直接开平方法解一元二次方程

合集下载

九年级上册数学21.2 解一元二次方程 直接开平方法

九年级上册数学21.2 解一元二次方程 直接开平方法

21.2.1 配方法 第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程.3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法 【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3.方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则ba=________.解析:∵ax 2=b ,∴x =±ba,∴方程的两个根互为相反数,∴m +1+2m -4=0,解得m =1,∴一元二次方程ax 2=b (ab >0)的两个根分别是2与-2,∴b a =2,∴b a=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,则a =________.解析:∵一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,∴a +2≠0且a 2-4=0,∴a=2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm,根据题意得x2=112+13×8,即x2=225,解得x =±15.因为边长为正,所以x=-15不合题意,舍去,所以只取x=15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.。

22.2.1直接开平方法解一元二次方程

22.2.1直接开平方法解一元二次方程

5
(3)4 x (4) x
2
1
2 2 20x ) 10 ( x 10
梳理
像上题,通过配成完全平方式的 形式解出一元二次方程的根的方法,
叫做配方法。
小技巧: 配方时, 如果二次项系数为1,方 程左右两边应同时加上一次项系数的一 半的平方.如果二次项系数不是1,应先 化为1,再配方
1.直接开平方法 用直接开平方法解一元二次方程,先把 方程左边变成x的平方(或关于x的一次式的平 方),右边变成一个非负常数的形式,再开平方。
化成
(mx+n)2=非负常数
(3)(x 5) 16
2
然后两边直接开平方
( 4)(x 1) 3 0
2
(5) y 4 x 4 3
2
1.直接开平方法
用直接开平方法解一元二次方程, 先把方程左边变成x的平方(或关于x的一 次式的平方),右边变成一个非负常数的形 式,再开平方。
如 果 方 程 能 化 成x p 或
2
(mx n) p( p )的 形 式 , 那 么 ≥ 0
2
可 得x p或mx n p .
2 2 2
a=-4,b=3,c=-5
2
a=1,b=0,c=-1
2 2
(4) x 3 0; (5)2 x 3x 2 x( x 1) 1; (6) y 0
a=1,b=0,c=3 a=1,b=0,c=0
解一元二次方程 化成 X2=非负常数 然后两边直接开平方
(1)x2-25=0
的一次式)的平方,右边变成非负常数的
形式就可以直接开平方求解了。
方程x2+6x=2如何解? 1、把下列各式的左边化成完全平方式

02 解一元二次方程(1)—直接开平方法、配方法

02 解一元二次方程(1)—直接开平方法、配方法

(4)4x2 4x 1 9
课堂练习
1.用直接开平方法解下列方程. (5)(2 x 1)2 ( x 3)2 (6)20( x 1)2 5( x 3)2 0
总结
对于 (x + n)2 = p 形式的一元二次方程: 当 p > 0 时,方程有两个不等的实数根
x1 n p,x2 n p 当 p = 0 时,方程有两个相等的实数根
课堂练习
3.用配方法解下列方程.
(1)x2– 4x + 4 = 0
(2)x2 + 12x = –9
(3)– x2 – 6x – 10 = 0
课堂练习
3.用配方法解下列方程.
(4)– 2x2 + 12x = 8
(5)4y2 – 3y – 1= – y –2
课堂练习
3.用配方法解下列方程.
(6)– 2x2 + x +1 = 0
YoYo老师|初中数学
一、直接开平方法
把一元二次方程化为形如“x2 = a (a≥0)”或 “(x + n)2 = p (p≥0)”的形式,然后根据平方根的 意义求解.
课堂练习
1.用直接开平方法解下列方程.
(1)5x2 20 0
(2)( x 5)2 0
(3)9( x 1)2 4 0
(7)(3y – 2)(y + 1)= – 项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,转化为直接开平方法.
Yo Yo 老 师 | 初 中 数 学
x1 = x2 = –n 当 p < 0 时,方程无实数根.
二、配方法
通过配成完全平方形式来解一元二次方程的方法, 叫做配方法.

