下列语句所描述的事件中,是不可能事件的是()A.锄禾日当午B.大漠孤烟直C.手可摘星辰D.黄河入海流5.下列图形中是中心对称但不是轴对称的图形是()A.菱形B.矩形C.等腰梯形D.平行四边形6.已知四边形ABCD中,AB∥CD,AC=BD,下列判断中正确的是()A.如果BC=AD,那么四边形ABCD是等腰梯形B.如果AD∥BC,那么四边形ABCD是菱形C.如果AC平分BD,那么四边形ABCD是矩形D.如果AC⊥BD,那么四边形ABCD是正方形二、填空题(本大题共12题,每题2分,满分24分)7.将直线y=﹣x﹣2沿y轴方向向上平移3个单位,所得新图象的函数表达式是.8.已知一次函数y=mx+1(m≠0),若y的值随x的增大而增大,则m的取值范围是.9.方程x3+4=0的解是.10.方程=3的解是.11.已知一次函数y=kx+b(k、b为常数)的图象如图所示,那么关于x的不等式kx+b>0的解集是.12.如果关于x是方程x2﹣x+m=0有两个相等的实数根,那么m的值等于.13.一个凸n边形的内角和是540°,则n=.14.用换元法解方程时,如果设时,则原方程可以化成关于y的整式方程是.15.我们古代《四元玉鉴》中记载“二果问价”问题,其内容如下:“九百九十九文钱,甜果苦果共买千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?”如果设买甜果x个,买苦果y个,那么列出的关于x,y的二元一次方程组是.16.已知边长为4的正方形ABCD,点E、F分别在CA、AC的延长线上,且∠BED=∠BFD =45°,那么四边形EBFD的面积是.17.我们把联结四边形对边中点的线段称为“中对线”.凸四边形ABCD的对角线AC=BD =12,且这两条对角线的夹角为60°,那么该四边形较长的“中对线”的长度为.18.已知等边△ABC的边长为6,D是边AB上一点,DE∥BC交边AC于点E,以DE为一边在△ABC形内构造矩形DEFG.且DG=DE.设AD=x,BG=y,则y关于x的函数关系式是(无需写出定义域).三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.解方程组:.20.如图,平行四边形ABCD的对角线AC、BD相交于点O.点E在对角线BD的延长线上,且DE=OD.(1)图中与相等的向量是;(2)计算:﹣+;(3)在图中求作﹣.(保留作图痕迹,不要求写作法,请指出哪个向量是所求作的向量)21.小明和小杰从同一地点去青浦郊野公园,小明坐公交车去,小杰因为有事晚出发,乘出租车以1.6千米/分钟的平均速度沿路追赶.图中l1,l2分别表示公交车与图象解决下列问题:(1)小明早到了分钟,公交车的平均速度为千米/分钟;(2)小杰路上花费的时间是分钟,比小明晚出发分钟;(3)求出租车行驶过程中s与t的函数关系式,并写出定义域.22.小杰和小明玩扑克牌游戏,各出一张牌比输赢.游戏的规则是:谁的牌数字大谁赢,同样大就平:A遇2就输,遇其他牌(除A外)都赢.目前小杰手中A、K、J,小明手中有2、Q、J.(1)求出小明抽到的牌恰好是“2”的概率;(2)小杰、小明两人谁获胜的机会大?画出树状图,通过计算说明理由.四、解答题(本大题共4题,第23题8分,第24、25题每题9分,第26题12分)23.为响应国家号召,全体公民接种疫苗,提高对“新冠”病毒的免疫功能.现某大型社区有6000人需要接种疫苗,为了尽快完成该项任务,防疫部门除固定接种点外还增加了一辆流动疫苗接种车,实际每日接种人数比原计划多了250人,结果提前了2天完成全部接种任务.求原计划每天接种人数是多少?24.如图,已知梯形ABCD中,AD∥BC,E、G分别是AB、CD的中点,点F在边BC上,且BF=(AD+BC).(1)求证:四边形AEFG是平行四边形;(2)若四边形AEFG是矩形,求证:AG平分∠FAD.25.已知,如图,在平面直角坐标系中,一次函数y=﹣2x﹣4与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,将△ABC绕着顶点B旋转后,点C的对应点C′落在y轴上,点A的对应点A′恰好落在反比例函数y=(k≠0)的图象上.(1)求△BOC的面积;(2)如果k的值为6(即反比例函数为y=),求点A′的坐标;(3)如果四边形ACBA′是梯形,求k的值.26.已知:正方形ABCD的边长为8,点E是BC边的中点,点F是边AB上的动点,联结DE、EF.(1)如图1,如果BF=2,求证:EF⊥DE;(2)如图2,如果BF=3,求证:∠DEF=3∠CDE;(3)联结DF,设DF的中点为G,四边形AFEG是否可能为菱形?请说明理由.参考答案一、选择题(本大题共6题,每题2分,满分12分)(每题只有一个选项正确)1.一次函数y=﹣2x+1的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限解:∵k=﹣2<0,∴一次函数的图象经过第二四象限,∵b=1>0,∴一次函数y=﹣2x+1的图象与y轴正半轴相交,经过第一象限,∴一次函数y=﹣2x+1的图象经过第一二四象限,故选:D.2.下列方程,有实数解的是()A.B.C.(x+2)4﹣1=0D.解:A.∵+1=0,∴=﹣1,∵是非负数,∴原方程无实数解,故本选项不符合题意;B.=,方程两边都乘以x﹣2,得x=2,检验:当x=2时,x﹣2=0,所以x=2是增根,即原方程无实数解,故本选项不符合题意;C.∵(x+2)4﹣1=0,∴(x+2)4=1,∴x+2=,∴x1=﹣2+1=﹣1,x2=﹣2﹣1=﹣3,即方程有实数解,故本选项符合题意;D.∵+=0,∴x﹣4=0且x﹣3=0,∴x不存在,即原方程无实数解,故本选项不符合题意;故选:C.3.如果=,那么下列结论中正确的是()A.||=||B.与是相等向量C.与是相反向量D.与是平行向量解:∵=,∴||=||,EF∥MN.∴四边形EMNF是平行四边形.A、当平行四边形EMNF是矩形时,该结论才成立,故不符合题意.B、由四边形EMNF是平行四边形得到:EM=FN,且EM∥FN,则与是相等向量,故符合题意.C、如图所示,与不是相反向量,故不符合题意.D、如图所示,与不是平行向量,故不符合题意.故选:B.4.下列语句所描述的事件中,是不可能事件的是()A.锄禾日当午B.大漠孤烟直C.手可摘星辰D.黄河入海流解:A、锄禾日当午是随机事件,故选项错误,不符合题意;B、大漠孤烟直是随机事件,故选项错误,不符合题意;C、手可摘星辰是不可能事件,故选项正确,符合题意;D、黄河入海流是必然事件,故选项错误,不符合题意;故选:C.5.下列图形中是中心对称但不是轴对称的图形是()A.菱形B.矩形C.等腰梯形D.平行四边形解:A.菱形既是轴对称图形,又是中心对称图形,故此选项不合题意;B.矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;C.