浅谈二次函数在高中数学中的分析与应用人教版

合集下载

浅谈二次函数在高中阶段的应用

浅谈二次函数在高中阶段的应用

浅谈二次函数在高中阶段的应用
二次函数是一种常见的函数,在高中阶段的应用非常广泛。

一、二次函数在几何图形中的应用
二次函数的图像一般是一个开口向上的抛物线,它可以用来描述许多几何图形,如圆,椭圆,双曲线等。

例如,圆的标准方程是$x^2+y^2=r^2$,它可以写成$y=\sqrt{r^2-x^2}$,也就是一个二次函数。

二、二次函数在非线性方程求解中的应用
二次函数可以用来求解非线性方程,如$x^2+2x+1=0$,可以求出$x=-1$。

此外,二次函数也可以用来求解一些经典的数学问题,如抛物线的顶点坐标,椭圆的长短轴长度,双曲线的焦点坐标等。

三、二次函数在函数变换中的应用
二次函数可以用来描述函数的变换,如平移、缩放、旋转等,可以用来求解函数的最大值、最小值等。

例如,函数
$y=x^2+2x+1$的最小值可以通过缩放和旋转来求解,最小值为$-1$。

浅谈二次函数在高中数学中的应用

浅谈二次函数在高中数学中的应用

习多是 机 械 的 , 难从 本质 上 加 以理 解 。 进入 高 中以后 , 其是 高 三 复 习 阶段 , 对 他 们 的 基 本 概 念 和基 本性 质 ( 象 以及 单 调 很 尤 要 图
} 奇偶性、 生、 有界性 ) 灵活应用, 对二次函数还 需再深入 学习。
【 关键词 】 次函数 ; 二 应用
S in e& Te h oo yVi o ce c c n lg s n i
21 02年 0 5月第 l 3期
科 技 视 界
教学技术
浅谈二次函数在高中数学中的应用
王 刚
( 定西 市安 定 区西巩驿 中学
【 摘
甘肃
定西
7 32 ) 4 0 1
要】 在初 中教材 中, 对二次 函数作 了较详 细的研 究, 由于初 中学生基础薄弱 , 又受其接 受能力的限制 , 这部份 内容的 学

其 图象。 类型 Ⅳ: 设 ̄x=22 一 在 区间It1 I的最小值是 g1 )x- x 1 t+ ]- , (。 )
求 :(并画出 y gt g) c = (的图象 ) 解 :x==2一 =x 1 - , x l J )x- x 1(一 ) 2 在 = 时取最小值 一 ( 2 2
当 1 t+ 】 0 ≤1 g)一 ,l E[t 即 ≤t ,(= 2 t 当 t1时 .(=(= ̄2一 > g) t t t1 tf ) - 当 tO时 ,( t1 t 2 < g) + ) z t =-
类型 Ⅲ: 画出下列函数的图象 , 并通过图象研究其单调性。
( )= 2x 1一 1 yx+ l 1 一l
( )=x 1 2 y l- 1 () x 2 l1 3 = 2 1一 +x
这里要使学生注意这些函数与二次 函数 的差异和联系 。 掌握把含有绝对值记号 的函数用分段 函数 去表 示 . 然后 画 出

高中数学中的二次函数的应用

高中数学中的二次函数的应用

高中数学中的二次函数的应用二次函数是高中数学中的一个重要内容,也是学生们常见的函数类型之一。

它具有广泛的应用,涉及到物理、经济、工程等多个领域。

本文将探讨二次函数在实际问题中的应用,并探讨一些具体的例子。

1. 跳跃问题在物理学中,经常涉及到跳跃问题,例如抛射物体的运动轨迹、跳伞运动员的下降速度等。

这些问题可以用二次函数进行建模和分析。

以抛射物体的运动轨迹为例,假设一个抛射物体的竖直运动满足二次函数的形式,可以使用以下公式来表示:h(t) = -gt^2 + vt + h0其中,h(t)表示抛射物体距离地面的高度,t表示时间,g表示重力加速度,v表示抛射速度,h0表示抛射体的初始高度。

