氮化硅陶瓷概述
多晶硅生产用氮化硅陶瓷材料_概述及解释说明

多晶硅生产用氮化硅陶瓷材料概述及解释说明1. 引言1.1 概述本文主要探讨多晶硅生产过程中使用的氮化硅陶瓷材料。
随着现代科技的快速发展,多晶硅作为一种重要的半导体材料,在光电子、电子信息和太阳能等领域具有广泛应用。
而在多晶硅的生产过程中,氮化硅陶瓷材料被广泛应用,以提高工艺效率和产品质量。
1.2 文章结构文章将按照以下结构展开论述。
首先,在“2. 多晶硅生产用氮化硅陶瓷材料的概述”部分,介绍多晶硅生产的重要性,并详细探讨氮化硅陶瓷材料在多晶硅生产中的应用及其特点与优势。
接着,在“3. 氮化硅陶瓷材料的制备方法和工艺流程”部分,将介绍传统和先进的氮化硅陶瓷制备方法,并简要概述工艺流程。
在“4. 多晶硅生产用氮化硅陶瓷材料的性能考察与分析”部分,将对该材料的物理性能、化学性能和结构性能进行综合考察和分析。
最后,在“5. 结论与展望”部分,将总结研究成果并展望氮化硅陶瓷材料在多晶硅生产中的未来发展前景以及实际应用前景。
1.3 目的通过本文的撰写,旨在全面介绍多晶硅生产过程中所使用的氮化硅陶瓷材料。
通过对其概述、制备方法、工艺流程以及性能考察与分析的探讨,可以更好地了解该材料在多晶硅生产中的重要作用和优势。
同时,通过对未来发展前景和实际应用前景的展望,为相关领域的科研人员提供新思路和参考,促进相关技术和产业的进一步发展。
2. 多晶硅生产用氮化硅陶瓷材料的概述2.1 多晶硅生产的重要性多晶硅是一种重要的半导体材料,广泛应用于太阳能电池、集成电路和光纤等领域。
在多晶硅的生产过程中,需要使用到一种高温耐腐蚀、高强度和高密度的陶瓷材料作为反应容器和保护层。
氮化硅陶瓷材料因其优异的物理性能以及良好的化学稳定性而被广泛选用。
2.2 氮化硅陶瓷材料在多晶硅生产中的应用氮化硅陶瓷材料在多晶硅生产中有多种应用。
首先,它可以作为反应容器,在高温条件下承受精确控制的化学反应过程。
其次,氮化硅陶瓷材料还可以作为衬底或者保护层,提供对多晶硅棒或片子的支撑和防护功能。
氮化硅陶瓷

由于氮化硅陶瓷脆性大,而金属材料具有优良的室温强度和延展性, 所以将氮化硅陶瓷和金属材料结合,可以制造出满足要求的复杂构件。
其他氮化物结构陶瓷
氮化铝(AlN)陶瓷 熔点:2450℃
•
AlN陶瓷具有高导热性、高强度、高 Leabharlann 热性;机械性能好,耐腐蚀,透光性强
等; • 可以作为散热片;熔融金属用 坩埚、保护管、耐热转等;
来,晶须补强陶瓷基复合材料也一直是人们研究的热点,并取得了不少积
极的研究成果,其中SiC晶须是复合材料中主要应用的晶须,研究发现
Si3N4经SiC晶须强化可大大提高强度和韧性
层状结构复合增韧
近年来,国内外学者从生物界得到启示:贝壳具有的层状结构可以产 生较大的韧性。目前,国内外已有人开始了层状复合材料的探索性研究。 Sajgalik等研究了不同显微结构或不同组成材料构成的多层Si3N4基复合材 料,发现多层材料的强度及韧性都较单相材料高,并表现出准塑性现象; 郭海制备了高韧性的层状Si3N4基复合材料,主层内加入一定量的SiC晶须, 产生两级增韧效果,层状氮化硅陶瓷的断裂韧性显著提高。
•
特别是作为耐热砖应用时,因其
在特殊气氛中的耐热性能优异,所以 常用作2000℃左右的非氧化性电炉的
AlN陶瓷基板-LED用高热导氮 化铝材料
衬材材料。
氮化硼(BN)陶瓷
氮化硼陶瓷是一种以氮化硼为主的陶瓷。具有优良的电绝缘性、 耐热性、耐腐蚀性。高导热性,能吸收中子,高温润滑性和机械加
工性好,是发展较快,应用较广的一种氮化物陶瓷。
TiN还具有良好的导电性,常用作熔盐电解的电极材料。还具有较
高的超导临界温度,是一种优良的超导材料。
15 16
• 化学稳定性:硅氮共价键结合,键能很高,生成焓很高, 形成稳定的化合物(抗氧化性,抗腐蚀性)
氮化硅陶瓷手册__概述说明以及解释

氮化硅陶瓷手册概述说明以及解释1. 引言1.1 概述氮化硅陶瓷是一种具有特殊性能和广泛应用的高级陶瓷材料。
它由氮和硅元素组成,具有出色的物理和化学特性,使其在许多领域都有重要的应用。
本手册概述了氮化硅陶瓷的特性、制备方法以及其在各个领域中的应用情况。
1.2 文章结构本文将分为五个主要部分来介绍氮化硅陶瓷。
首先,在引言部分提供了对本手册整体内容以及目录结构的介绍。
接下来,第二部分将详细介绍氮化硅陶瓷的物理特性、化学特性以及现有的应用领域。
第三部分将探讨制备氮化硅陶瓷的不同方法,包括烧结法、热压法和化学气相沉积法。
在第四部分中,我们将阐述氮化硅陶瓷相对于其他材料的优势,并解析其中面临的挑战。
最后,在结论部分对文章进行总结,并展望氮化硅陶瓷未来发展方向。
1.3 目的本手册的目的是提供给读者一个全面了解氮化硅陶瓷的手册,包括其特性、制备方法以及应用领域。