等腰梯形是轴对称图形,不是中心对称图形,故此选项不合题意;D.平行四边形不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.6.已知四边形ABCD中,AB∥CD,AC=BD,下列判断中正确的是()A.如果BC=AD,那么四边形ABCD是等腰梯形B.如果AD∥BC,那么四边形ABCD是菱形C.如果AC平分BD,那么四边形ABCD是矩形D.如果AC⊥BD,那么四边形ABCD是正方形解:A.如果BC=AD,那么四边形ABCD可能是等腰梯形,也可能是矩形,错误;B.如果AD∥BC,那么四边形ABCD是矩形,错误;C.如果AC平分BD,那么四边形ABCD是矩形,正确;D.如果AC⊥BD,那么四边形ABCD不一定是正方形,错误;故选:C.二、填空题(本大题共12题,每题2分,满分24分)7.将直线y=﹣x﹣2沿y轴方向向上平移3个单位,所得新图象的函数表达式是y=﹣x+1.解:由“上加下减”的原则可知,将直线y=﹣x﹣2沿y轴方向向上平移3个单位所得函数的解析式为y=﹣x﹣2+3,即y=﹣x+1.故答案为:y=﹣x+1.8.已知一次函数y=mx+1(m≠0),若y的值随x的增大而增大,则m的取值范围是m >0.解:∵一次函数一次函数y=mx+1(m≠0)中,y的值随x的增大而增大,∴m>0,故答案是:m>0.9.方程x3+4=0的解是x=﹣2.解:方程整理得:x3=﹣8,开立方得:x=﹣2.故答案为:x=﹣2.10.方程=3的解是x=﹣7.解:=3,两边平方,得2﹣x=9,解得:x=﹣7,经检验x=﹣7是原方程的解,故答案为:x=﹣7.11.已知一次函数y=kx+b(k、b为常数)的图象如图所示,那么关于x的不等式kx+b>0的解集是x<4.解:函数y=kx+b的图象经过点(4,0),并且函数值y随x的增大而减小,所以当x<4时,函数值大于0,即关于x的不等式kx+b>0的解集是x<4.故答案为:x<412.如果关于x是方程x2﹣x+m=0有两个相等的实数根,那么m的值等于.解:∵方程x2﹣x+m=0有两个相等的实数根,∴△=b2﹣4ac=(﹣1)2﹣4m=0,解得m=,故答案为:.13.一个凸n边形的内角和是540°,则n=5.解:根据题意得,(n﹣2)•180°=540°,解得n=5,故答案为:5.14.用换元法解方程时,如果设时,则原方程可以化成关于y的整式方程是y2﹣3y+2=0.解:设,则原式有y+=3,整理得y2﹣3y+2=0故答案为:y2﹣3y+2=015.我们古代《四元玉鉴》中记载“二果问价”问题,其内容如下:“九百九十九文钱,甜果苦果共买千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?”如果设买甜果x个,买苦果y个,那么列出的关于x,y的二元一次方程组是.解:∵甜果苦果共买千,∴x+y=1000;∵甜果九个十一文,苦果七个四文钱,且购买两种果共花费九百九十九文钱,∴x+y=999.联立两方程组成方程组.故答案为:.16.已知边长为4的正方形ABCD,点E、F分别在CA、AC的延长线上,且∠BED=∠BFD =45°,那么四边形EBFD的面积是16+16.解:如图连接BD交AC于O.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠CAD=∠CAB=45°,∴∠EAD=∠EAB=135°,在△EAB和△EAD中,,∴△EAB≌△EAD,∴∠AEB=∠AED=22.5°,EB=ED,∴∠ADE=180°﹣∠EAD﹣∠AED=22.5°,∴∠AED=∠ADE=22.5°,∴AE=AD=4,同理证明∠DFC=22.5°,FD=FB,∴∠DEF=∠DFE,∴DE=DF,∴ED=EB=FB=FD,∴四边形EBFD的面积=•BD•EF=×4(4+8)=16+16.故答案为16+16.17.我们把联结四边形对边中点的线段称为“中对线”.凸四边形ABCD的对角线AC=BD =12,且这两条对角线的夹角为60°,那么该四边形较长的“中对线”的长度为6.解:设四边形ABCD的“中对线”交于点O,连接EF、FG、GH、HE,∵E,F分别为AB,AD的中点,∴EF∥BD,EF=BD=×12=6,同理可得:GH∥BD,GH=6,EH∥AC,EH=6,∴四边形EFGH为菱形,∠EFG=60°,∴∠EFO=30°,∴OE=EF=3,在Rt△OEF中,OF===3,∴FH=6,即该四边形较长的“中对线”的长度为6,故答案为:6.18.已知等边△ABC的边长为6,D是边AB上一点,DE∥BC交边AC于点E,以DE为一边在△ABC形内构造矩形DEFG.且DG=DE.设AD=x,BG=y,则y关于x的函数关系式是y=(无需写出定义域).解:如图过点G作GH⊥AB于H,∵△ABC为等边三角形,∴∠A=60°,∵DE∥BC,∴△ADE为等边三角形,∴DE=AD=x,∵DG=DE,∴DG=x,在Rt△DGH中∠GDH=90°﹣60°=30°,∴GH=x,DH=x,在Rt△BHG中,BG=y,BH=6﹣x﹣x,∴y2=(x)2+(6﹣x﹣x)2∴y=.故答案为:y=.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.解方程组:.解:x2﹣5xy﹣6y2=0可化为(x﹣6y)(x+y)=0,∴x﹣6y=0或x+y=0,x2﹣4xy+4y2=1可化为(x﹣2y+1)(x﹣2y﹣1)=0,∴x﹣2y+1=0或x﹣2y﹣1=0,原方程组相当于以下四个方程组:①,②,③,④,解①②③④分别得:,,,,∴原方程组的解为:或或或.20.如图,平行四边形ABCD的对角线AC、BD相交于点O.点E在对角线BD的延长线上,且DE=OD.(1)图中与相等的向量是,;(2)计算:﹣+;(3)在图中求作﹣.(保留作图痕迹,不要求写作法,请指出哪个向量是所求作的向量)解:(1)∵四边形ABCD是平行四边形,∴OB=OD,∵DE=OD,∴OB=OD=DE,∴与相等的向量为,.故答案为:,.(2)连接EC.∵﹣+=+﹣=﹣=.∴﹣+=.(3)如图,延长CA到T,使得AT=OA,连接TE.即为所求.21.小明和小杰从同一地点去青浦郊野公园,小明坐公交车去,小杰因为有事晚出发,乘出租车以1.6千米/分钟的平均速度沿路追赶.图中l1,l2分别表示公交车与图象解决下列问题:(1)小明早到了5分钟,公交车的平均速度为1千米/分钟;(2)小杰路上花费的时间是25分钟,比小明晚出发20分钟;(3)求出租车行驶过程中s与t的函数关系式,并写出定义域.解:(1)根据图象可知,小明早到了:45﹣40=5(分钟),公交车的平均速度为:40÷40=1(千米/分钟),故答案为:5;1;(2)小杰路上花费的时间是:40÷1.6=25(分钟),小杰比小明晚出发:45﹣25=20(分钟),故答案为:25;20;(3)由公交车的平均速度为1千米/分钟,可得l1对应的表达式为s=t(0≤t≤40);设l2对应的表达式为s=kt+b(k≠0),由题意得:,解得,∴l2对应的表达式为s=1.6t﹣32(20≤t≤45).22.