通过解析这个二次方程,我们可以得到抛射物体的最高点、飞行时间以及落地点等信息。

2. 经济问题在经济学中,二次函数可以用来描述成本、利润和收益等与产量或销售量相关的问题。

以成本函数为例,假设某产品的生产成本与产量x 之间存在二次函数的关系,可以使用以下公式来表示:C(x) = ax^2 + bx + c其中,C(x)表示生产成本,x表示产量,a、b、c为常数。

通过研究这个二次函数,我们可以找到使成本最小化的产量,并为生产决策提供依据。

3. 工程问题在工程领域中,二次函数的应用非常广泛。

例如,在桥梁工程中,可以用二次函数模型来构建桥梁的拱形结构,以提高桥梁的稳定性和承重能力。

此外,在建筑工程中,可以利用二次函数的对称性来设计拱形的建筑结构,提供美观和稳定性。

4. 射击问题在射击运动中,二次函数可以用来描述子弹的飞行轨迹和击中目标的位置。

假设子弹的飞行距离与发射角度和初速度有关,可以使用以下公式来建模:y(x) = a(x - h)^2 + k其中,y(x)表示子弹的高度,x表示水平位置,a为常数,(h, k)表示顶点的坐标。

通过解析这个二次方程,我们可以预测子弹击中目标的位置,并进行射击训练。

总结起来,二次函数在高中数学中的应用非常广泛,涉及到物理、经济、工程等多个领域。

二次函数的引入与应用

二次函数的引入与应用

二次函数的引入与应用二次函数是高中数学中的重要概念之一,在实际生活中有着广泛的应用。

本文将从二次函数的引入开始,探讨其在实际问题中的应用。

一、引入在代数学中,二次函数的一般形式为:y = ax^2 + bx + c其中,a、b、c为常数,且a≠0。

二次函数图像为抛物线,具有开口方向、顶点、对称轴等性质。

二、二次函数的应用1. 物体的抛体运动二次函数可以用于描述物体的抛体运动。

当物体受到初速度和重力影响时,其运动轨迹可以通过二次函数来表示。

由于重力的作用,物体的竖直方向运动会产生加速度,从而使得抛体运动可以用二次函数来描述。

2. 汽车制动距离在汽车行驶过程中,制动距离是一个非常重要的概念,涉及到行车安全。

根据物理学原理,汽车在制动过程中所需的距离与制动的时间和初始速度有关。

通过二次函数的模型可以有效地计算汽车制动距离,从而为驾驶员提供准确的参考。

3. 成本与收益在经济学中,企业的成本与收益关系是一个重要的经营指标。

通过二次函数的模型,可以对企业的成本和收益进行建模分析。

这有助于企业在制定经营策略时,做出科学的决策,以最大化利润。

4. 最优化问题二次函数也广泛应用于最优化问题中。

例如,生产车间的生产效率与生产成本之间存在着一定的关系。

通过建立二次函数模型,可以找到能够使得生产效率最大化或者生产成本最小化的最佳方案。

5. 能量分配问题在工程学中,能量的分配是一个常见的问题。

通过二次函数的模型,可以合理地分配能量,以满足各种需求。

例如,太阳能板的能量分配问题,可以利用二次函数模型来优化能量的利用效率。

综上所述,二次函数作为数学中的重要概念,在实际生活和各个学科领域中有着广泛的应用。

从物理运动到经济决策,从最优化问题到能量分配,二次函数的引入和应用为我们提供了更加科学的分析工具,帮助我们更好地理解和解决实际问题。

