04183全国自考2012年4月概率论与数理统计试题及答案
自考04183概率论与数理统计历年真题共14套汇总

3全国2010年7月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的 ,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1 _1. 设A 、B 为两事件,已知 P(B)= 1 , P(A2B)=Z ,若事件A , B 相互独立,则 P(A)=3B .C .2•对于事件 A , B ,下列命题正确的是( )A .如果A ,B 互不相容,则 A,B 也互不相容B .如果A B ,则A B C. 如果A B ,则A BD .如果A , B 对立,则A,B 也对立 3. 每次试验成功率为 p(0<p<1),则在3次重复试验中至少失败一次的概率为()A.(1-p)3 B . 1-p 3C .3(1-p) D . (1-p)3+p(1-p)2+p 2(1-p)4.已知离 莓散型随机变量X 的概率分布如卜表所示:X-1 01 2 4P 1/101/51/10 1/5 2/5则下列概率计算结果正确的是 ( )A. P(X=3)=0 B . P(X=0)=0 C . P(X>-1)=ID . P(X<4)=I5•已知连续型随机变量 X 服从区间[a , b ]上的均匀分布,则概率 PB.2C .8已知随机变量 X 〜N(0, 1),则随机变量 Y=2X-1B. 2C. 39.设随机变量X 服从参数为0.5的指数分布, 1 1 A. —B.-93用切比雪夫不等式估计 P(|X-2|> 3) < (C.1 2 2 1-X 2 kX 3 ,已知T 是E(x)的无偏估计, 61 A. - 6 C.4110•设X 1, X 2, X 3,为总体 X 的样本,T -X 12C .- 3X 与Y 相互独立时,(p , q)=(C . (1 A) ‘10,15; 107. 设(X,Y )的联合概率密度为 f(x,y)k(xy),o 0, x 2 0 其他,1,则 k=(B.丄2的方差为D.1则 k=()1 B.— 3 1 D.-9、填空题(本大题共15小题,每小题2分,共30分)2请在每小题的空格中填上正确答案。
04183全国自考2012年4月概率论与数理统计试题及答案

04183全国自考2012年4月概率论与数理统计试题及答案全国2012年4月自考概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A,B为B为随机事件,且A B,则AB等于( )A. ABB.BC.AD.A2.设A,B为随机事件,则P(A B)=( )A. P(A) P(B)B. P(A) P(AB)C. P(A) P(B) P(AB)D.P(A) P(B) P(AB)1 c c3 •设随机变量X的概率密度为f(x) 3' 3<X<6,则P 3<X<4 =( )0, 其他,A . P 1<X<2 B. P 4<X<5C. P 3<X<5D. P 2<X<74.已知随机变量X服从参数为的指数分布,则X的分布函数为()A ・F(x) e x, x 0,0, x 0.B.F(x) 1 e x, x 0,0, x 0.C. F(x) 1 e x, x 0,0, x 0.D.F(x) 1 e x, x 0,0, x 0.5 •设随机变量A ・F( )1 X的分布函数为F(x),则(B.F(0) 0C. F( ) 06.设随机变量f x(x), f Y(y), 则(X,1A . - f x(x) f Y(y)21C.1 f x(x)f Y(y)D. F( ) 1X与丫相互独立,它们的概率密度分别为Y)的概率密度为( )B. f x(x) f Y(y)D.f x(x)f Y(y)7•设随机变量x~B(n, p),且E(X) 2.4,D(X) 1.44,则参数n,p别为( )A . 4 和0.6 B.6 和0.4C.8 和0.3D.3 和0.8&设随机变量X的方差D(X)存在,且D(X)>0,令Y X ( ) A. 1 的值分x,则B.C.1D.29.设总体X〜N(2,32),X1,X2,…,x n为来自总体X的样本,为样本均值,则下列统计量中服从标准正态分布的是( )10 •设样本X 1,X 2,…,x n 来自正态总体N( , 2),且2未知.】为 样本均值,s 2为样本方 差.假设检验问题为H o : 1,H 1: 1,则采用的检验统计量为( )C.二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案

2008年7月高等教育自学考试全国统一命题考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。
错选、1.设随机事件 A . 0 C . 0.4x ::: 0C .-12 0 0 1/6 5/12 1/3 1/12 0 0 11/36.已知 Y 的联合概率分布如题6表所示概率论与数理统计(经管类)试卷课程代码4183多选或未选均无分。