1.2.1 一元二次方程的解法-直接开平方法(解析版)

1.2.1 一元二次方程的解法-直接开平方法(解析版)

1.2.1 一元二次方程的解法-直接开平方法考点一、直接开方法解一元二次方程: (1)直接开方法解一元二次方程: 利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法. (2)直接开平方法的理论依据: 平方根的定义. (3)能用直接开平方法解一元二次方程的类型有两类: ①形如关于x 的一元二次方程,可直接开平方求解. 若,则;表示为,有两个不等实数根; 若,则x=O ;表示为,有两个相等的实数根; 若,则方程无实数根. ②形如关于x 的一元二次方程,可直接开平方求解,两根是 .要点:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为( )A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==【答案】B 【解析】【分析】先移项,再通过直接开平方法进行解方程即可.解:2250x -=,移项得:2=25x ,开平方得:15=x ,25x =﹣,故选B .本题主要考查用开平方法解一元二次方程,解题关键在于熟练掌握开平方方法.2.若()222a =-,则a 是( )A .-2B .2C .-2或2D .4【答案】C 【解析】【分析】先计算2(2)-,再用直接开平方法解一元二次方程即可.()2224a =-=Q 2a \=±故选C 【点睛】本题考查了有理数的乘方,直接开平方法解一元二次方程,熟练直接开平方法是解题的关键.3.方程x 2- =0的根为_______.【答案】x=± 【解析】【分析】,得出x 2=8,利用直接开平方法即可求解.解: x 2- =0,∴x 2=8,∴x =±故答案为:x =±.【点睛】本题考查直接开平方法解一元二次方程及算术平方根,解题关键是熟练掌握直接开平方法的解题步骤.4.有关方程290x +=的解说法正确的是( )A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根【答案】D【分析】利用直接开平方法求解即可.∵290x +=,∴290x =-<,∴该方程无实数解.故选:D 【点睛】考查了直接开平方法解一元二次方程.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.【答案】1【解析】【分析】利用直接开平方法得到x =,得到方程的两个根互为相反数,所以4380m m -+-=,解得3m =,则方程的两个根分别是1与1-1=,然后两边平方得到b a 的值.解:∵()20ax b ab =>,∴2b x a=,∴x =,∴方程的两个根互为相反数,∵方程2ax b =的两个根分别是4m -与38m -,∴4380m m -+-=,解得3m =,∴4341m -=-=-,383381m -=´-=,∴一元二次方程ax 2=b 的两个根分别是1与1-,1=,∴1ba=.故答案为:1.【点睛】本题考查了解一元二次方程﹣直接开平方法:形如2x p =或()()20nx m p p +=³的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成2x p =的形式,那么可得x =()()20nx m p p +=³的形式,那么nx m +=6.解方程:(1)23270x -=; (2)2(5)360x --=;(3)21(2)62x -=; (4)()()4490+--=y y .【答案】(1)123,3x x ==-;(2)1211,1x x ==-;(3)122,2x x ==-;(4)125,5y y ==-.【解析】【分析】(1)先移项,再两边同除以3,然后利用直接开方法解方程即可得;(2)先移项,再利用直接开方法解方程即可得;(3)先两边同乘以2,再利用直接开方法解方程即可得;(4)先利用平方差公式去括号,再移项合并同类项,然后利用直接开方法解方程即可得.(1)23270x -=,2327x =,29x =,3x =±,即123,3x x ==-;(2)2(5)360x --=,2(5)36x -=,56x -=或56x -=-,11x =或1x =-,即1211,1x x ==-;(3)21(2)62x -=,2(2)12x -=,2x -=2x -=-,2x =或2x =-+,即122,2x x ==-;(4)()()4490+--=y y ,21690y --=,225y =,5y =±,即125,5y y ==-.【点睛】本题考查了利用直接开方法解一元二次方程,一元二次方程的主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为( )A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =23【答案】D 【解析】【分析】直接开平方与开立方,再解一次方程即可.解:由4(3x +1)2﹣1=0得(3x +1)2=14,所以3x +1=±12,解得x =﹣16或x =﹣12,由3274y ﹣2=0得y 3=827,所以y =23,所以x =﹣16或﹣12,y =23.故选:D .【点睛】本题考查开平方法解一元二次方程与立方根法解三次方程,掌握平方根与立方根性质与区别是解题关键.82x = )A .120,x x ==B .120,x x ==C .12x x ==D .12x x ==【答案】A 【解析】【分析】利用直接开方法解一元二次方程即可得.2x =(23x =,利用直接开方法得:x解得120,x x ==故选:A .【点睛】本题考查了利用直接开方法解一元二次方程,熟练掌握直接开方法是解题关键.题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是( )A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--【答案】C 【解析】【分析】方程整理后,判断即可得到结果230x =-移项得23x =,可用直接开平方法求解;2(10)4x -=-移项得2(14)x =-,可用直接开平方法求解;22()(12)4x ==--,可用直接开平方法求解.