通过阅读本手册,读者将能够了解氮化硅陶瓷在各个领域中的重要性,并对其未来的发展趋势有所认识。
此外,为了使本手册内容更加清晰易懂,我们将使用简洁明了的语言和具体实例进行说明。
通过本手册,我们希望读者能够对氮化硅陶瓷有一个全面而深入的理解,并应用于实际生活和工作中。
2. 氮化硅陶瓷的特性和应用氮化硅陶瓷是一种具有广泛应用前景的先进材料,其具备一系列优异的物理和化学特性。
本部分将详细介绍氮化硅陶瓷的特性,并探讨其在各个领域中的应用。
2.1 物理特性氮化硅陶瓷具有许多出色的物理特性。
首先,它具有极高的硬度和强度,比传统陶瓷材料如氧化铝更为优越。
这使得氮化硅陶瓷可以在高温高压环境下工作而不易变形或断裂。
此外,氮化硅陶瓷还具备良好的导热性能。
它能够有效地传导热量,因此被广泛应用于需要散热性能较佳的领域,如电子器件制冷、电动车充电桩等。
此外,氮化硅陶瓷还表现出优异的耐腐蚀性能。
它可以抵御酸碱等常见溶液的侵蚀,并且在高温环境下也能保持稳定。
2.2 化学特性氮化硅陶瓷具有良好的化学稳定性,能够抵抗许多常见化学试剂的腐蚀。
【精品文章】氮化硅陶瓷材料制备和应用浅析

氮化硅陶瓷材料制备和应用浅析
氮化硅具有高强度、耐磨性以及优异的耐腐蚀性等性能,广泛应用于航空航天、机械工业以及电子电力等领域。
鉴于该材料具有优异的介电性能,可以作为一种新型透波材料应用于飞行器部件中;同时该材料具有优异的耐磨性和耐腐蚀性,在陶瓷轴承领域具有良好的应用前景。
1、氮化硅陶瓷晶体结构
氮化硅常见的主要有两种晶体结构:α相与β相,均属于六方晶系。
其中β-Si3N4结构较为稳定,Si3N4在1300℃时会发生α→β相变,常压高温直接分解为液态硅和氮气,分解温度为1877 ℃,图1为β-Si3N4和α-Si3N4的晶体结构单元。
图1 a β-Si3N4的晶体结构b. α-Si3N4的晶体结构
2、氮化硅粉体制备技术
Si3N4粉末的制备方法有很多,目前人们研究得最多的有硅粉直接氮化法、碳热还原二氧化硅法、激光气相反应法以及溶胶凝胶(sol-gel)法。
(1)硅粉直接氮化法
硅粉直接氮化法是最早被采用的传统地合成氮化硅粉体的方法,该方法具体操作是将纯度较高的硅粉磨细后,置于反应炉内通氮气或氨气,加热到1200℃~1400℃进行氮化反应就可得到氮化硅粉末。
主要的反应式为: 3Si+2N2→Si3N4
3Si+4NH3→Si3N4+6H2
该法生产的Si3N4粉末通常为α、β两相混合的粉末,由于氮化时发生粘结使粉体结块,故产物必须经粉碎、研磨后才能成细粉。
该方法生产成本。
氮化硅陶瓷材料

氮化硅陶瓷材料Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】摘要氮化硅陶瓷是一种具有广阔发展前景的高温、高强度结构陶瓷,它具有强度高、抗热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性能好等高性能,已被广泛应用于各行各业。
本文介绍了氮化硅陶瓷的基本性质,综述了氮化硅陶瓷的制备工艺和国内外现代制造业中的应用,并展望了氮化硅陶瓷的发展前景。
Abtract:Silicon nitride ceramic is a broad development prospects of high temperature, high strength structural ceramics, it has high strength, thermal shock stability, high temperature fatigue toughness, high bending strength, wear resistance, oxidation resistance,corrosion resistance and good performance of high performance, has been widely used in all walks of life. This paper introduces thebasic properties of silicon nitride ceramics, reviews the fabricating technique of silicon nitride ceramics at home and abroad and modern manufacturing industry in the application, and looks forward to the development prospect of silicon nitride ceramics.氮化硅陶瓷材料关键词氮化硅陶瓷性能制备工艺应用Key words properties of silicon nitride ceramic preparation process and Application1.前言随着现代科学技术的发展,各种零部件的使用条件愈加苛刻(如高温、强腐蚀等),对新材料的研究和应用提出了更高的要求,传统的金属材料由于自身耐高温、抗腐蚀性能差等弱点已难以满足科技日益发展对材料性能的要求,现亟待开发新材料。