A 与B 互不相=0.2 , P(B)=0.4,贝U P ( B|A )= B . 0.2 D . 12 .设事件A , B 互不相容,已知(A) =0.4, P(B)=0.5,则 P(A B )=(A . 0.1 C . 0.93 .已知事件 A , B 相互独立,且(A) B . D . >0, 0.4 1P (B )>0,则下列等式成立的是A . P(A B)=P(A)+P(B) P(A B)=1-P( A )P(B )C . P(A B)=P(A)P(B)4.某人射击三次, A . 0.002 C . 0.08 其命中率为 0.8,D . 则三次中至多命中一次的概率为(B . D . P(A B)=10.04 0.1045.已知随机变量X 的分布函数为( F(x)=12 23 10 乞 x :::1x _3 斗=题6表1F ( x,y )为其联合分布函数,则 F ( 0,31 121 47.设二维随机变量(X , Y )的联合概率密度为e _(xdy)x >0, y =0f(x,y)=其它2 3 已知随机变量X 服从参数为1 23 4则随机变量 X 的期望为(所满足的切比雪夫不等式为(I —.丿 \ncr 2~2~2 nc~2二2ns 2p { X —n ^>3 h 零A . Z=X 」0匚/ ■ nC. T=X 」0S/J n二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
自考04183《概率论与数理统计(经管类)》历年真题

全国2007年4月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)(=ABD.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( ) A.P (AB ) B.P (A ) C.P (B )D.13.下列各函数可作为随机变量分布函数的是( ) A.⎩⎨⎧≤≤=.,x ,x )x (F 其他01021;B.⎪⎩⎪⎨⎧≥<≤<=.x x ,,x ;x ,)x (F 1101002;C.⎪⎩⎪⎨⎧≥<≤--<-=.x x ,x ;x ,)x (F 1111113;D.⎪⎩⎪⎨⎧≥<≤<=.x x ,x ;x ,)x (F 11022004;4.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=,,;x ,x )x (f 其他0224则P {-1<X <1}=( )A.41B.21C.43D.1 5.,则P {X +Y =0}=( ) A.0.2 B.0.3 C.0.5 D.0.7 6.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<-<<-=,,;y ,x ,c )y ,x (f 其他01111 则常数c=( ) A.41 B.21C.2D.4 7.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4D.E (X )=2,D (X )=28.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则D (Z )=( )A.1B.3C.5D.69.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =()A.0.004B.0.04C.0.4D.410.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s x D.)(10μ--x n二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。
04183概率论与数理统计

4183《概率论与数理统计》第一章 随机事件与概率一.随机事件关系与运算 1!0,)!(!!!,)!(!0===-==-=C C C A A n n n r n nn rn r n r n :,n r n n 组合排列二.概率P(A)1.P(A)概率特征)()31)(,0)()21)(0)111∑∞=∞===Ω=≤≤K KK kA A P ,P(P P A P 事件互不相容时φ2. 古典概型3.概率加法公式P(A+B)=P(A)+P(B)- P(AB)当A 、B 互斥时, P(A+B)=P(A)+P(B) 事件的独立性:定义:P(AB)=P(A)P(B)性质:.P(A)>0,,则P(B)=P(B/A); P(B)>0则P(A)=P(A/B) P(B —A)=P(B)--P(AB)P (A--B )==P (AB )=P (A--AB )=P (A )--P (AB ) P(A+B+C)=1--P(A+B+C)=1--P(A)P(B)P(C) P(AB)=P(AUB)=1-P(AUB)=1-(P(A)+P(B)) P(A)=1-P(A4.条件概率公式5.概率的乘法公式6.全概率公式:从原因计算结果7.Bayes 公式:从结果找原因)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk kki i k B A P B P B A P B P A B P 1)|()()|()()|(基本事件总数所包含的基本事件数A A P =)()()()|(A P AB P A B P =)/()/()()(AB C P A B P A P ABC P =分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:“一般正态分布函数F(x)”转换为“标准正态分布函数)(x Φ”的关系 设X~N (δμ2,)则1.2.3.