故选C.【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键10.方程y 2=-a 有实数根的条件是( )A .a ≤0B .a ≥0C .a >0D .a 为任何实数【答案】A 【解析】【分析】根据平方的非负性可以得出﹣a ≥0,再进行整理即可.解:∵方程y 2=﹣a 有实数根,∴﹣a ≥0(平方具有非负性),∴a ≤0;故选:A .【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a ≥0.11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是( )A .①②③B .②③C .②③④D .①②③④【答案】C 【解析】【分析】利用因式分解法与直接开平方法判断即可得到结果.①x 2-2x=0,因式分解法;②9x 2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④21(x 3)273+=,直接开平方法,则能用直接开平方法做的是②③④.故选:C.【点睛】考查直接开方法解一元二次方程,掌握一元二次方程的几种解法是解题的关键.12.方程 x 2=(x ﹣1)0 的解为( )A .x=-1B .x=1C .x=±1D .x=0【答案】A 【解析】【分析】根据(x-1)0有意义,可得x-1≠0,求出x≠1,通过解方程x 2=1,确定x 的值即可.∵(x-1)0有意义,∴x-1≠0,即x≠1,∵x 2=(x ﹣1)0∴x 2=1,即x=±1∴x=-1.故选A.【点睛】本题考查了解一元二次方程—直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解.同时还考查了零次幂.13.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是( ).A .0m >B .7m …C .7m >D .任意实数【答案】B 【解析】【分析】根据70-³m 时方程有实数解,可求出m 的取值范围.由题意可知70-³m 时方程有实数解,解不等式得7m …,故选B .【点睛】形如()2+m =a x 的一元二次方程当a≥0时方程有实数解.14.已知方程()200ax c a +=¹有实数根,则a 与c 的关系是( ).A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍【答案】B 【解析】【分析】将原方程化为2a=c-x 的形式,根据2x 0³可判断出正确答案.原方程可化为2a=c -x ,∵2x 0³,∴c0a -³时方程才有实数解.当c=0时,20=x 有实数根;当a 、c 异号时,c0a -³,方程有实数解.故选B .【点睛】形如2=a x 的一元二次方程当a≥0时方程有实数解.题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C 【解析】【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.16.方程224(21)25(1)0x x --+=的解为( )A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=【答案】B 【解析】【分析】移项后利用直接开平方法解答即可.解:移项,得224(21)25(1)x x -=+,两边直接开平方,得2(21)5(1)x x -=±+,即2(21)5(1)x x -=+或2(21)5(1)x x -=-+,解得:17x =-,213x =-.故选:B .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握直接开平方法是解题的关键.17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.【答案】(1)122,2y y =-=--;(2)121,3x x ==.【解析】【分析】(1)原方程先整理,再利用直接开平方法解答即可;(2)利用直接开平方法求解即可.解:(1)21(2)602y +-=,整理,得2(2)12y +=.∴2y +=±即122,2y y ==-;(2)22(4)(52)x x -=-Q ,4(52)x x \-=±-,∴452x x -=-或()452x x -=--,解得:121,3x x ==.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握直接开平方法是解题的关键.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根( )A .都相等B .都不相等C .有一个根相等D .无法确定【答案】C【解析】【分析】运用直接开平方法分别求出两个方程的解,然后再进行判断即可得解.2251440t -=,214425t =,∴125t =±;249(1)25x -=,715x -=±,∴1125x =,225x =-;∴两个方程有一个相等的根125.故选C.【点睛】此题主要考查了用直接开平方法解一元二次方程和确定方程的解,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2 =b(b>0)的根是( )A .-aB .C .当b≥0时,D .当a≥0时,【答案】A【解析】【分析】由b>0,可两边直接开平方,再移项即可得.∵b>0,∴两边直接开平方,得:∴-a ,故选A【点睛】此题考查解一元二次方程-直接开平方法,解题关键在于掌握运算法则20.形如2()(0)ax b p a +=¹的方程,下列说法错误的是( )A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =【答案】D【解析】【分析】根据应用直接开平方法求解的条件逐项判断即得答案.