无论在哪个领域,了解和掌握二次函数的应用都将为我们的学习和工作带来更大的便利和效益。

高中数学中的二次函数应用案例分析

高中数学中的二次函数应用案例分析

高中数学中的二次函数应用案例分析二次函数是高中数学中一个重要的内容,也是数学中的一种基本函数类型。

它在实际生活中有着广泛的应用,可以用来描述许多自然现象和经济问题。

本文将通过几个案例分析,展示二次函数在实际问题中的应用。

案例一:抛物线的轨迹假设有一位运动员在训练中进行跳远,他的跳远轨迹可以用一个抛物线来描述。

我们知道,抛物线的方程可以表示为y=ax^2+bx+c,其中a、b、c为常数。

通过观察运动员的跳远过程,我们可以得到一些数据点,例如跳远的起点、最高点和落地点。

根据这些数据点,我们可以建立一个二次函数模型,进而预测运动员在不同距离上的跳远成绩。

案例二:物体的自由落体在物理学中,自由落体是一个常见的现象。

当一个物体从高处自由下落时,它的运动轨迹可以用一个抛物线来描述。

假设有一个小球从高楼上自由落下,我们可以通过观察小球在不同时间点的位置,建立一个二次函数模型来描述小球的运动。

通过这个模型,我们可以计算小球在不同时间点的位置和速度,进而研究物体的自由落体规律。

案例三:经济学中的成本函数在经济学中,成本函数是一个重要的概念。

假设有一个公司生产某种产品,它的生产成本可以用一个二次函数来表示。

这个二次函数的自变量可以是产品的产量,因变量可以是生产成本。

通过分析这个二次函数,我们可以研究不同产量下的生产成本变化规律,进而优化生产过程,提高经济效益。

案例四:建筑物的抗震设计在建筑工程中,抗震设计是非常重要的。

为了保证建筑物在地震中的稳定性,工程师需要通过数学模型来分析建筑物的抗震性能。

其中,二次函数可以用来描述建筑物受力分布的曲线。

通过分析这个二次函数,工程师可以确定建筑物的结构参数,进而设计出更加安全可靠的建筑物。

通过以上几个案例的分析,我们可以看到二次函数在实际问题中的广泛应用。

它不仅可以用来描述物体的运动轨迹,还可以用来分析经济问题、优化生产过程和设计建筑物等。

在高中数学教学中,教师可以通过这些案例,引导学生理解二次函数的概念和性质,培养学生的实际问题解决能力。

浅析二次函数在高中教学中的应用

浅析二次函数在高中教学中的应用

浅析二次函数在高中教学中的应用【摘要】几何画板是一款优秀的教育教学软件,适用于数学、平面几何、物理矢量分析等. 本文首先介绍了几何画板软件和二次函数的教学特征,然后探讨了几何画板在初中二次函数教学中的应用。

二次函数是中学数学重要组成部分,也是重要知识点。

在历年中考中,二次函数都是必考内容。

另外,学好二次函数也为学生今后数学学习奠定了基础。

对此,二次函数是初中数学教学重点和难点,广大教师必须要给予高度重视。

本文将深入浅析二次函数在高中教学中的应用。

【关键词】初中数学二次函数教学一、初中数学中强调二次函数的重要性在开展二次函数的之前,教师首先应该让学生明白学习二次函数的重要意义,通过教师的引导,使学生重视二次函数的学习。