氮化硅

氮化硅氮化硅,分子式为Si3N4,是一种重要的结构陶瓷材料。
它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应(反应方程式:Si3N4+4HF+9H2O=====3H2SiO3(沉淀)+4NH4F),抗腐蚀能力强,高温时抗氧化。
而且它还能抵抗冷热冲击,在空气中加热到1 000 ℃以上,急剧冷却再急剧加热,也不会碎裂。
正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。
如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。
我国及美国、日本等国家都已研制出了这种柴油机。
【氮化硅的应用】氮化硅用做高级耐火材料,如与sic结合作SI3N4-SIC耐火材料用于高炉炉身等部位;如与BN结合作SI3N4-BN材料,用于水平连铸分离环。
SI3N4-BN系水平连铸分离环是一种细结构陶瓷材料,结构均匀,具有高的机械强度。
耐热冲击性好,又不会被钢液湿润,符合连珠的工艺要求。
见下表性能AL2O3ZrO2熔融石英(SiO2)ZrO2 -MO金属陶瓷反应结合Si3N4热压Si3N4热压BN反应结合SiN4-BN抗热震性差差好好中好好好抗热应力差差好好中好好好尺寸加工精度与易加工性能差差好差好差好好耐磨性好好中好好好好好耐侵蚀性好好差好好好好相对分子质量140.28。
灰色、白色或灰白色。
六方晶系。
晶体呈六面体。
密度3.44。
硬度9~9.5,努氏硬度约为2200,显微硬度为32630MPa。
熔点1900℃(加压下)。
通常在常压下1900℃分解。
比热容为0.71J/(g·K)。
生成热为-751.57kJ/mol。
热导率为16.7W/(m·K)。
线膨胀系数为2.75×10-6/℃(20~1000℃)。
不溶于水。
溶于氢氟酸。
在空气中开始氧化的温度1300~1400℃。
氮化硅陶瓷讲解

氮化硅陶瓷讲解氮化硅陶瓷及其制备成型工艺氮化硅〔Si3N4〕是氮和硅的化合物.在自然界里,氮、硅都是极其普通的元素.氮是生命的根底,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物.氮化硅是在人工条件下合成的化合物.虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔〞的氮化物留在人们的记忆中.二次大战后,科技的迅速开展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料. 经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低本钱,有广泛重要用途的氮化硅陶瓷制品.开发过程为何如此艰难, 这是由于氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的.没有氮化硅陶瓷就没有氮化硅如今的重要地位.Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低〔缺点〕,难以烧结,其中共价键Si-N 成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化.Si3N4含有两种晶型,一种为a-Si3N4,针状结晶体,呈白色或灰白色,另一种为B-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体.两者均为六方晶系,都是以[SiN4]4-四面体共用顶角构成的三维空间网络.在高温状态下,B相在热力学上更稳定,因此a相会发生相变,转为B相. 从而高弓相含量Si3N4粉烧结时可得到细晶、长柱状B -Si3N4晶粒,提升材料的断裂韧性.但陶瓷烧结时必须限制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源.在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能.〔1〕机械强度高, 硬度接近于刚玉,有自润滑性耐磨;〔2〕热稳定性高,热膨胀系数小,有良好的导热性能;〔3〕化学性能稳定,能经受强烈的辐射照射等等.