解:A 、当0p >时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B 、当0p =时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C 、当0p <时,原方程无实数根,故本选项说法正确,不符合题意;D 、当0p ³时,原方程的根为x =故选:D .【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】移项得416x ==24,然后两边同时开四次方得x-=±2,由此即可解决问题.解:∵4160x -=∴416x ==24,∴x=±2,∴方程4160x -=的根是x=±2.故选B.【点睛】本题考查高次方程的解法,解题的关键是降次,这里通过开四次方把四次降为了一次.题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为( )A .7B .-3C .7或-3D .21【答案】A【解析】【分析】把()222225a b +-=两边开方得到a 2+b 2-2=±5,然后根据非负数的性质确定22a b +的值.解:∵()222225a b +-=,∴a 2+b 2-2=±5,∴a 2+b 2=7或a 2+b 2=-3(舍去),即a 2+b 2的值为7.故选A .【点睛】本题考查解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=×=-=-==-=,从而对于任意正整数n ,我们可以得到()41444n n n i i i i i +=×=×=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++L 的值为________.【答案】1-【解析】【分析】根据()41444nn n i i i i i +=×=×=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=×=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++L =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.一、单选题1.方程()2690x +-=的两个根是( )A .13x =,29x =B .13x =-,29x =C .13x =,29x =-D .13x =-,29x =-【答案】D【分析】根据直接开平方法求解即可.【解析】解:()2690x +-=,()269x +=,63x \+=±,123,9x x \=-=-,故选:D .A .0k ³B .0h ³C .0hk >D .0k <【答案】A 【分析】根据平方的非负性即可求解.【解析】解:()20x h +³Q ,0k \³.故选:A .【点睛】本题考查了直接开平方法解一元二次方程,理解直接开平方法的条件是解题的关键.5.已知()22230aa x x ---+=是关于x 的一元二次方程,那么a 的值为( )A .2±B .2C .2-D .以上选项都不对【答案】C【分析】只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程,根据定义解答即可.【解析】解:∵()22230aa x x ---+=是关于x 的一元二次方程,∴222,20a a -=-¹,解得2a =-,故选:C .【点睛】此题考查了一元二次方程的定义,解一元二次方程,熟记定义是解题的关键.6.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【解析】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:【解析】∵根据题意可得:420420a b c a b c ++=ìí-+=î①②,①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200ax bx c a ++=¹可得,∵240ax bx a +-=,240ax a -=24ax a=∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.二、填空题11.方程240x -=的根是______.【答案】12x =-,22x =【分析】根据直接开平方法求解即可.【解析】解:240x -=,24x =,∴2x =±,即12x =-,22x =.【点睛】本题考查了解一元二次方程,掌握用直接开平方法解一元二次方程是解题的关键.12.方程()219x +=的根是_____.【答案】1224x x ==-,【分析】两边开方,然后解关于x 的一元一次方程.【解析】解:由原方程,得13x +=±.=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.两边开平方,得63x +=第二步所以3x =- 第三步“小华的解答从第_________步开始出错,请写出正确的解答过程.【答案】(1)-1;(2)二 ;正确的解答过程,见解析【分析】(1)利用平方差公式展开,合并同类项即可;(2)根据直接开平方法求解即可.【解析】(1)解:2(1)(1)+--m m m 221m m =--=-1;(2)解:第二步开始出现错误;正确解答过程:移项,得(x +6)2=9,两边开平方,得x +6=3或x +6=-3,解得x 1=-3,x 2=-9,故答案为:二.【点睛】本题主要考查了整式的混合运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.嘉嘉和琪琪用图中的A 、B 、C 、D 四张带有运算的卡片,做一个“我说你算”的数学游戏,规则如下:嘉嘉说一个数,并对这个数按这四张带有运算的卡片排列出一个运算顺序,然后琪琪根据这个运算顺序列式计算,并说出计算结果.例如,嘉嘉说2,对2按A B C D ®®®的顺序运算,则琪琪列式计算得:222[(23)(3)2](152)(17)289+´--=--=-=.(1)嘉嘉说-2,对-2按C A D B ®®®的顺序运算,请列式并计算结果;。

