一元二次方程解法练习题(四种方法)

合集下载

(完整版)一元二次方程解法及其经典练习题

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题方法一:直接开平方法(依据平方根的定义)平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式一、 用直接开平方法解下列一元二次方程。

1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2. 配方法解一元二次方程的步骤:(1) (2)(3) 4) (5)二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=- 39642=-x x 、4、0542=--x x5、01322=-+x x6、07232=-+x x方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)解:二次项系数化为1,得 ,移项 ,得 ,配方, 得 ,方程左边写成平方式 ,∵a ≠0,∴4a 2 0,有以下三种情况:(1)当b 2-4ac>0时,=1x , =2x(2)当b 2-4ac=0时,==21x x 。

(3)b 2-4ac<0时,方程根的情况为 。

3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。

当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

用适当方法解一元二次方程

用适当方法解一元二次方程

用适当方法解一元二次方程学习目标:结合具体问题选择合理的方法解一元二次方程重点、难点:选择合理的方法解一元二次方程,使运算简便。

理解四种解法的区别与联系。

一、自主学习:练习一:用适当的方法(用直接开方法、因式分解法、 配方法、公式法来解以下方程)(1)x 2-2x-8=0 (2)3x(x -1) = 2 -2x(3)223330x x -+= (4)(x+4)2-9=0练习二:你认为下列方程你用什么方法来解更简便。

(1)12y 2-25=0; (你用__________法) (2)x 2-2x =0 (你用_________法)(3)x (x +1)-5x =0;(你用________法)(4)x 2-6x +1=0; (你用_____法)(5)3x 2=4x -1 (你用__________法)(6)224(2)9(3)x x -=+ (你用______法)二、小组合作:(1)我们已经学习了几种解一元二次方程的方法?(2)请说出每种解法各适合什么类型的一元二次方程?三、解下列方程(1)(2x -1)2-1=0; (2)21(x +3)2=2;(3)3x 2=4x -1; (4)5x 2+(3+1)x =0;(5)(x +1)(x -1)=x 22 (6)(x +2)(x -5)=1;(7) 2(8)5(8)60x x +-++= (8)22x --25x +2=0四、提升题例1、已知(x 2+y 2)(x 2+y 2-1)-6=0,则 x 2+y 2 的值是( )(A )3或-2 (B ) -3或2 (C ) 3 (D )-2变式1、(x 2-x)2-5(x 2-x)+6=0例2、已知a 是方程012=-+x x 的一个根,则aa a ---22112的值 变式1、已知:0832=-+x x ,求代数式21144212+--++-⋅-x x x x x x 的值开方法:如果方程能化成 x 2=p 或 (mx+n)2=p (p ≥0)的形式 ,方可用此法. 配方法:要先把方程化成 x 2+bx=p 的形式之后,才能用此法。

解一元二次方程练习题(配方法公式法)

解一元二次方程练习题(配方法公式法)

解一元二次方程练习题(配方法)配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。

解一元二次方程练习题(公式法)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a≠0),当b 2-4ac≥0时,它的根是__ ___ 当b-4ac<0时,方程___ ______.2.方程ax 2+bx+c=0(a≠0)有两个相等的实数根,则有____ ____ ,•若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________.4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.5.用公式法解方程4y 2=12y+3,得到6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个 7.当x=_____ __时,代数式13x +与2214x x +-的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________.二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9 (9)-3x 2+22x -24=0解一元二次方程练习题(因式分解法)因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

一元二次方程解法练习题(四种方法)

一元二次方程解法练习题(四种方法)

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

1、0142=-x2、2)3(2=-x3、()162812=-x二、 用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=-3、9642=-x x三、 用公式解法解下列方程。

1、0822=--x x2、22314y y -=3、y y 32132=+4、01522=+-x x5、1842-=--x x6、02322=--x x四、 用因式分解法解下列一元二次方程。