虽然,二次函数的学习,相对更有难度,但听过教师的引导和学生的努力,依然可以达到对二次函数熟练应用的目的。

例如,在学习二次函数问题中“最大面积是多少”这部分内容时,教师可以通过进行课前引导来向学生说明学习二次函数的重要意义。

这部分内容,主要是通过让学生根据所给条件列出二次函数,来求出满足最大面积的条件。

最大面积问题以及其他球最值问题都是与我们生活息息相关的内容。

通过学习二次函数,可以使学生学会应用科学的方法,来解决生活中遇到的问题。

二、正确区分方程,函数的关系要学好二次函数知识,首先要对其概念和定理进行了解,并在此基础上正确区分方程和函数之间的关系。

教师在讲解二次函数概念时,可以举一个生活中的例子来提高学生认识。

例如:圆形餐桌的半径为R,其面积为S,请学生列出圆桌面积计算公式。

大多数学生对这个公式都比较熟悉,他们可以顺利的将上述表达式列出来:S=лR2。

教师可以这个式子为例子,将二次函数的概念引出来:y=ax2+bx+c(c≠0),并对比二者的区别,这样可以加深学生对二者的认识和理解。

通过挖掘学生生活中的例子来讲解二次函数,不仅可以提高学生学习积极性,还可以消除学生对陌生知识的紧张感。

二次函数的解法与应用

二次函数的解法与应用

二次函数的解法与应用二次函数是高中数学中的重要内容之一,它是一种形如y=ax²+bx+c 的函数,其中a、b、c为常数,且a不等于零。

在本文中,将介绍二次函数的解法与应用。

一、二次函数的解法二次函数的解法主要有两种方法:一是利用配方法法,二是利用求根公式法。

1. 配方法法对于一般的二次函数y=ax²+bx+c,可以利用配方法将其变形为完全平方的形式,从而求出函数的解。

配方法的步骤如下:(1)将二次项系数a乘以1/2,得到1/2a;(2)将1/2a的平方加上常数项c,得到1/4a²+c;(3)将二次项系数b乘以1/2,得到1/2b;(4)将1/2b²与1/4a²+c进行配方,即(1/2b+√(1/4a²+c))(1/2b-√(1/4a²+c)),得到一个完全平方;(5)将得到的完全平方表达式与1/2a相乘,即(1/2a)(1/2b+√(1/4a²+c))(1/2a)(1/2b-√(1/4a²+c)),得到二次函数的解。

2. 求根公式法对于一般的二次函数y=ax²+bx+c,可以利用求根公式法求出函数的解。

求根公式的表达式如下:x=(-b±√(b²-4ac))/(2a)其中,±表示求两个解,b²-4ac称为判别式。

当判别式大于零时,函数有两个不等实数根;当判别式等于零时,函数有两个相等实数根;当判别式小于零时,函数无实数根。

二、二次函数的应用二次函数在实际生活中有广泛的应用,其中包括抛物线的运动轨迹、经济学中的成本函数与收益函数、物理学中的自由落体运动等。

1. 抛物线的运动轨迹抛物线的形状可以用二次函数来表示,例如自由落体运动中物体的高度随时间的变化可以用二次函数来描述。

通过求解二次函数的解,可以得到物体的运动轨迹并进行分析。

2. 经济学中的成本函数与收益函数在经济学中,成本函数和收益函数通常可以用二次函数来表示。

二次函数在高中数学中的应用

二次函数在高中数学中的应用

二次函数在高中数学中的应用说起二次函数)0(2≠++=a c bx ax y ,对于每一位从事高中数学的教师是再熟悉不过的了。

历年高考试题中函数的知识点和函数思想都占有相当重要的地位,而其中的二次函数在高中数学中又有着非常重要的地位与作用,它犹如一根红线贯穿其中,特别是在求函数的定义域、值域、函数的单调性、奇偶性及最值方面,二次函数问题往往是考查的一个重点。

它也是贯穿初中和高中数学课程的一种很重要的函数,不管在代数中,,还是解析几何中,利用此函数的机会都特别多,例如:配方法、换元法、参数分类讨论法、解方程、解不等式、不等式的证明、抛物线、函数的最值等等,都与这个函数有着密切的关系。

同时各种数学思想如函数的思想,数形结合的思想、分类讨论的思想,利用二次函数作为载体,展现得最为充分。

因此对于二次函数的应用的研究对于高中阶段教学有着重要的意义。

一、从集合角度对二次函数概念的理解初中函数的定义,是从变化的过程中两个相关联量的关系描述的,进入高中后在学习集合的基础上又重新定义了函数,主要是通过两个非空数集间的对应关系来定义函数,因此二次函数是从一个集合A (定义域)到集合B (值域)上的对应f :A →B ,即集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素)0(2≠++=a c bx ax y 和它对应,记为)0()(2≠++=a c bx ax x f ,这里)0(2≠++a c bx ax 表示对应关系,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:例1. 已知22)(2++=x x x f ,求)1(),(),3(+x f a f f ?解析:)3(f 是当x =3时的函数值,)(a f 是当a x =时的函数值,)1(+x f 是把1+x 当作自变量,施加f 的对应关系,所以232332)3(2=++⋅=f ,22)(2++=a a a f ,5522)1()1(2)1(22++=++++=+x x x x x f 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈二次函数在高中数学中的分析与应用
在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。

进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。

一、进一步深入理解函数概念
初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。

二次函数是从一个集合A(定义域)到集合B(值域)上的映射ƒ:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A 的元素X对应,记为ƒ(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型I:已知ƒ(x)= 2x2+x+2,求ƒ(x+1)
这里不能把ƒ(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。