直接开平方法解一元二次方程

直接开平方法解一元二次方程

1 2 (2) ( y 3) 16 6 1 2 (3) (3 y 1) 8 0 2 2 2 (4)( x 1) ( 2 2)
?
用直接开平方法来解的方程有什么 2 特征? A a a 0
2
?
(2) x 1800
2
解:方程x 16
2
解:方程x 1800
2
意味着x是16的平方根 意味着x是1800的平方根 x 16 x 1800
即 x 4
即 x 解方程的方法叫做直接开方法。
?
1、形如x a方程用直接开平方法
2
2
2
2
4 ( x ___) (2) x 8 x _____ 4 5 5 2 2 ) ( y ___) (3) y 5 y ( _____ 2 2 2 2 1 (1) 1 (4) y y ____ ( y ___) 4 4 2
2
2
探索:解方程 (1) x 16
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以 2 化为 ax 2 bx 的形式 , 我们把 ax bx c 0 c 0 (a,b,c为常数,a≠0)称为一元二次方程的一般形式。
二次项系 数
一次项系数
a≠0
2 ax +bx+c=0
一次项 常数项
二次项
1.如果
2
2
5 方程两边同除以3得: ( x 2) 3 5 直接开平方得: x 2 3 15 15 x 2 或x 2 3 3
15 15 x1 2 , x2 2 3 3
?
练习 例题讲解 用直接开平方法解下列方程

《23.21 一元二次方程的解法——直接开平方法》

《23.21 一元二次方程的解法——直接开平方法》
23.2一元二次方程解法 23.2.1用直接开平方 法解一元二次方程
1.会用直接开平方法解形如 ( x a) b(b 0) 的方程. 2.了解转化、降次思想在解方程中的运用。 合理选择直接开平方法解法较熟练地解一元 二次方程。
2
1.如果
x a(a 0) ,则 x 就叫做a 的
(χ+1)2=4
解: (1)(χ+1)2=4
∴ χ+1=±2 ∴ χ1=1,χ2=-3.
12(2 x) 9 0
2
解:
(2)移项,得
系数化为1,得:
12(2-χ)2=9 9 3 2 (2 x) 12 4
直接开平方,得
3 3 2 x 4 2
3 x 2 2
3 3 即:x1 2 ,x2 2 2 2
2
平方根

2 x 2.如果 a(a 0)
x, 则 =
a
2 x 3.如果 64
x,则 =
8

(1). χ2=4
(2). χ2-1=0
对于方程(1),可以这样想:
∵ ∴ 即: χ2=4 χ= 4 χ=±2 根据平方根的定义可知:χ是4的(平方根 ).
这时,我们常用χ1、χ2来表示未知数为χ的一元 二次方程的两个根。 ∴ 方程 χ2=4的两个根为 χ1=2,χ2=-2.
a b
小结中的两类方程为什么要加条件:a≥0,b≥0呢?
课本第37页习题22.2第1题、第2题。
ቤተ መጻሕፍቲ ባይዱ
——整体思想的运用
32x 5 12 22x 5 4
2 2
3(2x 5) 2(2x 5) 4 12
2 2