晶体的常见参数如下列图所示:翅氯雌的踹微和懒Ta b.'L attic e io ost ant a nd biUk den sity of alicon nit ri 出相品格常机由单位雕分了教acft-如附±0.0015,617 i).0014J. J 84■ SiiNj工仪iE +0,0012.9I& Ja.00057上1肝表2就翻基植质Tab. 2 Basic properties of silicon nitridem晶系分解温接莫氏艘艘(g/cd)导解(W/m国螂率(Q嬲幽'C)蒯雉六方190093.1849.46 2.7 X10-6 (20-1000 QSi3N4分子中Si原子和周围4个N原子以共价键结合,形成[Si・N4]四面体结构单元,所有四面体共享顶角构成三维空间网,形成Si3N4,有两种相结构,a相和B相如下列图所示:a相结构P相结构其共价键长较短,成键电子数目多,原子间排列的方向性强,相邻原子间相互作用大.Si3Z存在两种由[Si-NJ四面体结构以不同的堆砌方式堆砌而成的三维网络晶形,一个是a-Si3N4,另一个是内窜4.正是由于[Si-N4]四面体结构单元的存在,Si3N4具有较高的硬度.在距Si3N4的一个晶胞内有6j Si原子, 8个N原子.其中3个Si原子和4个N原子在一个平面上,另外3个Si原子和4个N 原子在高一层平面上.第3层与第1层相对应,如此相应的在C轴方向按ABAB… 重复排列,由Si3N4的晶胞参数为a=0.7606 nm,c=0.2909 nm.a-Si3N4中第3层、第4层的Si原子在平面位置上分别与第1层、第2层的Si原子错了一个位置,形成4 层重复排列,即ABCDABCD…方式排列.相对由Si3N4而言,a-Si3N4晶胞参数变化不大,但在C轴方向约扩大一倍(a=0.775nm,c=0.5618),其中还含有3%的氧原子以及许多硅空位,因此体系的稳定性较差,这使a相结构的四面体晶形发生畸变,而0相在热力学上更稳定.由于氧原子在a相中形成Si-O-Si离子性较强的的键,这使a相中的[Si-N4]四面体易产生取向的改变和链的伸直,原子位置发生调整,使得a相在温度到达1300 ℃以上时转变到.相,使其结构稳定.氮化硅陶瓷的优异的性能对于现代技术经常遇到的高温、高速、强腐蚀介质的工作环境,具有特殊的使用价值.比较突出的性能有:(1)机械强度高,硬度接近于刚玉,有自润滑性,耐磨.室温抗弯强度可以高达980MPa以上,能与合金钢相比,而且强度可以一直维持到1200c不下降.(2)热稳定性好,热膨胀系数小,有良好的导热性能,所以抗热震性很好, 从室温到1000℃的热冲击不会开裂.(3)化学性能稳定,几乎可耐一切无机酸(HF除外)和浓度在30%以下烧碱(NaOH)溶液的腐蚀,也能耐很多有机物质的侵蚀,对多种有色金属熔融体 (特别是铝液)不润湿,能经受强烈的放射辐照.(4)密度低,比重小,仅是钢的2/5,电绝缘性好.2.重要的应用氮化硅陶瓷的应用初期主要用在机械、冶金、化工、航空、半导体等工业上,作某些设备或产品的零部件,取得了很好的预期效果.近年来,随着制造工艺和测试分析技术的开展,氮化硅陶瓷制品的可靠性不断提升,因此应用面在不断扩大.特别值得赞赏的是,正在研制氮化硅陶瓷发动机,并且已经取得了很大的进展,这在科学技术上成为举世瞩目的大事.有关应用的主要内容有:(1)在冶金工业上制成坩埚、马弗炉炉膛、燃烧嘴、发热体夹具、铸模、铝液导管、热电偶测温保护套管、铝电解槽衬里等热工设备上的部件.(2)在机械工业上制成高速车刀、轴承、金属部件热处理的支承件、转子发动机刮片、燃气轮机的导向叶片和涡轮叶片等.(3)在化学工业上制成球阀、泵体、密封环、过滤器、热交换器部件、固定化触媒载体、燃烧舟、蒸发皿等.(4)在半导体、航空、原子能等工业上用于制造开关电路基片、薄膜电容器、承受高温或温度剧变的电绝缘体、雷达天线罩、导弹尾喷管、原子反响堆中的支承件和隔离件、核裂变物质的载体等.(5)在医学工程上可以制成人工关节.(6)正在研制的氮化硅质的全陶瓷发动机代替同类型金属发动机.今后的开展方向是:⑴充分发挥和利用SI3N4本身所具有的优异特性;⑵在Si3N4粉末烧结时,开发一些新的助熔剂,研究和限制现有助熔剂的最正确成分; ⑶改善制粉、成型和烧结工艺;⑷研制SI3N4与SIC等材料的复合化,以便制取更多的高性能复合材料.SI3N4陶瓷等在汽车发动机上的应用,为新型高温结构材料的开展开创了新局面.利用SI3N4重量轻和刚度大的特点,可用来制造滚珠轴承、它比金属轴承具有更高的精度,产生热量少,而且能在较高的温度和腐蚀性介质中操作.用SI3N4陶瓷制造的蒸汽喷嘴具有耐磨、耐热等特性,用于650℃锅炉几个月后无明显损坏,而其它耐热耐蚀合金钢喷嘴在同样条件下只能使用1 - 2个月.由中科院上海硅酸盐研究所与机电部上海内燃机研究所共同研制的SI3N4电热塞解决了柴油发动机冷态起动困难的问题,适用于直喷式或非直喷式柴油机.