连续型随机变量函数的概率分布定理:记x=h(y)为y=g(x)的反函数,则Y=g(X)的概率密度:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<'=其他y y h y h y f f X Y ,0),())(()(βα1) 设X~U(-2,2ππ),令Y=tanX,求Y 的概率密度柯西分布:+∞<<-∞+='=y y h y h y yf f X Y ,111)())(()(2π 2)设X~N(σμ2,),求eX的概率密度对数正态分布:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤>-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>∙=-0,00,2)(ln 210,0,0,1)(ln )(,22y y y y y y y y y e f fX Yσμσπ 3直接变换法:[])()(21)()(y y yy y ff F fXXY Y-+='=e e y x x 的的反函数为y y 的反函数为反y 2ln 2,,,,,ln -=-===∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=x dtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()()()('x f x F =第三章多维随机变量及其概率分布 二元随机变量及其边缘分布 分布规律的描述方法联合密度函数联合分布函数离散联合分布函数的概率:{}0),(),(),(),(,112112222121≥+--=≤<≤<y x y x y x y x yy x x F F F F Y X P性质1),(,0),(),(),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F 离散边缘分布律:{}{}∑∑===⋅===⋅ijji pijY P j p pij X P pi y x1...2,1,,0,0=⋅=⋅=≥⋅≥⋅∑∑jij p pi j i j p pi联合密度二维边缘密度二维连续随机变量的分布 1.均匀分布(X,Y)~U D1)设D 为平面上的有界区域,S 表面积⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤+−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤--−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈=其他,其他o d x c b x a c d a b 其他D y x S y x f R yx R 圆形矩形,01,,,))((1,0),(,1),(2222π 2.正态分布),,,,(~),(222121ρσσμμN Y Xey y x f y x x ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+--------=σμσσσρρσπσμμρμ222212121212)2(121),())((2)()1(21221离散型随机变量的独立性)()(),(y FY x Fx y x F =连续型随机变量的独立性),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=+∞<<∞-=⎰+∞∞-x ,,dy y x f x f ),()(+∞<<-∞=⎰+∞∞-y dx y x f y f Y ,,),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =第四章 随机变量的数字特征数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义期望性质:● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 , ● E(CX)=CE(X),其中C 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 ● E(XY)=E(X)E(Y),X,Y 相互独立 方差的性质D(a)=0,其中a 为常数D(a+bX)=b 2(X),其中a 、b 为常数D(X+Y)=D(X)+D(Y) 当X 、Y 相互独立时随机变量g(X)的数学期望常用公式:二维随机变量的期望 离散连续g(X)∑⎰⎰∑=⇔=jij jiidxdy y x f y x g Y X G E p yx g Y X g E ,),(),()],([),()],([方差 定义式 离散:⋅-=∑=Pi X E xX D ni i21))(()(连续常用计算式常用公式∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dx x f x X E )()(⎰∑+∞∞-=⇔=dx x fx x g X g E p x g X g E k k k )()()]([)())((ijji Jii i j ij i i i py j p y Y E p x pi x X E ∑∑∑∑∑∑=⋅==⋅=)()(⎰⎰⎰⎰==dxdyy x yf Y E dxdy y x xf X E ),()(),()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )(dxdyy x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+协方差与相关系数⎰⎰--=dxdy y x f Y E Y X E x Y X Cov ),())())(((),(协方差Cov(X,Y)的性质当X 与Y 相互独立时,则Cov(X,Y)=0相关系数XY ρ的性质独立与相关独立必定不相关 相关必定不独立 不相关不一定独立标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+)1,0(~),(~2N X Z N X σμσμ-=⇔)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P ()()(σμσμ-Φ--Φ=≤≤a b b X a P第五章 大数定律及中心极限定理1.