变力做功问题的求解方法

合集下载

如何求变力做功

如何求变力做功

F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。

既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。

对于具体问题要具体分析。

为此笔者在教学中总结了以下几种方法。

一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。

例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。

分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。

这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。

因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。

即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。

再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。

则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。

也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。

二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。

例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。

下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。

方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。

例题1:如图所示。

质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。

解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。

此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。

理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。

例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。

假设机车受到的阻力为恒力。

求机车在运动中受到的阻力大小。

解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。

所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。

在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。

由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。

方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。

例题3:如图所示。

轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同.【典例2】 用质量为5 kg 的均匀铁索,从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2)【解析】 方法一 提升物体过程中拉力对位移的平均值:F -=250+2002N =225 N 故该过程中拉力做功:W =F -h =2 250 J.方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+2002×10 J =2 250 J. 【答案】 2 250 J法3.用微元法求变力做功圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了.【典例3】如图所示,质量为m的质点在力F的作用下,沿水平面上半径为R的光滑圆槽运动一周.若F的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F对质点做的功.【解析】质点在运动的过程中,F的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl1、Δl2、Δl3、…、Δln,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F对质点做的功等于它在每一小段上做功的代数和,即W =W1+W2+…+W n=F(Δl1+Δl2+…+Δl n)=2πRF.【答案】2πRF.变式训练1如图所示,放在水平地面上的木块与一劲度系数k=200 N/m的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x1=0.2 m,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m,求上述过程中拉力所做的功.解析:木块刚要滑动时,拉力的大小F=kx1=200×0.2 N=40 N,从开始到木块刚要滑动的过程,拉力做的功W1=0+F 2x1=402×0.2 J=4 J;木块缓慢移动的过程,拉力做的功W2=Fx2=40×0.4 J=16 J.故拉力所做的总功W=W1+W2=20 J.答案:20 J变式训练2如图所示,一质量为m=2.0 kg的物体从半径为R=5.0 m 的圆弧的A端,在拉力作用下沿圆弧缓慢运动到B端(圆弧AB如图所示,水平传送带正以v =2 m/s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传送带的带动下向右运动.若物块与传送带间的动摩擦因数μ=0.1,不计物块的大小,g 取10 m/s 2,则把这个物块从A 端传送到B 端的过程中.求:(1)摩擦力对物块做的功.(2)摩擦力对传送带做的功.【解析】 (1)物块刚放到传送带上时,由于与传送带有相对运动,物块受向右的滑动摩擦力,物块做加速运动,摩擦力对物块做功.物块受向右的摩擦力为F f =μmg =0.1×2×10 N =2 N加速度为a =F f m =μg =0.1×10 m/s 2=1 m/s 2当物块与传送带相对静止时的位移为x =v 22a =222×1m =2 m 摩擦力对物块做功为W =F f x =2×2 J =4 J.(2)把这个物块从A 端传送到B 端的过程中,摩擦力对传送带做功为:W ′=-μmgx ′=-μmg ·v ·v a =-8 J.【答案】 (1)4 J (2)-8 J变式训练3 以初速度v 0竖直向上抛出质量为m 的小球,上升的最大高度是h ,如果空气阻力f 的大小恒定,从抛出到落回出发点的整个过程中,空气阻力对小球做的功为( )A .0B .-fhC .-2mghD .-2fh解析:阻力做功跟物体的运动轨迹有关,所以阻力做功为W f =-2fh .答案:D。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法变力做功是指当力的大小和方向随着对象运动的位置而变化时,力对物体所做的功。

下面将介绍六种常见的计算变力做功的方法。

1.通过力的曲线面积计算功:当力的大小和方向随着位置的变化而变化时,可以通过绘制力与位置的曲线图,然后计算曲线下的面积来求得所做的功。

2.利用求和法计算功:将运动过程划分成若干个小的位移段,对每个位移段内力的大小和方向保持不变,然后通过求和法计算每个位移段上力所做的功,最后将所有位移段上力所做的功相加得到总功。