这种电热塞是当今最先进、最理想的柴油发动机点火装置.日本原子能研究所和三菱重工业公司研制成功了一种新的粗制泵,泵壳内装有由11个SI3N4陶瓷转盘组成的转子.由于该泵采用热膨胀系数很小的SI3N4陶瓷转子和精密的空气轴承,从而无需润滑和冷却介质就能正常运转.如果将这种泵与超真空泵如涡轮分子泵结合起来,就能组成适合于核聚变反响堆或半导体处理设备使用的真空系统.随着SI3N4粉末生产、成型、烧结及加工技术的改良,其性能和可靠性将不断提升,氮化硅陶瓷将获得更加广泛的应用.由于SI3N4原料纯度的提升,SI3N4粉末的成型技术和烧结技术的迅速开展,以及应用领域的不断扩大,SI3N4正在作为工程结构陶瓷,在工业中占据越来越重要的地位. SI3N4陶瓷具有优异的综合性能和丰富的资源,是一种理想的高温结构材料, 具有广阔的应用领域和市场,世界各国都在竞相研究和开发.陶瓷材料具有一般金属材料难以比较的耐磨、耐蚀、耐高温、抗氧化性、抗热冲击及低比重等特点.可以承受金属或高分子材料难以胜任的严酷工作环境,具有广泛的应用前景.成为继金属材料、高分子材料之后支撑21世纪支柱产业的关键根底材料, 并成为最为活泼的研究领域之一,当今世界各国都十分重视它的研究与开展, 作为高温结构陶瓷家族中重要成员之一的SI3N4陶瓷,较其它高温结构陶瓷如氧化物陶瓷、碳化物陶瓷等具有更为优异的机械性能、热学性能及化学稳定性. 因而被认为是高温结构陶瓷中最有应用潜力的材料.可以预言,随着陶瓷的根底研究和新技术开发的不断进步,特别是复杂件和大型件制备技术的日臻完善,SI3N4陶瓷材料作为性能优良的工程材料将得到更广泛的应用.氮化硅粉体的制造方法:用硅粉作原料,先用通常成型的方法做成所需的形状,在氮气中及1200℃的高温下进行初步氮化,使其中一局部硅粉与氮反响生成氮化硅,这时整个坯体已经具有一定的强度.然后在1350℃-1450P的高温炉中进行第二次氮化,反响成氮化硅.用热压烧结法可制得到达理论密度99% 的氮化硅.制备工艺:由于制备工艺不同,各类型氮化硅陶瓷具有不同的微观结构(如孔隙度和孔隙形貌、晶粒形貌、晶间形貌以及晶间第二相含量等).因而各项性能差异很大.要得到性能优良的SI3N4陶瓷材料,首先应制备高质量的Si3N4粉末.用不同方法制备的SI3N4粉质量不完全相同,这就导致了其在用途上的差异,许多陶瓷材料应用的失败,往往归咎于开发者不了解各种陶瓷粉末之间的差异,对其性质熟悉缺乏.一般来说,高质量的SI3N4粉应具有a 相 含量高,组成均匀,杂质少且在陶瓷中分布均匀,粒径小且粒度分布窄及分散 性好等特性.好的SI3N4粉中a 相至少应占90%,这是由于SI3N4在烧结过 程中,局部a 相会转变成B 相,而没有足够的a 相含量,就会降低陶瓷材料的强 度.要制得高性能的氮化硅陶瓷制品,一般说来首先要有高质量的氮化硅粉料. 理想的氮化硅粉料应是高纯、超细、等轴、球形、松散不团聚的一次粒子.实 际上,目前要获得较为理想的Si 3N 4粉料,还未根本解决.根据文献资料的报导, 现在用以制造氮化硅粉料的方法已经较多,如:(1)硅粉直接氮化法 3Si +2N 2fsi N (2)二氧化硅碳热复原法 2Si 02+6C+2N 2f si 3N 4+6CO(3)四氯化硅或硅烷与氨的高温气相合成法 3s g 4+4NH 3f si 3N 4+12HC1 3SiH 4+4NH 3f Si 3N 4+12H 2(4)亚氨基硅或氨基硅的热分解法 3Si (NH ) 2f si 3N 4+2NH 3 3Si (NHP4f si 3N 4+8NH 3其它还有激光法、等离子体法等等方法.以下主要介绍硅粉直接氮化合成 法.一、生产工艺流程示意图:见图4—8.图4 —日硅粉氮化制氮化硅粉料工艺流程示意图二、主要工艺条件(1)原料处理常用的市售工业硅块总会含有一些金属氧化物,如钾、钠、铁、钙等的氧 化物;工业氮气和氢气也总会含有少量的水、氧气等,这些都必须经过严格检 测,并净化至允许的含量.对硅粉的要求粒度V 40pm,对其中所含的金属杂质,一般可用酸洗的方法除去,对于球磨时带入的超硬合金杂质可用重力法或磁性法除去.硅粉外表的 氧化膜可在氮化前通过复原活化法除去,即在低于烧结温度下,反复用低于常 压的氢气复原和真空交换处理,待氧化膜除去后再进行氮化合成操作.氮气中假设含水和氧,在硅氮合成反响时,氧和水蒸汽首先会使硅粉外表生 成二氧化硅,影响氮化反响;而且在高温作用下,二氧化硅又可以与硅反响生 成气态的一氧化硅或SiO 2分解生成一氧化硅,而造成硅组分的损失:SiO 2 〔固〕+Si 〔固〕-2SiO 〔气〕SiO 2 〔固〕f SiO C 气〕十,5 〔气〕生成物氮化硅在高温下也会受氧气和水蒸汽的明显腐蚀.所以应尽可能地 将其全部除去.