小杰和小明玩扑克牌游戏,各出一张牌比输赢.游戏的规则是:谁的牌数字大谁赢,同样大就平:A遇2就输,遇其他牌(除A外)都赢.目前小杰手中A、K、J,小明手中有2、Q、J.(1)求出小明抽到的牌恰好是“2”的概率;(2)小杰、小明两人谁获胜的机会大?画出树状图,通过计算说明理由.解:(1)小明抽到的牌恰好是“2”的概率=;(2)小明获胜的机会大.理由如下:画树状图为:共有9种等可能的结果,其中小杰获胜的结果数为3,小明获胜的结果数为4,所以小杰获胜的概率==;小明获胜的概率=,而<,所以小明获胜的机会大.四、解答题(本大题共4题,第23题8分,第24、25题每题9分,第26题12分)23.为响应国家号召,全体公民接种疫苗,提高对“新冠”病毒的免疫功能.现某大型社区有6000人需要接种疫苗,为了尽快完成该项任务,防疫部门除固定接种点外还增加了一辆流动疫苗接种车,实际每日接种人数比原计划多了250人,结果提前了2天完成全部接种任务.求原计划每天接种人数是多少?解:设原计划每天接种人数为x人,则实际每日接种人数为(x+250)人,由题意得:=2,解得:x=750或x=﹣1000(舍去),经检验,x=750是原方程的解,且符合题意,答:原计划每天接种人数为750人.24.如图,已知梯形ABCD中,AD∥BC,E、G分别是AB、CD的中点,点F在边BC上,且BF=(AD+BC).(1)求证:四边形AEFG是平行四边形;(2)若四边形AEFG是矩形,求证:AG平分∠FAD.【解答】证明:(1)连接EG交AF于点O,∵E、G分别是AB、CD的中点,∴EG是梯形ABCD的中位线,∴EG=(AD+BC),EG∥AD∥BC,∵BF=(AD+BC),∴EG=BF,∴四边形BEGF是平行四边形,∴BE=GF,BE∥GF,∵AE=BE,∴AE=GF,∴四边形AEFG是平行四边形;(2)∵四边形AEFG是矩形,∴OA=OG,∴∠OAG=∠OGA,∵AD∥EG,∴∠DAG=∠OGA,∴∠OAG=∠DAG,即AG平分∠FAD.25.已知,如图,在平面直角坐标系中,一次函数y=﹣2x﹣4与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,将△ABC绕着顶点B旋转后,点C的对应点C′落在y轴上,点A的对应点A′恰好落在反比例函数y=(k≠0)的图象上.(1)求△BOC的面积;(2)如果k的值为6(即反比例函数为y=),求点A′的坐标;(3)如果四边形ACBA′是梯形,求k的值.解:(1)因为直线BC:y=﹣2x﹣4,∴B(0,﹣4),C(﹣2,0),∴OC=2,OB=4,∴三角形BOC的面积=OB×OC=×4×2=4.答:△BOC的面积是4;(2)∵由旋转知,∠CBA=∠C'BA',∴BC、BA'关于y轴对称,设BA'与x轴交于点D,∴OD=OC=2,OB=4,∴k BA'=tan∠A'Dx=tan∠ODB==2,∴直线BA'=y=2x﹣4①,又反比例函数:y=②,由①②解得x=3或x=﹣1,得A'(3,2)或(﹣1,﹣6),由于点A'在第一象限,点(﹣1,﹣6)不合题意,舍去,所以A'的坐标(3,2);(3)若四边形ACBA'为梯形,注意到点A在y轴的正半轴.①证明CB与AA'不平行;BA=BA',在△ABA'中,令∠ABA'=α,则∠BA'A==90°﹣,又∠CBA'=2∠ABA'=2α,则∠BA'A+∠CBA'=(90°﹣)+2α=90°+α≠180°,(由于在△CBO中,∠CBO≠60°,即α≠60°),所以CB与AA'不平行;②当CA∥BA'时,可得∠CBA=∠ABA'=∠CAB,即CB=CA,A(0,4),又BC=BC'=2,B(0,﹣4),所以OC'=2﹣4,过A作BC垂线,垂足为M,过A'作BC'垂线,垂足为M',在△AMB中,AM与水平线的夹角、BM与y轴的夹角是相等的,则k AM=tan∠MBA=,又k BC=﹣2,由直线AM,BC的解析式组成方程组,,解得M(﹣,),又A(0,4),C(﹣2,0),所以AM=,CM=,由旋转易得△A'M'C'≌△AMC,∴A'M'=AM=,C'M'=CM=,又OC'=2﹣4,所以OM'=OC'+C'M'=﹣4,∴A'(,﹣4),又点A'在反比例函数y=图象上,∴k=xy=(﹣4)=.答:k的值是.26.已知:正方形ABCD的边长为8,点E是BC边的中点,点F是边AB上的动点,联结DE、EF.(1)如图1,如果BF=2,求证:EF⊥DE;(2)如图2,如果BF=3,求证:∠DEF=3∠CDE;(3)联结DF,设DF的中点为G,四边形AFEG是否可能为菱形?请说明理由.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠A=∠B=∠C=90°,AB=BC=CD=AD=8,∵点E是BC边的中点,∴BE=CE=4,∵BF=2,∴=,∴=,∴△FBE∽△ECD,∴∠FEB=∠EDC,∵∠EDC+∠DEC=90°,∴∠FEB+∠DEC=90°,∴∠FED=90°,∴EF⊥DE.(2)证明:如图2中,过E作EH⊥AD于H,连接AE.∵四边形ABCD是正方形,EH⊥AD于H,∴AB∥EH∥CD,∴∠CDE=∠DEH,∵E是BC中点,∴AH=DH,∴EH垂直平分AD,∴∠AEH=∠DEH,∴∠CDE=∠DEH=∠AEH,Rt△BEF中,BF=3,BE=4,∴EF===5,∴AF=AB﹣BF=5,∴EF=AF,∴∠FAE=∠FEA,而∠FAE=∠AEH,∴∠FEA=∠AEH,∴∠CDE=∠DEH=∠AEH=∠FEA,∴∠DEF=3∠CDE.(3)解:结论:四边形AFEG不可能是菱形.理由:连接AE.假设四边形AFEG是菱形,则AE⊥DF,∴∠BAE+AFD=90°,∠AFD+∠ADF=90°,∴∠BAE=∠ADF,∵AB=DA,∠B=∠DAF=90°,∴△ABE≌△DAF(ASA),∴BE=AF,∵BE=EC,BC=AB,∴AF=BF,在Rt△BEF中,EF>BF,∴EF>AF,这与假设矛盾,∴四边形AFEG不可能是菱形.。
2019-2020学年上海市浦东新区第四教育署八年级下学期期末数学试卷(五四学制) (解析版)