直接开平方法解一元二次方程

直接开平方法解一元二次方程

直接开平方法解一元二次方程直接开平方法解形如p x =2(p ≥0)和()c b ax =+2(c ≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤:(1)把一元二次方程化为p x =2(p ≥0)或()c b ax =+2(c ≥0)的形式; (2)直接开平方,把方程转化为两个一元一次方程;(3)分别解这两个一元一次方程,得到一元二次方程的两个解.注意:(1)直接开平方法是最直接的解一元二次方程的方法,并不适合所有的一元二次方程的求解;(2)对于一元二次方程p x =2,当0<p 时,方程无解;(3)对于一元二次方程()c b ax =+2: ①当0>c 时,一元二次方程有两个不相等的实数根;②当0=c 时,一元二次方程有两个相等的实数根;③当0<c 时,一元二次方程没有实数根.例1. 解下列方程:(1)022=-x ; (2)081162=-x .分析:观察到两个方程的特点,都可以化为p x =2(p ≥0)的形式,所有选择用直接开平方法求解.当一元二次方程缺少一次项时,考虑使用直接开平方法求解.解:(1)22=x2±=x ∴2,221-==x x ;(2)1681,811622==x x 491681±=±=x ∴49,4921-==x x .(1)()0932=--x ; (2)()092122=--x . 分析:观察到两个方程的特点,都可以化为()c b ax =+2(c ≥0)的形式,所有选择用直接开平方法求解.解:(1)()932=-x33±=-x∴33=-x 或33-=-x∴0,621==x x ;(2)()92122=-x()4312922==-x ∴23432±=±=-x ∴232=-x 或232-=-x∴232,23221-=+=x x .习题1. 下列方程中,不能用直接开平方法求解的是【 】 (A )032=-x (B )()0412=--x(C )022=+x (D )()()2221-=+x习题2. 若()41222=-+y x ,则=+22y x _________.习题3. 若b a ,为方程()1142=+-x x 的两根,且b a >,则=b a【 】 (A )5- (B )4- (C )1 (D )3习题4. 解下列方程:(1)()16822=-x ; (2)()642392=-x .(1)()09142=--x ; (2)4312=⎪⎭⎫ ⎝⎛-+x x .习题6. 对于实数q p ,,我们用符号{}q p ,min 表示q p ,两数中较小的数,如{}12,1min =.(1){}=--3,2min _________;(2)若(){}1,1min 22=-x x ,则=x _________. 习题7. 已知直角三角形的两边长y x ,满足091622=-+-y x ,求这个直角三角形第三边的长.(注意分类讨论第三边的长)。

一元二次方程的解法(直接开平方、因式分解)

