2018年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案文

合集下载

平面向量的数量积及向量的应用教案

平面向量的数量积及向量的应用教案

平面向量的数量积及向量的应用教案章节一:向量的概念及其表示教学目标:1. 了解向量的定义及其表示方法。

2. 掌握向量的几何表示和坐标表示。

3. 能够正确书写向量的表达式。

教学内容:1. 向量的定义及特点。

2. 向量的几何表示和坐标表示。

3. 向量的运算规则。

教学步骤:1. 引入向量的概念,解释向量的定义及其特点。

2. 通过图形和实例展示向量的几何表示和坐标表示。

3. 讲解向量的运算规则,如加法、减法和数乘。

练习题目:a) (3, 4)b) (3, 4)c) 3d) (3章节二:向量的数量积教学目标:1. 理解向量的数量积的概念及其计算方法。

2. 掌握数量积的性质和运算法则。

3. 能够计算两个向量的数量积。

教学内容:1. 向量的数量积的定义及其计算方法。

2. 数量积的性质和运算法则。

3. 数量积的应用。

教学步骤:1. 引入向量的数量积的概念,解释其定义及其计算方法。

2. 通过图形和实例展示数量积的性质和运算法则。

3. 讲解数量积的应用,如判断两个向量是否垂直。

练习题目:a) (2, 3) ·(1, 2)b) (3, 4) ·(2, 3)c) (1, 0) ·(0, 1)章节三:向量的线性组合教学目标:1. 理解向量的线性组合的概念及其计算方法。

2. 掌握线性组合的性质和运算法则。

3. 能够计算两个向量的线性组合。

教学内容:1. 向量的线性组合的定义及其计算方法。

2. 线性组合的性质和运算法则。

3. 线性组合的应用。

教学步骤:1. 引入向量的线性组合的概念,解释其定义及其计算方法。

2. 通过图形和实例展示线性组合的性质和运算法则。

3. 讲解线性组合的应用,如解线性方程组。

练习题目:a) (2, 3) + (1, 2)b) (3, 4) (1, 2)c) 2(1, 0) 3(0, 1)章节四:向量的投影教学目标:1. 理解向量的投影的概念及其计算方法。

2. 掌握投影的性质和运算法则。

2018年高三数学(文)一轮复习课件 平面向量的数量积与平面向量的应用

2018年高三数学(文)一轮复习课件  平面向量的数量积与平面向量的应用
知识梳理 双基自测 自测点评
5.3
平面向量的数量积与平面向量的应用
知识梳理 核心考点 学科素养
-9-
1
2
3
4
5
6
7
8
7.向量在解析几何中的应用 向量在解析几何中的应用,主要是以向量的数量积给出一种条件, 通过向量转化,进而利用直线和圆锥曲线的位置关系等相关知识来 解答.
第五章
知识梳理 双基自测 自测点评
������· ������
第五章
知识梳理 双基自测 自测点评
5.3
平面向量的数量积与平面向量的应用
知识梳理 核心考点 学科素养
-8-123456
7
8
6.向量在三角函数中的应用 对于向量与三角函数结合的题目,其解题思路是用向量运算进行 转化,化归为三角函数问题或三角恒等变形等问题或解三角形问题.
第五章
第五章
知识梳理 双基自测 自测点评
5.3
平面向量的数量积与平面向量的应用
知识梳理 核心考点 学科素养
-3-
1
2
3
4
5
6
7
8
2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a· b=|a||b|cos θ= x1x2+y1y2 .
2 2 (2)模:|a|= ������· ������ = ������1 + ������1 . (3)设 A(x1,y1),B(x2,y2),则 A,B 两点间的距离
|AB|=|������������|= (������1 -������2 )2 + (������1 -������2 )2 . (4)夹角:cos