2019-2020学年上海市浦东新区第四教育署八年级第二学期期末数学试卷(五四学制)一、选择题1.直线y=2x﹣1的截距是()A.1B.﹣1C.2D.﹣22.下列方程中有实数解的是()A.x2+3x+4=0B.+1=0C.=D.=﹣x3.函数y=x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.下列说法正确的是()A.方向相反的向量叫做相反向量B.平行向量不能在一条直线上C.﹣=0D.|+(﹣)|=05.菱形的一条对角线与它的边相等,则它的锐角等于()A.30°B.45°C.60°D.75°6.下列命题正确的是()A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生二、填空题:(本大题共12题,每题2分,满分24分)7.方程x3﹣8=0的根是.8.方程的解是.9.已知一次函数y=(3m﹣2)x+1,且y的值随着x的值增大而减小,则m的取值范围是.10.把直线y=2x﹣3沿y轴方向向上平移4个单位后,所得直线的表达式.11.用换元法解方程﹣=1,设y=,那么原方程可以化为关于y的整式方程为.12.已知一个凸多边形的内角和是它的外角和的5倍,那么这个凸多边形的边数等于.13.从1、2、3、4、5、6这六个数中,任取一个数是素数的概率是.14.已知平行四边形ABCD的周长为56cm,AB:BC=2:5,那么AD=cm.15.已知平行四边形ABCD中,∠A的平分线交BC于点E,若AB=AE,则∠BAD=度.16.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.17.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为cm2.18.如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=60°,BC=CD=6,现将梯形折叠,点B恰与点D重合,折痕交AB边于点E,则CE=.三、简答题:(本大题共5题第19、20、21、22、每题6分,第23题7分,满分31分)19.解方程:+=20.解方程组:.21.已知甲、乙两地相距90km,A、B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE、OC分别表示A、B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)A比B迟出发小时,B的速度是km/h;(2)在B出发后几小时,两人相遇?22.如图,在▱ABCD中,对角线AC与BD相交于点O,设,.(1)试用向量,表示下列向量:=;=;(2)求作:.(保留作图痕迹,写出结果,不要求写作法).23.如图,在梯形ABCD中,AD∥BC,BC=12,AB=DC=8.∠B=60°.(1)求梯形的中位线长.(2)求梯形的面积.四、解答题:(第24题8分,第25题9,第26题10分,满分27分)24.八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了25分钟,其余的学生乘汽车出发,结果他们同时到达,已知每小时汽车的速度比骑自行车学生速度的2倍还多10千米,求骑车学生每小时行多少千米?25.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形;(3)(填空)在(2)中再增加条件.则四边形AFBD是正方形.26.如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,6),动点P 从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C 运动.点P、Q的运动速度均为每秒1个单位,运动时间为t(0<t<6)秒,过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求当0<t<3时,S与t的函数关系;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.参考答案一、选择题:(本大题共6题,每题3分,满分18分)1.直线y=2x﹣1的截距是()A.1B.﹣1C.2D.﹣2【分析】代入x=0求出与之对应的y值,此题得解.解:当x=0时,y=2x﹣1=﹣1,∴直线y=2x﹣1的截距为﹣1.故选:B.2.下列方程中有实数解的是()A.x2+3x+4=0B.+1=0C.=D.=﹣x【分析】求出判别式即可判断A;根据算术平方根是一个非负数即可判断B;求出方程的解,代入x﹣3进行检验,即可判断C;解方程可得x=0,进行检验,即可判断D.解:A、x2+3x+4=0,△=32﹣4×1×4=﹣7<0,即此方程无实数解,故本选项错误;B、可得=﹣1,∵算术平方根是一个非负数,∴此方程无实数解,故本选项错误;C、=,方程两边都乘(x﹣3)得:x=3,∵x=3代入x﹣3=0,∴x=3是原方程的增根,即原方程无解,故本选项错误;D、=﹣x,x=x2,解得x1=0,x2=1(是增根,舍去),故本选项正确;故选:D.3.函数y=x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的系数,利用一次函数图象与系数的关系,可得出函数y=x﹣3的图象经过第一、三、四象限,进而可得出函数y=x﹣3的图象不经过第二象限.解:∵k=>0,﹣3<0,∴函数y=x﹣3的图象经过第一、三、四象限,∴函数y=x﹣3的图象不经过第二象限.故选:B.4.下列说法正确的是()A.方向相反的向量叫做相反向量B.平行向量不能在一条直线上C.﹣=0D.|+(﹣)|=0【分析】根据平面向量的性质一一判断即可.解:A、错误.应该是方向相反且长度相等的向量叫做相反向量.B、错误.平行向量能共线.C、错误.结果应该是零向量.D、正确.故选:D.5.菱形的一条对角线与它的边相等,则它的锐角等于()A.30°B.45°C.60°D.75°【分析】由菱形的性质可得这条对角线与菱形的两边组成等边三角形,从而求得锐角的度数等于60°.解:由菱形的性质得,菱形相邻的两边相等,则与这条对角线组成等边三角形,则它的锐角等于60°,故选C.6.下列命题正确的是()A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生【分析】利用概率的意义等知识分别判断后即可确定正确的选项.解:A、任何事件发生的概率大于等于0且小于等于1,故错误;B、随机事件发生的概率大于等于0且小于等于1,故错误;C、可能性很小的事件在一次实验中有可能发生,正确;D、不可能事件在一次实验中不可能发生,故错误,故选:C.二、填空题:(本大题共12题,每题2分,满分24分)7.方程x3﹣8=0的根是x=2.【分析】首先整理方程得出x3=8,进而利用立方根的性质求出x的值.解:x3﹣8=0,x3=8,解得:x=2.故答案为:x=2.8.方程的解是x=7.【分析】将方程两边平方后求解,注意检验.解:将方程两边平方得x﹣3=4,移项得:x=7,代入原方程得=2,原方程成立,故方程的解是x=7.故本题答案为:x=7.9.已知一次函数y=(3m﹣2)x+1,且y的值随着x的值增大而减小,则m的取值范围是m<.【分析】利用一次函数的性质可得出关于m的一元一次不等式,解之即可得出m的取值范围.解:∵一次函数y=(3m﹣2)x+1的y值随着x值的增大而减小,∴3m﹣2<0,∴m<.故答案为:m<.10.