类型Ⅱ:设ƒ(x+1)=x2-4x+1,求ƒ(x)
这个问题理解为,已知对应法则ƒ下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。

一般有两种方法:
(1)把所给表达式表示成x+1的多项式。

ƒ(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得ƒ(x)=x2-6x+6 (2) 变量代换:它的适应性强,对一般函数都可适用。

令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而ƒ(x)= x2-6x+6
二、二次函数的单调性,最值与图象。

在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c
在区间(-∞,-
b
2a
]及[-
b
2a
,+∞)上的单调性的结论用定义进行
严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。

类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。

(1)y=x2+2|x-1|-1
(2)y=|x2-1|
(3)= x2+2|x|-1
这里要使学生注意这些函数与二次函数的差异和联系。

掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。

类型Ⅳ设ƒ(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。

求:g(t)并画出 y=g(t)的图象
解:ƒ(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2
当1∈[t,t+1]即0≤t≤1,g(t)=-2
当t>1时,g(t)=ƒ(t)=t2-2t-1
当t<0时,g(t)=ƒ(t+1)=t2-2
t2-2, (t<0)
g(t)= -2,(0≤t≤1)
t2-2t-1, (t>1)
首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。

如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。

三、二次函数的知识,可以准确反映学生的数学思维:
类型Ⅴ:设二次函数ƒ(x)=ax2+bx+c(a>0)方程ƒ(x)-x=0的两个根
x 1,x
2
满足0<x
1
<x
2
<
1
a。

(Ⅰ)当X∈(0,x
1
)时,证明X<ƒ(x)<x
1。

(Ⅱ)设函数ƒ(x)的图象关于直线x=x
对称,证明x
<
x
2。

解题思路:
本题要证明的是x<ƒ(x),ƒ(x)<x
1
和x
<
x
2
,由题中所提供的信息
可以联想到:①ƒ(x)=x,说明抛物线与直线y=x在第一象限内有两个不
同的交点;②方程ƒ(x)-x=0可变为ax2+(b-1)x+1=0,它的两根为x
1,x
2

可得到x
1,x
2
与a.b.c之间的关系式,因此解题思路明显有三条①图象法
②利用一元二次方程根与系数关系③利用一元二次方程的求根公式,辅之以不等式的推导。

现以思路②为例解决这道题:
(Ⅰ)先证明x<ƒ(x),令ƒ(x)=ƒ(x)-x,因为x
1,x
2
是方程ƒ(x)-x=0的
根,ƒ(x)=ax2+bx+c,所以能ƒ(x)=a(x-x
1)(x-x
2
)
因为0<x
1<x
2
,所以,当x∈(0,x
1
)时, x-x
1
<0, x-x
2
<0得(x-x
1
)(x
-x
2
)>0,又a>0,因此ƒ(x) >0,即ƒ(x)-x>0.至此,证得x<ƒ(x)
根据韦达定理,有 x
1x
2
=
c
a
∵ 0<x
1
<x
2
<
1
a
,c=ax
1
x
2
<x=ƒ(x
1
),
又c=ƒ(0),∴ƒ(0)<ƒ(x
1
), 根据二次函数的性质,曲线y=ƒ(x)是开口向
上的抛物线,因此,函数y=ƒ(x)在闭区间[0,x
1
]上的最大值在边界点
x=0或x=x
1处达到,而且不可能在区间的内部达到,由于ƒ(x
1
)>ƒ(0),所
以当x∈(0,x
1)时ƒ(x)<ƒ(x
1
)=x
1,
即x<ƒ(x)<x
1
(Ⅱ) ∵ƒ(x)=ax2+bx+c=a(x+-
b
2a
)2+(c
(a>0)
函数ƒ(x)的图象的对称轴为直线x=-
b
2a
,且是唯一的一条对称轴,
因此,依题意,得x
0=-
b
2a
,因为x
1
,x
2
是二次方程ax2+(b-1)x+c=0
的根,根据违达定理得,x
1+x
2
=-
b-1
a
,∵x
2

1
a
<0,
∴x
0=-
b
2a
=
1
2
(x
1
+x
2

1
a
)<
x
2
,即x
=
x
2。

二次函数,它有丰富的内涵和外延。

作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。

二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

相关文档
最新文档