切比雪夫不等式:设随机变量X 的期望E(X)及方差D (X )存在,则对任意小正数a>{}{}22)(1)()()(a X D a X E X P a X D a X E X P -≥<-↔≤≥-2.独立同分布序列的中心极限定理{})(21)(212lim lim lim x dt x n n X P x Y P x xt n i i n n n n n eF Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=≤=⎰∑∞---∞→∞→∞→πσμ3.棣莫费-拉普拉斯中心极限定理)(2122lim x dt x mpq np Z p e t x n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞-∞→⎰ 第六章 统计量及其抽样分布 样本方差,)(11212∑=--=n i i x x n s样本标准差2s s = 统计量样本K样本K卡方分布t 分布F 分布正态总体条件下样本均值的分布:)(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2nN X σμ)1,0(~/N nX σμ-则若),(~),1,0(~2n Y N X χ)(~/n t nY X样本方差的分布:两个正态总体的方差之比第七章 参数估计 点估计:参数的估计值为一个常数最大似然估计P147 似然函数单个正态总体参数的置信区间第八章 假设检验假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1 ② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
历年自考概率论与数理统计(经管类)真题及参考答案(全套)

历年自考概率论与数理统计(经管类)真题及参考答案(全套)xx年4月份全国自考概率论与数理统计真题参考答案一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D 答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0 P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2. 设A,B为两个随机事件,且P>0,则P= A. P B. PC. PD. 1 答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3. 下列各函数可作为随机变量分布函数的是 A. A B. BC. CD. D 答案:B解析:分布函数须满足如下性质:F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选第 1 页项A、C、D中F(x)都不是随机变量的分布函数,排除法知B正确,事实上B满足随机变量分布函数的所有性质.第 2 页4. 设随机变量X的概率密度为A. AB. BC. CD. D答案:A5. 设二维随机变量的分布律为(如下图)则P{X+Y=0}=第 3 页A. B. C. D.答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=+=6. 设二维随机变量的概率密度为A. AB. BC. CD. D 答案:A7. 设随机变量X服从参数为2的泊松分布,则下列结论中正确的是 A. E=,D= B. E=,D= C. E=2,D=4 D. E=2,D=2 答案:D解析:X~P(2),故E=2,D=2.8. 设随机变量X与Y相互独立,且X~N,Y~N,令Z=X-Y,则D= A. 1 B. 3 C. 5 D. 6第 4 页答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.第 5 页9.A. B. C. D. 4二、填空题请在每小题的空格中填上正确答案。
自考备考:04183 概率论与数理统计(经管类)习题集及答案

成都理工大学自学考试省考课程习题集课程名称:《概率论与数理统计(经管类)》课程代码:04183第一部分 习题一、选择题1. 对于事件A 、B ,下列命题正确的是()A. 如果A 、B 互不相容,则A 、B 也互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ⊃,则A B ⊃D. 如果A 、B 对立,则A 、B 也对立 2. 设A 、B 为任意两个事件,则有()A. ()AB B A -= B. ()A B B A -= C. ()A B B A -⊂ D. ()A B B A -⊂3.设事件A 与B 互不相容,且()0P A >,()0P B >,则有()A. ()1P AB =B. ()1()P A P B =-C. ()()()P AB P A P B =D. ()1P AB =4.设随机事件A 与B 互不相容,()0.2P A =,()0.4P B =,则(|)P B A =()A. 0B. 0.2C. 0.4D. 15.若A 与B 互为对立事件,则下式成立的是( )A. ()P AB =Ω B. ()()()P AB P A P B = C. ()1()P A P B =- D. ()P AB φ=6.设事件A 与B 相互独立,且1()5P A =,3()5P B =,则()P A B =( )A.325B.1725C. 45D. 23257.设A 、B 相互独立,且()0P A >,()0P B >,则下列等式成立的是()A. ()0P AB =B. ()()()P A B P A P B -=C. ()()1P A P B +=D. (|)0P A B =8.