把直线y=2x﹣3沿y轴方向向上平移4个单位后,所得直线的表达式y=2x+1.【分析】直接利用一次函数图象平移规律进而得出答案.解:将直线y=2x﹣3向上平移4个单位,所得直线的表达式是:y=2x﹣3+4=2x+1.故答案为:y=2x+1.11.用换元法解方程﹣=1,设y=,那么原方程可以化为关于y的整式方程为y2+y﹣2=0.【分析】可根据方程特点设y=,则原方程可化为﹣y=1,化成整式方程即可.解:方程﹣=1,若设y=,把设y=代入方程得:﹣y=1,方程两边同乘y,整理得y2+y﹣2=0.故答案为y2+y﹣2=0.12.已知一个凸多边形的内角和是它的外角和的5倍,那么这个凸多边形的边数等于十二.【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,然后求解即可.解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=12.故答案为:十二.13.从1、2、3、4、5、6这六个数中,任取一个数是素数的概率是.【分析】共有6种可能性,其中任意取一个数是素数的有3种,可以求出相应的概率.解:在1、2、3、4、5、6这六个数中,是素数的有2、3、5,共三种,因此,任取一个数是素数的概率是=,故答案为:.14.已知平行四边形ABCD的周长为56cm,AB:BC=2:5,那么AD=20cm.【分析】由▱ABCD的周长为56cm,根据平行四边形的性质,即可求得AB+BC=28cm,又由AB:BC=2:5,即可求得答案.解:∵▱ABCD的周长为56cm,∴AB+BC=28cm,∵AB:BC=2:5,∴AD=BC=×28=20(cm);故答案为:20.15.已知平行四边形ABCD中,∠A的平分线交BC于点E,若AB=AE,则∠BAD=120度.【分析】由平行四边形的性质和已知条件易证△ABE为等边三角形,则∠BAE=60°,进而可求出∠BAD的度数.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAD=∠AEB,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠BAE=∠AEB,∴AB=EB,∵AB=AE,∴AB=AE=BE,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAD=2∠BAE=120°,故答案为:120.16.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.17.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为25cm2.【分析】根据“和谐矩形”的性质求出∠ADB=30°,由含30°角的直角三角形的性质求出AB、AD的长,即可得出答案.解:∵四边形ABCD是“和谐矩形”,∴OA=OC,OB=OD,AC=BD=10,∠BAD=90°,∠CAD:∠BAC=1:2,∴OA=OD,∠CAD=30°,∠BAC=60°,∴∠ADB=∠CAD=30°,∴AB=BD=5,AD=AB=5,∴矩形ABCD的面积=AB×AD=5×5=25(cm2);故答案为:25.18.如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=60°,BC=CD=6,现将梯形折叠,点B恰与点D重合,折痕交AB边于点E,则CE=4.【分析】连接DE,BD,由题意可证△BCD是等边三角形,可得BD=BC=6,∠DBC =60°,由直角三角形的性质可求AD=3,AB=3,由直角三角形的性质可求BE=2,由勾股定理可求解.解:如图,连接DE,BD,∵∠BCD=60°,BC=CD=6,∴△BCD是等边三角形,∴BD=BC=6,∠DBC=60°,∵∠B=90°,AD∥BC,∴∠DAB=90°,∠ABD=30°,∠ADB=∠DBC=60°,∴AD=BD=3,AB=AD=3,∵折痕交AB边于点E,∴BE=DE,∵∠DBE=∠BDE=30°,∴∠ADE=30°,∴DE=2AE,∴BE=2AE,∵AE+BE=AB=3,∴BE=2,∴EC===4,故答案为:4.三、简答题:(本大题共5题第19、20、21、22、每题6分,第23题7分,满分31分)19.解方程:+=【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,依次计算可得.解:方程两边都乘以(x+1)(x﹣1),得:4+2(x﹣1)=x(x+1),整理,得:x2﹣x﹣2=0,解得:x=﹣1或x=2,检验:x=﹣1时,(x+1)(x﹣1)=0,舍去;x=2时,(x+1)(x﹣1)=3≠0;所以分式方程的解为x=2.20.解方程组:.【分析】先降次转化成两个一次方程组,解方程组即可求解.解:,由方程(1)可得x+2y=﹣3或x+2y=3,则方程组可变为或,解得或.21.已知甲、乙两地相距90km,A、B两人沿同一公路从甲地出发到乙地,A骑摩托车,B 骑电动车,图中DE、OC分别表示A、B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)A比B迟出发1小时,B的速度是20km/h;(2)在B出发后几小时,两人相遇?【分析】(1)根据函数图象可以得到A比B迟出发多长时间,由图象知B出发3小时行驶60km,从而可以求得B的速度;(2)根据函数图象和图象中的数据可以OC和DE对应的函数解析式,然后联立方程组即可求得B出发后几小时,两人相遇.解:(1)由图象可得,A比B迟出发1小时,B的速度是:60÷3=20km/h,故答案为:1,20;(2)设OC段对应的函数解析式是y=kx,则3k=60,得k=20,即OC段对应的函数解析式是y=20x,设DE段对应的函数解析式是y=ax+b,,得,即DE段对应的函数解析式是y=45x﹣45,,得,∴B出发小时,两人相遇.22.如图,在▱ABCD中,对角线AC与BD相交于点O,设,.(1)试用向量,表示下列向量:=﹣;=﹣﹣;(2)求作:.(保留作图痕迹,写出结果,不要求写作法).【分析】(1)利用平行四边形的性质以及三角形法则求解即可.(2)如图,延长BC到E,使得CE=BC,则即为所求.解:(1)∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD,OA=OC,∴==+=﹣,=+=﹣﹣.故答案为:﹣,﹣﹣.(2)如图,延长BC到E,使得CE=BC,则即为所求.23.如图,在梯形ABCD中,AD∥BC,BC=12,AB=DC=8.∠B=60°.(1)求梯形的中位线长.(2)求梯形的面积.【分析】(1)过A作AE∥CD交BC于E,则四边形AECD是平行四边形,得AD=EC,AE=DC,证出△ABE是等边三角形,得BE=AB=8,则AD=EC=4,即可得出答案;(2)作AF⊥BC于F,则∠BAF=90°﹣∠B=30°,由含30°角的直角三角形的性质得出BF=AB=4,AF=BF=4,由梯形面积公式即可得出答案.