一元二次方程的解法(直接开平方、因式分解)
解法的比较 与选择
直接开平方与因式分解的比较
直接开平方
适用于方程有重根或可以通过移项整理成平方项系数为正数的情况。计算简单, 但适用范围有限。
因式分解
适用于所有一元二次方程,但需要一定的技巧和经验,对于复杂的一元二次方 程可能较难操作。
不同解法的适用范围
直接开平方法
引力问题
在引力问题中,一元二次方程可以 用来描述万有引力定律,如求解天 体之间的引力等。
在实际生活中的应用
经济问题
一元二次方程在经济中有着广泛 的应用,例如求解最优价格、最
大利润等。
金融问题
在金融领域中,一元二次方程可 以用来描述复利、保险等问题。
交通问题
在交通领域中,一元二次方程可 以用来描述车辆行驶的轨迹、速
避免错误
在因式分解过程中,需要 注意符号和运算的准确性, 避免出现错误。
检验
因式分解后需要进行检验, 确保分解结果是正确的。
03 一元二次方程解法的应用
在数学中的应用
代数问题
一元二次方程是代数中常见的基本方 程,通过解一元二次方程可以解决代 数问题,如求解未知数、证明不等式 等。
几何问题
函数与导数
在配方过程中,要保 证等式的平衡和等价 变换。
开平方时要注意正负 号的取舍,根据方程 的系数和判别式的符 号确定。
02 一元二次方程的因式分解
定义与性质
定义
因式分解是将一个多项式表示为 几个整式的积的形式。
性质
因式分解是整式乘法的逆运算, 即如果多项式等于几个整式的积 ,则这些整式是多项式的因式。
因式分解的步骤
01
02
03
提取公因式
将多项式中的公因子提取 出来,形成几个整式的积。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题
即x1=3,x2=-1
典型例题 例2解下列方程:
⑶ 12(3-2x)2-3 = 0 分析:第3小题先将-3移到方程的右边,再 两边都除以12,再同第1小题一样地去解,然后 两边都除以-2即可。 解:(3)移项,得12(3-2x)2=3 两边都除以12,得(3-2x)2=0.25 ∵3-2x是0.25的平方根 ∴3-2x=±0.5 即3-2x=0.5,3-2x=-0.5
解下列方程:
2
9 0;
2
2t
2
45 0
2
316x
49 0;
42x 3 5;
5x 5 36 0; 66x 12 25;
2
注意:解方程时, 应先把方程变形 为:
p 0; 或 m x n 2 p p 0。
什么叫直接开平方法? 像解x2=4,x2-2=0这样,这种解一元二次 方程的方法叫做直接开平方法。 说明:运用“直接开平方法”解一元二次方程 的过程,就是把方程化为形如x2=a(a≥0)或 (x+h)2=k(k≥0)的形式,然后再根据平方 根的意义求解
例1解下列方程 (1)x2-1.21=0
典型例题
典型例题
分析:第1小题中只要将(x+1)看成是一个 整体,就可以运用直接开平方法求解; 解:(1)∵x+1是2的平方根
∴x+1= 即x1=-1+
2
2 ,x2=-1-
2
例2解下列方程: ⑵ ( x - 1) 2 - 4 = 0 ⑶ 12(3-2x)2-3 = 0 分析:第2小题先将-4移到方程的右边,再同 第1小题一样地解; 解:(2)移项,得(x-1)2=4 ∵x-1是4的平方根 ∴x-1=±2
1
( 解: (
3 y+1) 1
2-5=0
3
y+1)2=5 (×)
1 1 3
y+1= 5 3 y= 5 -1 y= 3 .
5
-1
(×)
3、实力比拼
b≤0
C
3
8
4.实际应用
5 ∴ x 1= , x = 2 4
7 4
典型例题
例3.解方程(2x-1)2=(x-2)2 分析:如果把2x-1看成是(x-2)2的平方 根,同样可以用直接开平方法求解 解:2x-1=
( x 2)
2
即 2x-1=±(x-2) ∴2x-1=x-2或2x-1=-x+2
即x1=-1,x2=1
1x
1.什么叫做平方根? 如果一个数的平方等于a,那么这个数就叫 做a的平方根.
若x2=a,则x=
2.平方根有哪些性质? (1)一个正数有两个平方根,这两个平方根 互为相反数; (2)零的平方根是零; (3)负数没有平方根.
4 ±3 ,25 如:9的平方根是______
a 即x= a 或x= a
(2)4x2-1=0
解(1)移项,得x2=1.21 ∵x是1.21的平方根 ∴x=±1.1 即 x1=1.1,x2=-1.1 (2)移项,得4x2=1 1 2 两边都除以4,得x = 1 4 ∵x是 4 的平方根 ∴x=
1 即x1= ,x2= 2
1 2
1 2
例2解下列方程: ⑴ ( x + 1) 2 = 2 ⑵ ( x - 1) 2 - 4 = 0 ⑶ 12(3-2x)2-3 = 0
一元二次方程的解法(一)
(一)激情引趣: 为了打造花园式学校,睢宁县桃园中学原打
算建边长为15米正方形绿地,后经校领导研究决
定需扩大绿地面积,预计扩大后的正方形绿地面
积将达到400平方米,请问边长增加了多少米?
你能通过一元二次方程解决这个问题吗? 解:设这块绿地的边长增加了x米。 根据题意得: (15+x)2=400
x2 p
1、小试身手 :
判断下列一元二次方程能否用直接开平方法求解并 说明理由.
1) x2=2 2) p2 - 49=0
(√
)
(√ )
3) 6 x2=3
4) (5x+9)2+16=0
(√ )
(× ) (√ )

5) 121-(y+3) 2 =0
D D
2、明察秋毫。
下面是李昆同学解答的一道一元二次方程的 具体过程,你认为他解的对吗?如果有错,指出 具体位置并帮他改正。
2 的平方根是______ 5
尝试
如何解方程(1)x2=4,(2)x2-2=0呢?
解(1)∵x是4的平方根 即此一元二次方程的解(或根)为: x1=2,x2 =-2
∴x=±2
(2)移项,得x2=2 ∵ x就是2的平方根 ∴x= 2
即此一元二次方程的根为: x1=
2
, x 2=
2
概括总结
相关文档
最新文档