设事件A 、B 相互独立,且1()3P A =,()0P B >,则(|)P A B =( )A.115B.15C. 415D. 139.设A 、B 为两件事件,已知()0.3P A =,则有()A. (|)(|)1P B A P B A +=B. (|)(|)1P B A P B A +=C. (|)(|)1P B A P B A +=D. ()0.7P B =10.设A 、B 为两个随机事件,且B A ⊂,()0P B >,则(|)P A B =( )A. 1B. ()P AC. ()P BD. ()P AB11.设A 、B 为两事件,已知1()3P A =,2(|)3P A B =,3(|)5P B A =,则()P B =() A.15B.25C.35D. 4512.已知()0.4P A =,()0.5P B =,且A B ⊂,则(|)P A B =()A. 0B. 0.4C. 0.8D. 113.设A 与B 相互独立,()0.2P A =,()0.4P B =,则(|)P A B =()A. 0.2B. 0.4C. 0.6D. 0.814.设随机事件A 与B 互不相容,()0.4P A =,()0.5P B =,则()P AB =()A. 0.1B. 0.4C. 0.9D. 115.某人每次射击命中目标的概率为(01)p p <<,他向目标连续射击,则第一次未中第二次命中的概率为( )A. 2pB. 2(1)p -C. 12p -D. (1)p p -16.同时抛掷3枚均匀的硬币,则恰好有三枚均为正面朝上的概率为( ) A. 0.125 B. 0.25 C. 0.375 D. 0.5017.一批产品中有5%的不合格品,且合格品中一等品占60%,从这批产品中任取1件,则该产品是一等品的概率为( ) A. 0.20 B. 0.30 C. 0.38 D. 0.5718设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为1927,则事件A 在一次试验中出现的概率为( ) A. 16 B. 14C. 13D.1219.下列函数中可作为随机变量分布函数的是()A. 1,01()0,x F x ≤≤⎧=⎨⎩其他B. -1,0(),010,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩D. 0,0(),012,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩20.已知随机变量X 的分布函数为0,01,012()2,1331,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩,则{1}P X ==()A.16B.12C.23D. 121.下列各函数中,可作为某随机变量概率密度的是()A. 2,01()0,x x f x <<⎧=⎨⎩其他B. 1,01()20,x f x ⎧<<⎪=⎨⎪⎩其他C. 23,01()1,x x f x ⎧<<=⎨-⎩其他D. 34,11()0,x x f x ⎧-<<=⎨⎩其他22.设随机变量X 的概率密度为3,01()0,ax x f x ⎧≤≤=⎨⎩其他,则常数a =()A.14B.13C. 3D. 423.设随机变量X 的概率密度为,01()2,120,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其他,则{0.2 1.2}P X <<=() A. 0.5B. 0.6C. 0.66D. 0.724.设随机变量X 在[1,2]-上服从均匀分布,则随机变量X 的概率密度为()f x 为()A. 1,12()30,x f x ⎧-≤≤⎪=⎨⎪⎩其他B. 3,12()0,x f x -≤≤⎧=⎨⎩其他C. 1,12()0,x f x -≤≤⎧=⎨⎩其他D. 1,12()30,x f x ⎧--≤≤⎪=⎨⎪⎩其他25.设随机变量(1,4)XN ,()x Φ为标准正态分布函数,已知(1)0.8413Φ=,(0)0.5Φ=,则事件{13}X ≤≤的概率为()A. 0.1385B.0.2413C. 0.2934D. 0.341326.设随机变量X 的概率密度为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任意的实数a ,有()A. 0()1()aF a f x dx -=-⎰B. 01()()2aF a f x dx -=-⎰ C. ()()F a F a -=D. ()2()1F a F a -=-27.设随机变量(,)X Y 只取如下数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且相应的概率依次为12c 、1c 、14c 、54c ,则c 的值为( )A. 2B. 3C. 4D. 528.设二维随机变量(,)X Y 的联合分布为则{0}P XY ==()A.14B.512C.34D. 129.设随机变量X则有()A. 12,99αβ== B. 21,99αβ== C. 12,33αβ== D. 21,33αβ== 30.设二维随机变量(,)X Y 的概率密度为,02,02(,)0,c x y f x y ≤≤≤≤⎧=⎨⎩其他,则常数c =()A.14B.12C. 2D. 431设二维随机变量(,)X Y 的概率密度为1,02,02(,)40,x y f x y ⎧<<<<⎪=⎨⎪⎩其他,则{01,01}P X Y <<<<=() A.14B.12C.34D. 132.设二维随机变量(,)X Y 的概率密度为4,01,01(,)0,xy x y f x y ≤≤≤≤⎧=⎨⎩其他,则当01y ≤≤时,(,)X Y 关于Y 的边缘概率密度()Y f y =() A.12xB. 2xC.12yD. 2y33.