解:(1)过A作AE∥CD交BC于E,∵AD∥BC,∴四边形AECD是平行四边形,∴AD=EC,AE=DC,∵AB=DC,∴AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=8,∴AD=EC=BC﹣BE=12﹣8=4,∴梯形ABCD的中位线长=(AD+BC)=(4+12)=8;(2)作AF⊥BC于F,则∠BAF=90°﹣∠B=30°,∴BF=AB=4,AF=BF=4,∴梯形ABCD的面积=(AD+BC)×AF=(4+12)×4=32.四、解答题:(第24题8分,第25题9,第26题10分,满分27分)24.八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了25分钟,其余的学生乘汽车出发,结果他们同时到达,已知每小时汽车的速度比骑自行车学生速度的2倍还多10千米,求骑车学生每小时行多少千米?【分析】先将25分钟化成小时为小时,再设骑车学生每小时走x千米,根据汽车所用的时间=学生骑车时间﹣,列分式方程:,求出方程的解即可.解:设骑车学生每小时走x千米,据题意得:,整理得:x2﹣7x﹣120=0,解得:x1=15,x2=﹣8,经检验:x1=15,x2=﹣8是原方程的解,因为x=﹣8不符合题意,所以舍去,答:骑车学生每小时行15千米.25.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形;(3)(填空)在(2)中再增加条件∠BAC=90°.则四边形AFBD是正方形.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案;(3)当△ABC为等腰直角三角形时,四边形AFBD是正方形,理由为:由第一问证得的AF=BD,且AF与BD平行,根据一组对边平行且相等的四边形为平行四边形可得四边形AFBD为平行四边形,若三角形ABC为等腰直角三角形,D为斜边BC的中点,根据直角三角形斜边上的中线等于斜边的一半可得AD=BD,且根据三线合一得到AD 与BC垂直,可得平行四边形的邻边相等且有一个角为直角,即可判定出四边形AFBD 为正方形.【解答】(1)证明:∵点D是BC边的中点,点E是AD的中点,∴DE是△BCF的中位线,∴DE∥BF,∴AD∥BF,∵AF∥BC,∴四边形AFBD是平行四边形;(2)证明:(2)∵AB=AC,BD=DC,∴AD⊥BC.∴∠ADB=90°.∵四边形AFBD是平行四边形,∴四边形AFBD是矩形;(3)当△ABC为等腰直角三角形,且∠BAC=90°时,四边形AFBD是正方形,理由如下:∵四边形AFBD为平行四边形,又∵等腰直角三角形ABC,且D为BC的中点,∴AD=BD,∠ABD=90°,∴四边形AFBD为正方形.故答案为:∠BAC=90°.26.如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,6),动点P 从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C 运动.点P、Q的运动速度均为每秒1个单位,运动时间为t(0<t<6)秒,过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求当0<t<3时,S与t的函数关系;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.【分析】(1)先求出点A,点B坐标,利用待定系数法可求直线AB的解析式;(2)先求出点E坐标,再利用三角形面积公式可求解;(3)分两种情况讨论,利用菱形的性质和直角三角形的性质可求解.解:(1)∵矩形AOBC的顶点C的坐标是(2,6),∴OA=BC=6,OB=AC=2,∴点A(0,6),点B(2,0),设直线AB解析式为:y=kx+b,∴,解得:,∴直线AB的解析式为:y=﹣x+6;(2)∵点P、Q的运动速度均为每秒1个单位,∴AP=BQ=t,∴OP=6﹣t,∵PE⊥AO,∴点E纵坐标为6﹣t,∴6﹣t=﹣x+6,∴x=t,∴点E(t,6﹣t),∴当0<t<3时,S=×t(6﹣2t)=﹣t2+t;(3)如图,当四边形EHBQ是菱形时,延长PE交BC于F,∵AB===4,∴OB=AB,∴∠BAO=30°,∵AO∥BC,PE⊥AO,∴∠ABC=∠BAO=30°,PE⊥BC,∵四边形EHBQ是菱形,∴BQ=EQ=t,EH∥BQ,∴∠QEB=∠EBQ=30°,∴∠FEQ=30°,∴FQ=EQ=t,∴BC=t+t+t=6,∴t=,∴BQ==EH,点E(,),∴点H(,);如图,若四边形EHQB是菱形,延长PE交BC于F,∵四边形EHQB是菱形,∴BE=BQ=t,EH∥BQ,∵∠ABC=30°,EF⊥BC,∴BE=2EF,∴t=2(2﹣t)∴t=24﹣12,∴点E(8﹣12,12﹣18),∴点H(8﹣12,6);综上所述:t的值为或24﹣12,点H坐标为(,)或(8﹣12,6).。
上海市杨浦区2020-2021学年八年级下学期期末数学试题(教师版)

A. 方向相反B. 模相等C. 平行D. 相等
【答案】D
【解析】
【分析】利用单位向量的定义和性质直接判断即可.
【详解】解:A、 和 的关系是方向相反,正确;
B、 和 的关系是模相等,正确;
C、 和 的关系是平行,正确;
D、 和 的关系不相等,错误;
故选:D.
【点睛】此题考查平面向量问题,解题时要认真审题,注意单位向量、零向量、共线向量的定义和的性质的合理运用.
所以原方程的根为x=1,
故答案为:x=1.
【点睛】本题考查解分式方程,掌握解分式方程的方法步骤是正确解答的前提,注意解分式方程容易产生增根需要检验.
11.方程 的解为_____.
【答案】3
【解析】
【分析】根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.
【详解】解:两边平方得:2x+3=x2
18.平行四边形ABCD中,两条邻边长分别为3和5,∠BAD与∠ABC的平分线交于点E,点F是CD的中点,连接EF,则EF=________.
【答案】3.5或0.5
【解析】
【分析】分两种情况讨论:①当AB=3,BC=5时,延长AE交BC于M,由平行线的性质和角平分线的定义可推出∠BAM=∠AMB,得到AB=BM=3,求出CM=2,再证明∠AEB=90°,根据等腰三角形三线合一得到E为AM的中点,所以EF为梯形ADCM的中位线,根据中位线的性质可求EF;②当AB=5,BC=3时,延长AE交BC的延长线于M,连接DM,延长EF与DM交于G,同理可证AE=EM,CM=2,再利用三角形中位线的性质可求出EF.
【解析】
【分析】解二元二次方程组,用代入消元转化成一元二次方程,解出方程即可.