气体净化系统示意图如下:其中氧气的脱除是通过灼热的铜屑生成氧化铜,由于同时通入了氢气,既 可以保持铜屑的活性,又可以使氧最终转化成水而易于除去: 60吐心02 2 Cu + 即〕Cu+H.O〔2〕氮化合成反响氮化反响是在氮化炉中进行的,氮化炉内的温度由炉壁内的发热体和控温 系统来调节.氮化反响开始进行非常缓慢,600〜900c 反响才明显,1100〜1320c 反响剧 烈进行.粒度符合要求的硅粉,也要经过大约10小时才可以氮化完全.硅粉粒 度大于40Hm 以上时,将难以氮化彻底.因氮化反响中会放出大量反响热〔727.5kJ/molSi34〕,所以在氮化初期应严 格限制升温速度,以预防因积热引起局部过温,超过硅的熔点〔1420℃〕使硅 粉熔合成团,阻碍继续氮化.所以整个氮化合成反响过程中限制温度^ 1400℃ 为宜.〔3〕氮化硅粉料的后处理合成的氮化硅由于各种原因粒度不能满足要求,所以还需根据具体情况进 行球磨、酸洗等后处理,最后要求至少得到粒度小于1pm 的氮化硅粉料.但往 往粒度分布较宽,颗粒外表及几何形状也不易符合理想要求,这是该法的缺点 之一.该方法合成氮化硅粉料,尽管工艺比较成熟,质量稳定,重复性好,粒度 也可以根本满足,本钱较低,但是存在粉料的纯度和相组成较难严格限制等问 题,所以还需要进一步改良和完善这一工艺,以提升氮化硅粉料的质量.4.氮化硅陶瓷的制造氮化硅陶瓷制造工艺已经经历了二十多年的开展史,使其质量逐渐提升.而工艺流程根本未变,由于也属典型的陶瓷工艺,主要是在各个工艺环节上进 行了不断的改良.活性氧化铝(1)氮化硅陶瓷制备工艺的主要环节制备氮化硅陶瓷制品的工艺流程一般由原料处理、粉体合成、粉料处理、成形、生坯处理、烧结、陶瓷体处理等环节组成.详见图4—9.原料处理|一气体净化、端体细磨, 麟洗等口粉体合成一采用氮化合成、碳物复原、气相合成、热分解等苴中一种口粉料处理一膝分、配料、混料、干糜及制浆、造粒等.成稔一采用半干压、等静区、注浆、热压裤、车坯等其中一种口生坯处理一修坯、枯燥f或排胶、脱霜1、预烧结等口烧结一采用反响、热压、常压、等静压、重烧结等其中一种口陶空体处理一按需要进行热处理、优学强优-切割-研磨、接合等.图4 —.氮化硅陶荒制备工艺的主要环节(2)主要工艺类型和特点从图4—9中可知,由于几个主要环节如合成、成形、烧结可以有多种方法进行选择,而且有的在次序上也不一定完全一致,因此具体的工艺流程有很多种.几个主要工艺类型及特点详见表4—2.表4—2中的几种工艺制得的氮化硅陶瓷制品不管是在显微结构上还是在性能方面都有较大的差异,在制造本钱上差距也很大.因此,在实际应用中应根据制品的用途和所需要到达的性能指标,以及价格等诸因素综合考虑后进行选择.表4 — 2氯牝硅陶凳明备的主要工玲型和特点工艺类型主要特点反响烧结氮化硅硅桧成形、坯体氮化合成烧结:烧结体热压氮化硅氮化硅能甦^烧结体常压烧结瓦化硅氮化硅端成理)坯体烧结:烧结体等第压烧结氮化硅氮化硅耨成施?坏体烧结体硅粉成形?坯体俄罐3前驱体反响重烧结氮化硅壬由修工^烧结体(3)制备高质量产品的技术要求氮化硅陶瓷制品是我们作为应用于苛刻条件下的高温结构材料而重点介绍的.尤其是它最有魅力的前景是用于制造全陶瓷发动机.因此不仅要使材料的性能尽可能稳定,而且必须保证制品的机械可靠性.为此,除了需要进一步进行深入的理论研究外,作为生产单位必须牢记并在许可的条件下做到“纯、细、密、均质〞.这五个字既是总的技术要求,也是工艺技术开展的趋势.I〕纯,是指原料尽可能纯洁,尽量除去有害的杂质,在制备全过程中尽量预防混入有害杂质,烧成的陶瓷体晶界相要少,相组成尽量单一.II〕细,是指固体原料和中间合成物的粉体颗粒度要细,烧成的陶瓷体晶粒要细.小〕密,是指成形生坯尽可能致密,烧结尽可能完全,烧成的陶瓷体气孔率尽量低,体积密度尽量接近理论密度.W〕均质,是指粉体的颗粒分布范围要窄,从成形生坯到烧成陶瓷体都要预防热应力和机械应力集中,预防不同步烧结,尽量减少陶瓷体内的缺陷,避免各向异性.氮化硅陶瓷的工业生产绝对不受资源限制,合成氮化硅可以通过各种途径进行,原料来源一般都很容易.二十多年来,氮化硅陶瓷的制备工艺不断改良, 生产规模不断扩大,本钱逐渐下降,市场需求也在成倍增长.因此,氮化硅陶瓷在新材料领域中具有明显潜在的竞争力量,大有开展前途.反响烧结法〔RS〕是采用一般成型法,先将硅粉压制成所需形状的生坯,放入氮化炉经预氮化〔局部氮化〕烧结处理,预氮化后的生坯已具有一定的强度,可以进行各种机械加工〔如车、刨、铳、钻〕.最后,在硅熔点的温度以上;将生坯再一次进行完全氮化烧结,得到尺寸变化很小的产品〔即生坯烧结后,收缩率很小,线收缩率< 011%〕.该产品一般不需研磨加工即可使用.反响烧结法适于制造形状复杂,尺寸精确的零件,本钱也低,但氮化时间很长.热压烧结法〔HPS〕是将Si3N4粉末和少量添加剂〔如MgO、A12O3、MgF2、Fe2O3等〕, 在1916 MPa以上的压强和1600 ℃以上的温度进行热压成型烧结.