1、x x 22=2、 x 2+4x -12=03、0862=+-x x4、03072=--x x五、用适当的方法解下列一元二次方程。

(选用你认为最简单的方法)1、()()513+=-x x x x2、x x 5322=-3、2260x y -+=4、01072=+-x x5、()()623=+-x x6、()()03342=-+-x x x7、()02152=--x 8、0432=-y y10、()()412=-+y y 11、()()1314-=-x x x 12、()025122=-+x13、22244a b ax x -=- 14、3631352=+x x 15、()()213=-+y y16、)0(0)(2≠=++-a b x b a ax 17、03)19(32=--+a x a x18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x21、 22、030222=--x x 23、01752=+-x x24、1852-=-x x 25、3x 2+5(2x+1)=0 26、x x x 22)1)(1(=-+解答题:1、已知一元二次方程0132=-+-m x x .(1)若方程有两个不相等的实数根,求m 的取值范围.(2)若方程有两个相等的实数根,求此时方程的根2、已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值.(1)方程有两个相等的实数根;(2)方程的一个根为0.3、无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由。

一元二次方程式题目

一元二次方程式题目

一元二次方程式题目一元二次方程式:概念和求解一元二次方程式是一类形式为 ax² + bx + c = 0 的方程式,其中 a、b 和 c 是已知常数,且 a 不等于 0。

它代表一个抛物线,其顶点对应于方程式的最小值或最大值。

求解一元二次方程式的三种主要方法:1. 分解因式法:如果二次方程式的因式可以简便地分解成两个一次因式的乘积,则可以使用分解因式法求解。

将方程式分解为 (x - r)(x - s) = 0 的形式,其中 r 和 s 是方程式根。

2. 配方法:对于无法分解因式的二次方程式,可以使用配方法求解。

首先将方程式化简为 ax² + 2bx + c = 0 的形式,然后完成平方以得到 (x + b/a)² = b²/a - c/a 的形式。

最后,求解 x = -b/a ±√(b²/a - c/a)。

3. 使用二次方程式公式:这是求解一元二次方程式的标准公式,适用于任何二次方程式。

公式为 x = (-b ± √(b² - 4ac)) / 2a。

需要注意的是,当判别式 b² - 4ac < 0 时,二次方程式没有实数根。

一元二次方程式中的特殊情况:1. 完全平方 trinomial:如果二次方程式的形式为 (x + m)² + n = 0,则方程式只有一个实数根,即 x = -m ± √n。

2. 不完全平方 trinomial:如果二次方程式的形式为 ax² + bx + c = 0 且 b² - 4ac > 0,则方程式有两个不同的实数根。

3. 相等根:如果二次方程式的形式为 ax² + bx + c = 0 且 b² - 4ac = 0,则方程式有两个相等的实数根。

一元二次方程式的应用:一元二次方程式在各种实际问题和科学模型中有着广泛的应用,包括:求解抛物线问题求解抛射物体的运动轨迹计算几何形状的面积和体积建立物理和化学模型。

经典:一元二次方程解法练习题(四种方法)

经典:一元二次方程解法练习题(四种方法)

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

1、0142x2、2)3(2x 3、162812x 二、用配方法解下列一元二次方程。

1、.0662y y2、xx 42323、9642x x 三、用公式解法解下列方程。

1、0822x x2、22314yy 3、y y 321324、01522x x 5、1842x x 6、02322x x四、用因式分解法解下列一元二次方程。

1、xx 222、x 2+4x-12=0 3、0862x x 4、03072x x 五、用适当的方法解下列一元二次方程。

(选用你认为最简单的方法) 1、513x x x x 2、x x 5322 3、2260x y 4、01072x x 5、623x x 6、03342x x x7、02152x 8、0432y y 10、412y y 11、1314x x x 12、025122x 13、22244a b ax x 14、3631352x x 15、213y y 16、)0(0)(2a b x b a ax 17、03)19(32a x a x 18、012x x 19 、02932x x 20、02222a b ax x21、22、030222x x 23、01752x x 24、1852x x 25、3x 2+5(2x+1)=0 26、x x x 22)1)(1(解答题:1、已知一元二次方程0132m x x .(1)若方程有两个不相等的实数根,求m 的取值范围.(2)若方程有两个相等的实数根,求此时方程的根2、已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值.(1)方程有两个相等的实数根;(2)方程的一个根为0.3、无论m 为何值时,方程04222m mx x 总有两个不相等的实数根吗?给出答案并说明理由。

(完整版)解一元二次方程练习题(配方法)(最新整理)

(完整版)解一元二次方程练习题(配方法)(最新整理)