设随机变量X 与Y 独立同分布,它们取-1、1两个值的概率分别为14、34,则{1}P XY =-=()A.116B.316C.14D.3834.设随机变量X 的概率密度为2(3)4()x f x --=,则()E X 、()D X 分别为( )A. -B. 3,2-C. D. 3,2 35.设随机变量X 服从参数为12的指数分布,则()E X =( ) A.14B.12C. 2D. 436.已知随机变量X 的分布函数为21,0()0,x e x F x -⎧->=⎨⎩其他,则X 的均值和方差为()A. ()2,()4E X D X ==B. ()4,()2E X D X ==C. 11(),()42E X D X ==D. 11(),()24E X D X == 37.设随机变量110,3XB ⎛⎫⎪⎝⎭,则()()D X E X =()A.13B.23C. 1D. 10338.设随机变量()21,3X N ,则下列选项中,不成立的是()A. ()1E X =B. ()3D X =C. {1}0P X ==D. {1}0.5P X <=39.设二维随机变量(,)X Y 的分布律为则()E XY =()A. 19-B. 0C.19D.1340.且()1E X =,则常数x =( ) A. 2B. 4C. 6D. 841.设随机变量X 与Y 相互独立,且(0,9)X N ,(0,1)YN ,令2Z X Y =-,则()D Z =() A. 5B. 7C. 11D. 1342.设()E X ,()E Y 、()D X 、()D Y 及(,)Cov X Y ,则()D X Y -=() A. ()()D X D Y +B. ()()D X D Y -C. ()()2(,)D X D Y Cov X Y +-D. ()()2(,)D X D Y Cov X Y -+43.设1(10,)2XB 、(2,10)YN ,又()14E XY =,则X 与Y 的相关系数XY ρ=( )A. -0.8B. -0.16C. 0.16D. 0.844.设随机变量X 服从参数为0.5的指数分布,利用切比雪夫不等式估算概率{}|2|3P X -≥≤() A.16B.13C.49D.1245.设12100,,,x x x 为来自总体2(0,4)XN 的一个样本,以x 表示样本均值,则x()A. (0,16)NB. (0,0.16)NC. (0,0.04)ND. (0,1.6)N46.设总体2(,)XN μσ,其中μ未知,1234,,,x x x x 为来自总体X 的一个样本,则以下关于μ的四个估计:112341ˆ()4x x x x μ=+++,2123111ˆ555x x x μ=++,31212ˆ66x x μ=+,411ˆ7x μ=中,哪一个是无偏估计?()A. 1ˆμB. 2ˆμC. 3ˆμD. 4ˆμ47.在假设检验中,0H 为原假设,则显著性水平α的意义是()A. 00{|}P H H 拒绝为真B. 00{|}P H H 接受为真C. 00{|}P H H 接受不真D. 00{|}P H H 拒绝不真48.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验00:H μμ=,10:H μμ≠,则检验统计量为()A.x B.x C.01()x μ-D.0)x μ-49.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,2211()1ni i s x x n ==--∑,检验假设2200:H σσ=时采用的统计量为()A. (1)x t t n =-B. ()x t t n =C.22220(1)(1)n s n χχσ-=-D.22220(1)()n s n χχσ-=50.设有一组观测数据(,),1,2,,i i x y i n =,其散点图呈线性趋势,若要拟合一元线性回归方程01ˆˆˆy x ββ=+,且01ˆˆˆ,1,2,,i iy x i n ββ=+=,则估计参数0β、1β时应使( )A. 1ˆ()niii y y=-∑最小 B.1ˆ()niii y y=-∑最大 C.21ˆ()niii y y=-∑最小 D.21ˆ()niii y y=-∑最大二、填空题51. 盒中有10个球,分别编有1至10的号码,设A ={取得球的号码是偶数},B ={取得球的号码小于5},则AB =__________.52. 设随机事件A 与B 互不相容,且()0.2P A =,()0.6P A B =,则()P B =__________. 53.设A 、B 为两事件,已知1()3P A =,2()3P A B =,若事件A 与B 相互独立,则()P B =__________.54.设随机事件A 与B 相互独立,且()0.7P A =,()0.6P A B -=,则()P B =__________.55.设事件A 与B 相互独立,且()0.6P A B =,()0.2P A =,则()P B =__________.56.设A 、B 为两个随机事件,且A 与B 相互独立,()0.3P A =,()0.4P B =,则()P AB =__________.57.设事件A 、B 相互独立,且()0.5P A =,()0.2P B =,则()P A B =__________. 58.设事件A 、B 相互独立,且()0.3P A =,()0.4P B =,则()P A B =__________59.设事件A 、B 相互独立,()0.6P AB =,()0.4P A =,则()P B =__________.60.设A 、B 为两个随机事件,若A 发生必然导致B 发生,且()0.6P A =,则()P AB =__________.61.