上海市-八年级(下)期末数学试卷-(含答案)

2017—2018学年上海市闵行区八年级(下)期末数学试卷副标题题号 一 二 三 四 总分 得分一、选择题(本大题共4小题,共12.0分)1. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形,矩形,正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是( )A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4) D 。
(1)(2)(3)2. 已知直线y =kx +b 与直线y =—2x +5平行,那么下列结论正确的是( ) A 。
k =−2,b =5 B 。
k ≠−2,b =5 C 。
k =−2,b ≠5 D 。
k ≠−2,b =53. 下列方程没有实数根的是( )A. x 3+2=0B. x 2+2x +2=0 C 。
√x 2−3=x −1D 。
xx−1−2x−1=04. 下列等式正确的是( )A. AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗B 。
AB ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ C. AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ D. AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =0⃗ 二、填空题(本大题共7小题,共14.0分)5. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.D 、E 分别为边BC 、AC 上一点,将△ADE 沿着直线AD 翻折,点E 落在点F 处,如果DF ⊥BC ,△AEF 是等边三角形,那么AE =______.6. 一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为______.7. 一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x ,那么根据题意,列出的方程为______.8. 已知一次函数y =2(x —2)+b 的图象在y 轴上的截距为5,那么b =______.9. 在梯形ABCD 中,AD ∥BC ,如果AD =4,BC =10,E 、F 分别是边AB 、CD 的中点,那么EF =______. 10. 已知方程x 2+13x-x x 2+1=2,如果设xx 2+1=y ,那么原方程可以变形为关于y 的整式方程是______.11. 已知▱ABCD 的周长为40,如果AB :BC =2:3,那么AB =______. 三、计算题(本大题共1小题,共6.0分)12. 已知直线y =kx +b 经过点A (-20,5)、B (10,20)两点.(1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5.四、解答题(本大题共5小题,共38。
上海市静安区2019-2020学年八年级(下)期末数学试卷(解析版)

2019-2020学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a2.下列方程中,是无理方程的为()A.B.C.D.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A.B.C.D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是.8.方程x3+1=0的根是.9.方程的根是.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.11.已知函数,那么=.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.13.如果一个n边形的内角和是1440°,那么n=.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=.17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为.18.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.21.解方程:.22.解方程组:.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.27.已知:如图,在矩形ABCD中,AB=3,点E在AB的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.2019-2020学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【考点】绝对值.【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.2.下列方程中,是无理方程的为()A.B.C.D.【考点】无理方程.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【考点】一次函数的应用.【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.4.下列关于向量的运算,正确的是()A.B.C.D.【考点】*平面向量.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【考点】随机事件.【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【考点】等腰梯形的判定.【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k >2.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;8.方程x3+1=0的根是﹣1.【考点】立方根.【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.9.方程的根是x=0.【考点】分式方程的解.【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【考点】换元法解分式方程.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.11.已知函数,那么=.【考点】函数值.【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【考点】概率公式.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:13.如果一个n边形的内角和是1440°,那么n=10.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为5.【考点】菱形的性质.【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12.【考点】三角形中位线定理.【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=﹣1.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为4.【考点】一次函数图象上点的坐标特征.【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:418.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;直角梯形.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=﹣1.【考点】根与系数的关系.【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.【考点】分式的化简求值.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=21.解方程:.【考点】无理方程.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.22.解方程组:.【考点】高次方程.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得x﹣4y=0或x+3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:,,;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【考点】*平面向量;梯形.【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD∥EC,AE∥DC,∴四边形AECD是平行四边形,∴AD=EC,∵BC=2AD,∴BE=EC,∴所有与互为相反向量的向量有、、.(2)如图﹣=, +=+=,图中.就是所求的向量.24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【考点】平行四边形的判定与性质.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【考点】分式方程的应用.【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C 作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD 的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C(6,1),∴,∴k=6,∴反比例函数解析式为.∵B(a,3)在该反比例的图象上,∴,∴a=2,即B(2,3),∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).方法二:∵点C(6,1)与点B(a,3)都在反比例函数的图象上,∴6×1=a×3=k,∴a=2,∴B(2,3).∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).(2)∵四边形ABCD是梯形,且点D为x轴上的一点,∴不可能出现AD∥BC的情形,只有可能AB∥CD,∵直线AB 的解析式为y=x +1,∴可设直线CD 的解析式为y=x +m ,∵y=x +m 经过点C (6,1),∴y=x ﹣5,令y=x ﹣5=0,得x=5,∴D (5,0),分别过点B 、C 作BE ⊥x 轴、CF ⊥x 轴,垂足分别为E 、F ,则S 梯形ABCD =S △ABE +S 梯形BEFC ﹣S △DCF ,===12.27.已知:如图,在矩形ABCD 中,AB=3,点E 在AB 的延长线上,且AE=AC ,联结CE ,取CE 的中点F ,联结BF 、DF .(1)求证:DF ⊥BF ;(2)设AC=x ,DF=y ,求y 与x 之间的函数关系式,并写出定义域;(3)当DF=2BF 时,求BC 的长.【考点】四边形综合题.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 ………………………………………………………………………(2 分) 6 21.(1) BC …………………………………(1 分) (2) 0 ……………………… (2 分)
P(A)=
上海市八年级第二学期数学期末考试试卷
(3)
(3 分) E B A D 或 B
第 21 题图
O
A
C
则: BC AE
上海市八年级第二学期数学期末考试试卷
(2)∵四边形 ABDF 是菱形 ∵DE= ∴AF=AB=DF(菱形的四条边都相等)
1 AB 2
∴EF=
1 AF……………………………………………(1 分) 2
∴G F 1 A F 2
∵G 是 AF 的中点
∴GF=EF……………………………………………………………………(1 分)
4800 4800 6 …………………………………………………(3 分) x 40 x
x2- 40x -32000=0…………………………………………………………(1 分) x1=200,x2=-160 ……………………………………………………(1 分)
检验:x1=200,x2=-160 都是原方程的根
三、简答题(第 19~22 题每题 6 分,第 23~25 题每题 8 分,第 26 题 10 分,共 58 分) 19.解方程组:
x 2 y 2 3 x y 1 0
20.端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只咸菜馅, 两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子,请你用树状图为小明预测 一下吃两只粽子刚好都是红枣馅的概率.
E 21.如图,四边形 ABCD 和四边形 ACDE 都是平行四边形, (1)填空: BA AC ___________;
ED EA CB ____________;
A
D
(2)求作: BC AE .