3.应用积分法计算功:对力和位移变化连续的问题,可以利用微积分中的积分法来计算变力做功。

通过计算力在位移方向上的积分,即对力关于位移的函数进行积分,来得到变力做功的结果。

4.利用功率和时间计算功:如果已知物体在一段时间内所受到的平均力和物体的平均速度,可以利用功率和时间的关系来计算功。

功率定义为单位时间内做功的大小,根据功率公式P=W/t,其中W是做功的大小,t是时间,可以通过已知的其它量来计算功。

5.利用速度和质量计算功:在一些特定的情况下,可以利用物体的速度和质量来计算变力做功。

根据力学中的动能定理,物体的动能变化等于外力所做的功,其中动能定义为 K=1/2 mv^2,其中 m 是质量, v 是速度。

6.利用万有引力计算功:当物体受到的力是万有引力时,可以利用万有引力公式来计算变力做功。

万有引力公式为F=GmM/r^2,其中F是力,m和M是物体的质量,G 是万有引力常数,r是两物体之间的距离。

通过将力乘以物体的位移并将结果进行积分,可以得到变力做功的计算结果。

这些是常见的计算变力做功的方法,根据具体问题的条件和要求,选择适合的方法来计算变力做功。

变力做功的求解方法

变力做功的求解方法

变力做功的求解方法变力做功是物理学中一个重要的概念,它描述了当一个力作用于一个物体时,这个力对物体所做的功是如何随时间变化的。

在实际应用中,我们经常需要求解变力做功,例如研究机械的运动特性、计算机械工作所需的能量等。

求解变力做功的方法有多种,下面将介绍三种常用的方法:通过力的分解法、积分法和图像法。

第一种方法是力的分解法。

当一个力是一个常量力的合力时,我们可以将这个力分解成多个方向上的分力,然后对每个方向的分力进行求解,最后将各个方向上的分力的功相加即可得到合力所做的功。

在实际应用中,当一个力是不常量力时,我们可以将这个力进行一定的分段处理,将不同的部分的力分别进行分解,然后分别求解,最后将各个部分的功相加即可得到总的功。

第二种方法是积分法。

当一个力是一个函数关系时,我们可以通过对这个函数进行积分得到力的功函数,然后计算积分上下限之间的功值。

具体而言,假设一个力F随时间t的变化,那么力在时间t1和t2之间做的功可以表示为:W = ∫(F(t))dt其中,W表示力所做的功,∫表示积分符号,F(t)表示力随时间的变化。

在实际计算中,我们可以根据给定的力函数F(t)进行积分运算,然后计算上下限之间的功值。

第三种方法是图像法。

当一个力是已知的、离散的数据时,我们可以通过绘制力与时间之间的图像来求解力所做的功。

具体而言,我们可以将给定的力数据以时间为横坐标、力值为纵坐标绘制成折线图,然后计算每个时间段内力与时间之间的面积,最后将各个时间段内的面积相加即可得到力所做的功。

综上所述,求解变力做功的方法有很多种,其中常用的方法有力的分解法、积分法和图像法。

不同的方法适用于不同的情况,具体选择哪种方法进行求解,需要根据具体的问题来决定。

无论使用哪种方法,都需要对力与时间的关系进行分析,然后进行适当的求解,最终得到力所做的功的结果。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法第一种方法是曲线切线式。

在物体沿曲线运动的情况下,可以通过计算力的切线分量与物体速度的乘积来确定变力做功的大小。

具体计算方法是,首先需要确定物体在其中一时刻的速度,然后取该时刻的力的切线分量(即与物体速度方向相同的力的分量),最后将该切线分量与物体速度的乘积相乘,即可得到变力做功的大小。

第二种方法是常力法。

在物体受到一定的恒定力作用下,可以通过计算力与物体位移方向的夹角的余弦值再乘上力的大小来确定变力做功的大小。

具体计算方法是,首先需要确定力的大小,然后确定物体的位移方向与力的方向之间的夹角,最后将位移方向与力的方向之间夹角的余弦值乘以力的大小,即可得到变力做功的大小。

第三种方法是分力法。

当物体受到多个力的作用时,可以通过计算各个力的分力与物体位移方向之间的夹角的余弦值再分别乘上各个分力的大小来确定变力做功的大小,然后将各个分力的做功求和即可得到变力做功的总大小。