英国和美国的一些公司采用的热压烧结Si3N4陶瓷,其强度高达981MPa以上.烧结时添加物和物相组成对产品性能有很大的影响.由于严格限制晶界相的组成,以及在Si3N4陶瓷烧结后进行适当的热处理,所以可以获得即使温度高达1300 ℃时强度〔可达490MPa以上〕也不会明显下降的Si3N4系陶瓷材料,而且抗蠕变性可提升三个数量级.假设对Si3N4陶瓷材料进行14001500 ℃高温预氧化处理,那么在陶瓷材料外表上形成SI2N2O相,它能显著提升SI3N4陶瓷的耐氧化性和高温强度.热压烧结法生产的Si3N4陶瓷的机械性能比反响烧结的Si3N4要优异,强度高、密度大.但制造本钱高、烧结设备复杂,由于烧结体收缩大,使产品的尺寸精度受到一定的限制,难以制造复杂零件,只能制造形状简单的零件制品,工件的机械加工也较困难.常压烧结法〔PLS〕在提升烧结氮气氛压力方面,利用SI3N4分解温度升高〔通常在N2 = 1atm 气压下,从1800℃开始分解〕的性质,在17001800℃温度范围内进行常压烧结后,再在18002000℃温度范围内进行气压烧结.该法目的在于采用气压能促进SI3N4陶瓷组织致密化,从而提升陶瓷的强度.所得产品的性能比热压烧结略低.这种方法的缺点与热压烧结相似.气压烧结法〔GPS〕近几年来,人们对气压烧结进行了大量的研究,获得了很大的进展.气压烧结氮化硅在1〜10MPa气压下,2000℃左右温度下进行.高的氮气压抑制了氮化硅的高温分解.由于采用高温烧结,在添加较少烧结助剂情况下,也足以促进SI3N4晶粒生长,而获得密度>99%的含有原位生长的长柱状晶粒高韧性陶瓷,因此气压烧结无论在实验室还是在生产上都得到越来越大的重视.气压烧结氮化硅陶瓷具有高韧性、高强度和好的耐磨性,可直接制取接近最终形状的各种复杂形状制品,从而可大幅度降低生产本钱和加工费用.而且其生产工艺接近于硬质合金生产工艺,适用于大规模生产。
氮化硅陶瓷球的用途及特点

氮化硅陶瓷球的用途及特点说到氮化硅陶瓷球,可能大家会觉得这名字听起来有点拗口,像是科学课上会碰到的生僻词汇。
不过,别担心,今天我们就来聊聊这个“神奇小球”的用途和特点,让你轻松搞懂它到底有啥用处,为什么大家都在追捧它!1. 氮化硅陶瓷球是什么?1.1 基本概念氮化硅陶瓷球,其实就是用氮化硅这种材料做成的小球。
这种材料可不是随便的,氮化硅的强度和硬度都很出众,简直可以和超人比肩。
大家知道,陶瓷材料本身就很硬,但氮化硅更是把硬度推向了极限,做成的球就像个小铁拳,硬得让人惊叹!1.2 性能特点除了硬度以外,氮化硅还有个不为人知的特点,就是它的耐高温性。
嘿,听起来就像是个火焰战士,能在高温环境下也能安然无恙。
不管是机械加工还是一些高温气体的处理,氮化硅陶瓷球都能轻松应对。
真是个能耐啊,别说是熬煮的锅了,就算是熬油的炸锅,它也能搞定!2. 氮化硅陶瓷球的用途2.1 工业领域首先,氮化硅陶瓷球在工业领域可谓是个“明星”。
比如说,在轴承制造中,它的应用让整个转动过程如丝般顺滑,摩擦力小得惊人,简直就是工厂里的“静音天使”。
想象一下,工厂里机器轰鸣,如果没有这些小球,大家都得听着“咯吱咯吱”的声音,活像在参加摇滚演唱会!2.2 电子产品其次,在电子产品中,氮化硅陶瓷球的身影也随处可见。
它能有效隔绝电流,确保电子设备的稳定性。
简单来说,就是给电子产品穿了一层“防护衣”,让它们在运行时不容易出错。
像是手机里的小元件,如果没有它的保驾护航,哪能那么“淡定”地完成各种任务?3. 氮化硅陶瓷球的优点3.1 耐磨性强说到氮化硅陶瓷球的优点,首先得提的就是它的耐磨性。
要知道,在各种高强度摩擦的环境下,这小球能挺过来,简直就是个耐磨小能手。
就像是个运动员,不怕风雨,时刻准备迎接挑战,真是让人刮目相看!3.2 轻便而强韧其次,这小球的轻便也让人觉得意外。
虽然它硬得吓人,但轻巧得让你一捏就能握住,轻松自如。
就像是你手中的一颗小弹珠,看似平常,却拥有不容小觑的力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sintering methods
Hot– isostaticpressing
(HIP)
Hot – pressing
(HP)
pressureless
sintering (PLS)
Reaction sintering
• Reduce the sintering temperature, pressure and sintering time.
• MgO 、Y2O3 、Al2O3
Actual application
• One of the earliest uses of Si3N4 was in the Si3N4-bonded refractory brick for blast furnaces in the 1950.