设A 、B 为随机事件,()0.6P A =,(|)0.3P B A =,则()P AB =__________. 62.设A 、B 为随机事件,且()0.8P A =,()0.4P B =,(|)0.25P B A =,则(|)P A B =__________.63.设1(|)6P A B =,1()2P B =,1(|)4P B A =,则()P A =__________. 64.设随机事件A 、B 互不相容,()0.6P A =,()0.8P AB =,则()P B =__________.65.已知()0.7P A =,()0.3P A B -=,则()P AB =__________. 66.设()0.4P A =,()0.3P B =,()0.4P AB =,则()P AB =__________.67.设A 、B 相互独立且都不发生的概率为19,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则()P A =__________.68.设()0.3P A =,(|)0.6P B A =,则()P AB =__________.69.已知事件A 、B 满足:()()P AB P AB =,且()P A p =,则()P B =__________. 70.设事件A 、B 互不相容,已知()0.3P A =,()0.6P B =,则=)/(B A P __________。
自考04183概率论与数理统计历年真题共14套

全国2010年7月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为两事件,已知P (B )=21,P (B A )=32,若事件A ,B 相互独立,则P (A )= ( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂ C .如果B A ⊃,则B A ⊃D .如果A ,B 对立,则B ,A 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X 的概率分布如下表所示:则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X>-1)=l D .P (X<4)=l5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率=⎭⎬⎫⎩⎨⎧+<32b a X P ( )A .0B .31C .32 D .16.设(X ,Y )的概率分布如下表所示,当X 与Y 相互独立时,(p ,q )=( )A .(51,151)B .(151,51)C .(152101,) D .(101152,) 7.设(X ,Y )的联合概率密度为⎩⎨⎧≤≤≤≤+=,,,y ,x ,y x k y ,x f 其他01020)()(则k =( )A .31B.21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为( ) A .1B .2C .3D .49.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( ) A.91 B.31 C.21 D.110.设X 1,X 2,X 3,为总体X 的样本,3216121kX X X T ++=,已知T 是E (x )的无偏估计,则k =( ) A.61B.31C.94 D.21二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
════════════════════════════════════════════════════════════════════
全国2012年4月自考概率论与数理统计(经管类)试题
课程代码:04l83
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A,B 为B 为随机事件,且A B ⊂,则AB 等于( ) A .AB B.B C.A
D.A
2.设A ,B 为随机事件,则()P A B -= ( ) A.()()P A P B - B.()()P A P AB - C.()()()P A P B P AB -+
D.()()()P A P B P AB +-
3.设随机变量X 的概率密度为1
,3<x<6,
()30,f x ⎧⎪=⎨⎪⎩其他,
则{}3<4=P X ≤( )
A .{}1<2P X ≤ B.{}4<5P X ≤ C.{}3<5P X ≤
D.{}2<7P X ≤
4.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为( )
A .e ,0,
()0, 0.x x F x x λλ-⎧>=⎨≤⎩
B.1e ,0,
()0, 0.x x F x x λλ-⎧->=⎨≤⎩
C.1e ,0,
()0, 0.
x x F x x λ-⎧->=⎨≤⎩
D.1e ,0,
()0, 0.
x x F x x λ-⎧+>=⎨≤⎩
5.设随机变量X 的分布函数为F(x),则( )
A .()1F -∞= B.(0)0F = C.()0F +∞=
D.()1F +∞=
════════════════════════════════════════════════════════════════════
6.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为( ) A .[]1
()()2
X Y f x f y + B.()()X Y f x f y + C.