B
第 21 题图
C
上海市八年级第二学期数学期末考试试卷
22.如图某电信公司提供了 A、B 两种方案的移动通讯费用 y(元)与通话时间 x(分)之间的关系。 (1)当通话时间少于 120 分,那么 A 方案比 B 方案便宜 (2)当通讯费用为 60 元,那么 A 方案比 B 方案的通话时间 ( 填“多”或“少” ) ; (3)王先生粗算自己每月的移动通讯时间在 220 分钟以上, 那么他会选择电信公司的 种方案。 元; ; 70 50 30
在△FGD 和△DAE 中 ,
DF AF ∵ F F GF EF
…………………………………………………(1 分) ∴AC=2DG …………………………(1 分) C y B
∴△FGD≌△DAE ∴GD=AE ∵AC=2EC=2AE
25.(1)取 AB 的中点 D,并联结 ED ………………(1 分) ∵ E 为 OC 中点,∴DE 是梯形 0ABC 的中位线(梯形中位线的定义) ∴DE//0A 即∠DEA=∠EAO………………(1 分) O A x E。 D
14.在平行四边形 ABCD 中,两邻角的度数比是 7:2,那么较小角的度数为 15.已知菱形 ABCD 中,边长 AB=4,∠B=30°,那么该菱形的面积等于_________. 16.顺次联结对角线互相垂直的四边形各边中点所得的四边形是_____________.
17.有一个两位数,如果个位上的数比十位上的数小 5,并且个位上数的平方比十位上的数小 3,求这个两位数。 设个位上的数为 x ,十位上的数为 y ,那么由题意可列出方程组_____________. 18.如果直角梯形的上底长为 7 厘米,两腰分别为 8 厘米和 10 厘米,那么这个梯形下底的长为 厘米.
∴B(4,12)……………(1 分)
1 AB , ∴AB = 2ED = x + 4 2
2
在 Rt△EBC 中,BE =52,
在 Rt△OAE 中,AE =36+x
2 2
2
2
∴在 Rt△BEA 中,52+36+x =(x+4) , 设直线 AB 的解析式为 y=kx+b,则
第 4 题图
6 . 如 图 , 梯 形 ABCD 中 , AD//BC , AB=CD , O 为 对 角 线 AC 与 BD 的 交 点 , 那 么 下 列 结 论 正 确 的 是…………………………………………………………………………………( A. AC BD ; C. AB AD BD B. AC BD ; D. AB AD BD A O B
4.如图,把矩形纸片 ABCD 纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法不正确的 是…………… 是等腰三角形,EB=ED ;B.折叠后∠ABE 和∠CBD 一定相等; C.折叠后得到的图形是轴对称图形;D.△EBA 和△EDC 一定是全等三角形. 5.事件“关于 y 的方程 a 2 y y 1 有实数解”是………………………………………( A.必然事件; B.随机事件; C.不可能事件; D.以上都不对. )
O
第 25 题图
A
x
26.边长为 4 的正方形 ABCD 中,点 O 是对角线 AC 的中点, P 是对角线 AC 上一动点,过点 P 作 PF⊥CD 于点 F,作
PE⊥PB 交直线 CD 于点 E,设 PA=x,S⊿PCE=y,
⑴ 求证:DF=EF; (5 分) ⑵ 当点 P 在线段 AO 上时,求 y 关于 x 的函数关系式及自变量 x 的取值范围; (3 分) ⑶ 在点 P 的运动过程中,⊿PEC 能否为等腰三角形?如果能够,请直接写出 PA 的长; 如果不能,请简单说明理由。 (2 分) A P O 。 D F E
10. x 2 (答案不唯一); 14.40°; 15.8 ;
11.y - 5y +2 =0 ; 16. 矩形; 17.
12.360°;
y x 5
2 y x 3
;
三、简答题(第 19~22 每题 6 分,第 23~25 每题 8 分,第 26 题 10 分,共 58 分)
第 22 题图 y(元) A 方案 B 方案
120 170200 250
x(分)
23.2010 年上海世博会已进入倒计时,世博会门票现已订购,已知网上订购比电话订购每张优惠 40 元,某校准备 用 4800 元订购该门票,精明的校长用网上订购的办法,结果比电话订购多订购到 6 张门票,求电话订购每张 门票价格是多少元?
x2= -160 不符合题意,舍去 ∴ x1=200 …………………………………(1 分)答:电话订购每张门票
价格是 200 元…………………………………………………(1 分)
24.(1)∵点 D、E 分别是边 BC、AC 的中点 ∴DE 是△ABC 的中位线(三角形中位线的定义)
A
G E D
F
1 ∴DE//AB,DE= AB (三角形中位线性质)………(1 分) 2 B ∵AF//BC
∵BE⊥AE ,ED 是边 AB 上的中线
1 AB ∴ ED=AD= 2
∴ ∠EAO=∠DAE, (2)设 OA 为 x ∵OE=EC=6 ∵ED=
∴∠DEA=∠DAE ……(1 分)
第 25 题图
即 AE 平分∠BAO……………………………………………(1 分)
∴C(0,12)∵CB=4,
且 BC//x 轴
B A
第 26 题图
C D
O 。
B
备用图
C
上海市八年级第二学期数学期末考试试卷
八年级数学试卷答案
一.选择题(每题 3 分,共 18 分) 1.A ; 2.D ; 3.C ; 4.B ; 5.A ; 6.B.
二、填空题(每题 2 分,共 24 分) 7.(2,0 ) ;
2
8.y=2x-2;
9.x1=0,x2=3,x3=-3 ; 13.0.3; 18.13.
第 6 题图
) D
C
二、填空题(每题 2 分,共 24 分) 7.一次函数 y 2 x 4 与 x 轴的交点是_______________. 8. 如图, 将直线 OA 向下平移 2 个单位, 得到一个一次函数的图像, 那么这个一次函数的解析式是 9.方程 x 3 9 x 0 的根是______ 10.请写出一个根为 2 的无理方程: 11.换元法解方程 _________. . 4 3 2 1 y A .
x 2 y 2 3 (1) 19. x y 1 0 ( 2)
由(2)得: x 1 y (3)……………………………………………………(1 分)
2 2
把(3)代入(1) : ( 1 y ) y 3 ……………………………………………(1 分) ∴
第 24 题图
上海市八年级第二学期数学期末考试试卷
25.如图,直角坐标平面 xoy 中,点 A 在 x 轴上,点 C 与点 E 在 y 轴上, 且 E 为 OC 中点,BC//x 轴,且 BE⊥AE,联结 AB, (1)求证:AE 平分∠BAO; (4 分) (2)当 OE=6, BC=4 时,求直线 AB 的解析式. (4 分) E。 C y B
上海市八年级第二学期数学期末考试试卷
八年级数学试卷
一.选择题(每题 3 分,共 18 分) 1.一次函数 y x 1 不经过的象限是…………………………………………………( A.第一象限 2.关于方程 x
4
)
B.第二象限
C.第三象限
D.第四象限 )
1 0 ,下列说法不正确的是…………………………………………( 4
第 24 题图
C
∴四边形 ABCD 是平行四边形(平行四边形定义)……………………………(1 分) ∵BC = 2 AB,又∵BC = 2 BD ∴AB=BD…………………………………………………………………………(1 分) ∴四边形 ABDF 是菱形……………………………………………………………(1 分)