第四种方法是连续变力法。

在物体受到连续变化的力作用下,可以通过将力的大小关于物体位移的函数表示出来,然后对该函数进行积分来确定变力做功的大小。

具体计算方法是,首先需要确定力对物体位移的函数关系式,然后对该函数进行积分,最后得到的积分值即为变力做功的大小。

第五种方法是有功做功法。

在物体受到非保守力作用下,可以通过计算力的非保守分量与物体位移的乘积再加上势能变化的大小来确定变力做功的大小。

具体计算方法是,首先需要确定力的保守分量与非保守分量,然后将非保守分量与位移的乘积相加,再加上势能变化的大小,即可得到变力做功的大小。

第六种方法是负功做功法。

在物体受到反向力作用下,可以通过计算该反向力的绝对值与物体位移的乘积再乘上负一来确定变力做功的大小。

具体计算方法是,首先需要确定反向力的大小,然后将反向力的绝对值与位移的乘积相乘,并将结果乘以负一,即可得到变力做功的大小。

综上所述,变力做功的六种常见计算方法分别是曲线切线式、常力法、分力法、连续变力法、有功做功法和负功做功法。

求解变力做功的六种方法

求解变力做功的六种方法
• [答案] 50 J
• [易错提醒] F做功的位移等于左边绳的变短的部分,而 不等于物体的位移.
13:02
栏目 导引
第七章 机械能守恒定律13:02
五、用公式W=Pt求解
对于机器以额定功率工作时,比如汽车、轮船、火车启动时,虽然它们的牵引力 是变力,但是可以用公式W=Pt来计算这类交通工具发动机做的功。对于交通工具 以恒定功率运动时,都可以根据来求牵引力这个变力所做的功。
动到B端(圆弧AB在竖直平面内).拉力F大小不变始
终为15 N,方向始终与物体所在位置的切线成37°
角.圆弧所对应的圆心角为60°,
• BO边为竖直方向,g取10 m/s2.求这一过程中:
• (1)拉力F做的功;
• (2)重力mg做的功;

13:02
(3)圆弧面对物体的支持力FN做的功.
栏目 导引
第七章 机械能守恒定律13:02
例6. 一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从
平衡位置P点很缓慢地移到Q点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力
F所做的功为:( )
A: mgL cos
B: mgL(1 cos )
C.: FLsin
D: FL cos
13:02
栏目 导引
当力的大小不变,力的方向时刻与速度同向(或 反向)时,把物体的运动过程分为很多小段,这 样每一小段可以看成直线,先求力在每一小段 上的功,再求和即可.
13:02
栏目 导引
第七章 机械能守恒定律13:02
• 例如:如图所示,物体在大小不变、方向始终沿着圆 周的切线方向的一个力F的作用下绕圆周运动了一圈 ,又回到出发点.已知圆周的半径为R,求力F做的功 时,可把整个圆周分成很短的间隔Δs1、Δs2、Δs3…在 每一段上,可近似认为F和位移Δs在同一直线上并且 同向,故

(完整)求解变力做功的十种方法

(完整)求解变力做功的十种方法

求解变力做功的十种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法,本文结合具体的例题,介绍十种解决变力做功的方法.一. 动能定理法例1. 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:( )A :θcos mgLB :)cos 1(θ-mgL C.:θsi n FL D:θcos FL分析:在这一过程中,小球受到重力、拉力F 、和绳的弹力作用,只有重力和拉力做功,由于从平衡位置P 点很缓慢地移到Q 点.,小球的动能的增量为零。

那么就可以用重力做的功替代拉力做的功。

解:由动能定理可知:0=-G F W W )cos 1(θ-==mgL W W G F故B 答案正确。

小结:如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变力做功是行之有效的。

二。

微元求和法例2. 如图2所示,某人用力F 转动半径为R 的转盘,力F 的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。

解:在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),即F 在每瞬时与转盘转过的极小位移∆∆∆s s s 123、、……∆s n 都与当时的F 方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:W F s F s F s F s F s s s s F Rn n =++++=++++=()()∆∆∆∆∆∆∆∆1231232……·π小结:变力始终与速度在同一直线上或成某一固定角度时,可化曲为直,把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W Fs =cos θ计算功,而且变力所做功应等于变力在各小段所做功之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档