1
()()2
X Y f x f y D.()()X Y f x f y
7.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为( ) A .4和0.6 B.6和0.4 C.8和0.3
D.3和0.8
8.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ=( ) A .1- B.0 C.1
D.2
9.设总体2
~(2,3),X N x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是( ) A.
2
3x - B.
2
9x -
10.设样本x 1,x 2,…,x n 来自正态总体2
(,)N μσ,且2
σ未知.x 为样本均值,s 2为样本方 差.假设检验问题为01:1,:1H H μμ=≠,则采用的检验统计量为( )
二、填空题(本大题共15小题,每小题2分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.在一次读书活动中,某同学从2本科技书和4本文艺书中任选2本,则选中的书都 是科技书的概率为______.
12.设随机事件A 与B 相互独立,且()0.5,()0.3P A P AB ==,则()P B =______. 13.设A ,B 为随机事件,()0.5,()0.4,()0.8P A P B P A B ===,则()P B A =______.
════════════════════════════════════════════════════════════════════
14.设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是______. 15.设随机变量X 的分布律为 ,则P{x ≥1)=______.
16.设二维随机变量(X ,Y )在区域D 上服从均匀分布,其中0202D x y ≤≤≤≤:,.记 (X ,Y)的概率密度为()f x y ,,则(11)f =,______. 17.设二维随机变量(X ,Y )的分布律为
则P {X =Y }=______.
18.设二维随机变量(X ,Y )的分布函数为--(1e )(1-e ),0,0,()0x y x y F x y ⎧->=⎨⎩
>,, 其他,则{}P X Y =≤1,≤1______.
19.设随机变量X 服从参数为3的泊松分布,则()E 3X -=______.
20.设随机变量X 的分布律为 ,a,b 为常数,且E (X )=0,则a b -=______.
21.设随机变量X ~N (1,1),应用切比雪夫不等式估计概率{
}P ()2X E X -≥≤______. 22.设总体X 服从二项分布B (2,0.3),x 为样本均值,则()
E x =______.
23.设总体X ~N (0,1),123x x x ,,为来自总体X 的一个样本,且2
2
2
2
123~()x x x n χ++,则n =______. 24.设总体~(1)X N μ,,12x x ,为来自总体X 的一个样本,估计量1121122x x μ=
+
,2121
233
x x μ=+ ,则方差较小的估计量是______.
25.在假设检验中,犯第一类错误的概率为0.01,则在原假设H 0成立的条件下,接受H 0的概率为______. 三、计算题(本大题共2小题,每小题8分,共16分)
26.设随机变量X 的概率密度为()2,010cx x f x ⎧=⎨⎩
≤≤,
, 其他.
求:(1)常数c ;(2)X 的分布函数()F x ;(3)102P x ⎧⎫<<⎨⎬⎩⎭
.
════════════════════════════════════════════════════════════════════
27.设二维随机变量(X ,Y )的分布律为
求:(1)(X ,Y )关于X 的边缘分布律;(2)X +Y 的分布律.
四、综合题(本大题共2小题,每小题12分,共24分)
28.设随机变量X 与Y 相互独立,且都服从标准正态分布,令,X Y X Y ξη=+=-. 求:(1)(),(),(),()E E D D ξηξη; (2)ξηρ.
29.设总体X 的概率密度(1),01,
(;)0,x x f x θθθ⎧+<<=⎨⎩ 其他,
其中未知参数>1,θ-12,,,n x x x ⋯是来自该总体的一个样
本,求参数θ的矩估计和极大似然估计.
五、应用题(10分)
30.某生产线上的产品按质量情况分为A ,B ,C 三类.检验员定时从该生产线上任取2件产品进行抽检,若发现其中两件全是A 类产品或一件A 类一件B 类产品,就不需要调试设备,否则需要调试.已知该生产线上生产的每件产品为A 类品、B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.求:(1)抽到的两件产品都为B 类品的概率1P ;(2)抽检后设备不需要调试的概率2P .
════════════════════════════════════════════════════════════════════
════════════════════════════════════════════════════════════════════。