Good wear
High hardness
Corrosive resistance
Fracture resistance
Creep resistance
Flexural strength
Thermal shock
resistance
Properties of Si3N4 ceramics
Crystal structures of Si3N4 ceramics
Fig. 2 XRD patterns of the samples sintered at different temperature holding for 60 min
Synthesis methods of Si3N4 ceramics
• 1、 Carbothermic process • 2、Silicon powder direct nitridation method • 3、Self-propagating high temperature synthesis
(RS)
Sintering aids(烧结添加剂)
• Si3N4 is one of the typical covalent bonded solids.s is very low.
• Sintering aids are always needed to bring down the grain boundary of Si3N4 and to increase diffusivity.
• Silicon nitride exists in two major crystalline forms: α - and β- phase. (fig.1)
• Both phases have a hexagonal crystal structure.
• α-Si3N4 is the low temperature modification and β-Si3N4 is the high temperature modification.(fig.2) • More than 1400-1800℃ α phase transform into β
Overview of silicon nitride ceramics
Name: 000001 Major: Chemical technology
Contents
• 1 、 Properties of silicon nitride • 2 、Crystal structures • 3、 Synthesis methods • 4、Sintering methods • 5、 Actual application
• However the fracture behaviour of Si3N4 ceramic is considered to be the major obstacle for its wider use as a structural material.
Properties of Si3N4 ceramics
• Thanks to advanced properties of the Si3N4 , it has been widely used in many fields, for example: Metallurgy industry, Metal cutting, Construction of motors, Nuclear fusion reactors, Semiconductor technology, Aviation, Biomaterial.
phase.
Crystal structures of Si3N4 ceramics
Fig. 1: Crystal structures of a α- Si3N4 and b β- Si3N4
a=7.7541(4) Å c=5.6217(4) Å
a=7.6044(2) Å c=2.9075(1) Å
• Owing to the brittle nature of Si3N4, over the years, there has been a continuous interest in exploring a variety of approaches for enhancing its fracture toughness and reliability.
Properties of silicon nitride
• Si3N4 is one of the most important structure ceramics because it possesses a combination of advanced properties. Such as:
Thanks!