(7) 5x 2 -3x+2 =0
(8) 7x 2 -4x-3 =0
(9) -x 2 -x+12 =0
(10) x 2 -6x+9 =0
韦达定理:对于一元二次方程 ax2 bx c 0(a 0) ,如果方程有两个实数根 x1, x2 ,那么
x1
x2
b a
,
x1x2
c a
说明:(1)定理成立的条件 0
2.已知 x1,x2 是方程 2x2-7x+4=0 的两根,则 x1+x2=
,x1·x2=

(x1-x2)2=
1
3.已知方程 2x2-3x+k=0 的两根之差为 2 ,则 k=
;
2
4.若方程 x2+(a2-2)x-3=0 的两根是 1 和-3,则 a=
;
5.若关于 x 的方程 x2+2(m-1)x+4m2=0 有两个实数根,且这两个根互为倒数,那么 m 的值为
(2)注意公式重
x1
x2
b a
的负号与
b
的符号的区别
根系关系的三大用处
(1)计算对称式的值
例 若 x1, x2 是方程 x2 2x 2007 0 的两个根,试求下列各式的值:
(1) x12 x22 ;
(2) 1 1 ; x1 x2
(3) (x1 5)(x2 5) ;
(4) | x1 x2 | .
25、 5x2 7x 1 0
26、 5x2 8x 1
27、 x2 2mx 3nx 3m2 mn 2n2 0
28、3x2+5(2x+1)=0
29、 (x 1)(x 1) 2 2x
30、 3x2 4x 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程解法练习题 姓名
一、用直接开平方法解下列一元二次方程。

1、0142=-x
2、2)3(2=-x
3、()162812
=-x
4..25)1(412=+x
5.(2x +1)2=(x -1)2. 6.(3x -2)(3x +2)=8. 7.(5-2x )2=9(x +3)2.
8..063)4(22
=--x 9.(x -m )2=n .(n 为正数)
二、 用配方法解下列一元二次方程。

1、.0662=--y y
2、x x 4232=-
3、9642=-x x
4、0542=--x x
5、01322=-+x x
6、07232=-+x x
三、 用公式解法解下列方程。

1、0822=--x x
2、22314y y -
= 3、y y 32132=+
4、01522=+-x x
5、1842-=--x x
6、02322=--x x
7.x 2+4x -3=0. 8..03232=--x x
四、 用因式分解法解下列一元二次方程。

1、x x 22=
2、0)32()1(22=--+x x
3、0862=+-x x
4、22)2(25)3(4-=+x x
5、0)21()21(2=--+x x
6、0)23()32(2=-+-x x
五、用适当的方法解下列一元二次方程。

(选用你认为最简单的方法)
1、()()513+=-x x x x
2、x x 5322=-
3、2
260x y -+=
4、01072=+-x x
5、()()623=+-x x
6、()()03342
=-+-x x x
7、()02152
=--x 8、0432=-y y 9、03072=--x x
10、()()412=-+y y 11、()()1314-=-x x x 12、()025122
=-+x
13、22244a b ax x -=- 14、36
31352=+x x 15、()()213=-+y y
16、)0(0)(2≠=++-a b x b a ax 17、03)19(32
=--+a x a x
18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x
21、 x 2+4x -12=0 22、030222=--x x 23、01752=+-x x
24、1852-=-x x 25、3x 2+5(2x+1)=0 26、x x x 22)1)(1(=-+
解答题:
1、已知一元二次方程0132=-+-m x x .
(1)若方程有两个不相等的实数根,求m 的取值范围.
(2)若方程有两个相等的实数根,求此时方程的根
2、已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值.
(1)方程有两个相等的实数根;(2)方程的一个根为0.
3、无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由
4.已知方程mx2+mx+5=m有相等的两实根,求方程的解.
5.求证:不论k取任何值,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.
6.如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,求a的最小整数值.
7.已知方程x2+2x-m+1=0没有实根,求证:方程x2+mx=1-2m一定有两个不相等的实根.8.已知关于x的一元二次方程mx2-(m2+2)x+2m=0.
(1)求证:当m 取非零实数时,此方程有两个实数根;
(2)若此方程有两个整数根,求m 的值.
9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.
10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.
11.求证:不论m 取任何实数,方程02
)1(2=+
+-m x m x 都有两个不相等的实根.
根与系数关系
(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.
(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.
(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.
(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值:
①;112
1x x + ②;2221x x + ③|x 1-x 2|;。

相关文档
最新文档