2018年高考理科数学第一轮复习教案27 平面向量的数量积资料

2018年高考理科数学第一轮复习教案27 平面向量的数量积资料

第三节平面向量的数量积1.数量积的定义及长度、角度问题(1)理解数量积的含义及其物理意义.(2)了解向量数量积与向量投影的关系.(3)掌握数量积的坐标表达式及相关性质,并会进行数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判定两向量垂直.2.数量积的综合应用会用向量方法解决某些简单的平面几何问题、力学问题及其他的一些实际问题.知识点一平面向量的数量积1.两个向量的夹角(1)定义已知两个非零向量a和b,作O A→=a,O B→=b,则∠AOB=θ叫作向量a与b的夹角.(2)范围向量夹角θ的范围是0°≤θ≤180°,a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.(3)向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.2.平面向量数量积(1)a,b是两个非零向量,它们的夹角为θ,则数量|a||b|·cos θ叫作a与b的数量积,记作a·b,即a·b=|a||b|·cos θ.规定0·a=0.当a⊥b时,θ=90°,这时a·b=0.(2)a·b的几何意义a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积.易误提醒1.两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.2.在向量数量积的几何意义中,投影是一个数量,不是向量.3.在实数运算中,若a,b∈R,则|ab|=|a|·|b|,但对于向量a,b却有|a·b|≤|a|·|b|,当且仅当a∥b时等号成立.这是因为|a·b|=|a|·|b|·|cos θ|,而|cos θ|≤1.必记结论两向量a与b的夹角为锐角⇒cos〈a,b〉>0且a 与b不共线;两向量a与b的夹角为钝角⇒cos〈a,b〉<0,且a与b 不共线.[自测练习]1. 已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角为( )A.π6B.π4C.π3D.π2解析:向量a ,b 满足|a |=1,|b |=4,且a·b =2, 设a 与b 的夹角为θ,则cos θ=a ·b |a |·|b |=12,∴θ=π3. 答案:C2.已知a ,b 为单位向量,其夹角为60°,则(2a -b )·b =( ) A .-1 B .0 C .1D .2解析:(2a -b )·b =2a ·b -b 2=2|a |·|b |·cos a ,b-|b |2=2×1×1×cos 60°-1=0.答案:B3.已知|a |=4,|b |=3,a 与b 的夹角为120°,则b 在a 方向上的投影为( )A .2 B.32 C .-2D .-32解析:b 在a 方向上的投影为|b |cos 120°=-32.故选D. 答案:D知识点二数量积的性质及坐标运算1.向量数量积的性质(1)如果e是单位向量,则a·e=e·a=|a|cos〈a,e〉.(2)a⊥b⇔a·b=0.(3)a·a=|a|2,|a|=a·a.(4)cos〈a,b〉=a·b|a||b|.(5)|a·b|≤|a||b|.2.数量积的运算律(1)交换律:a·b=b·a.(2)分配律:(a+b)·c=a·c+b·c.(3)对λ∈R,λ(a·b)=(λa)·b=a·(λb).3.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2)结论几何表示坐标表示模|a|=a·a|a|=x21+y21夹角cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21·x22+y22a⊥b的充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤(x21+y21)(x22+y22)易误提醒1.实数运算满足消去律:若bc=ca,c≠0,则有b=a.在向量数量积的运算中,若a·b=a·c(a≠0),则不一定得到b=c.2.实数运算满足乘法结合律,但向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.[自测练习]4.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=________.解析:∵m +n =(2λ+3,3),m -n =(-1,-1), 又(m +n )⊥(m -n ),∴(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=0, 从而λ=-3. 答案:-35.已知向量a 与b 的夹角为120°,|a |=1,|b |=3,则|5a -b |= .解析:由a·b =|a |·|b |cos 〈a ,b 〉=1×3×cos 120°=-32, 得|5a -b |=(5a -b )2=25a 2+b 2-10a·b=25+9-10×⎝ ⎛⎭⎪⎫-32=7.答案:7考点一 平面向量数量积的运算|1.(2015·高考全国卷Ⅱ)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( )A .-1B .0C .1D .2解析:a =(1,-1),b =(-1,2),∴(2a +b )·a =(1,0)·(1,-1)=1.答案:C2.(2015·高考山东卷)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD→=( ) A .-32a 2B .-34a 2C.34a 2D.32a 2解析:在菱形ABCD 中,BA →=CD →,BD →=BA →+BC →,所以BD →·CD →=(BA →+BC →)·CD →=BA →·CD →+BC →·CD →=a 2+a ×a ×cos 60°=a 2+12a 2=32a 2.答案:D3.如图,AB 是半圆O 的直径,C ,D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点,若OA =6,则MC →·ND→=________.解析:法一:因为MC →·ND →=(MO →+OC →)·(NO →+OD →)=MO →·NO →+MO →·OD →+OC →·NO →+OC →·OD →=|MO →|·|NO →|cos 180°+|MO →|·|OD →|cos 60°+|OC →|·|NO →|·cos 60°+|OC →|·|OD →|·cos 60°=-4+6+6+18=26.法二:以点O 为坐标原点,AB 所在的直线为x 轴,AB 的垂直平分线为y轴建立平面直角坐标系(图略),则M(-2,0),N(2,0),C(-3,33),D(3,33),所以MC→=(-1,33),ND→=(1,33),MC→·ND→=-1+27=26.答案:26向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos〈a,b〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.考点二平面向量数量积的性质应用|平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题.归纳起来常见的命题探究角度有:1.平面向量的模.2.平面向量的夹角.3.平面向量的垂直.探究一平面向量的模1.(2015·太原一模)已知向量e1,e2是夹角为45°的两个单位向量,则|2e1-e2|=()A.22 B.12C.1 D. 2解析:由题意可得e 1·e 2=22,所以|2e 1-e 2|=(2e 1-e 2)2=2-22e 1·e 2+1=1. 答案:C2.已知平面向量a =(1,3),|a -b |=1,则|b |的取值范围是________.解析:设b =(x ,y ),则|a -b |=(x -1)2+(y -3)2=1,即点(x ,y )在圆(x -1)2+(y -3)2=1上,则|b |的几何意义是圆上点到原点的距离.又圆心到原点的距离为2,所以|b |的取值范围是[1,3].答案:[1,3]探究二 平面向量的夹角3.若向量a 与b 不共线,a·b ≠0,且c =a -⎝ ⎛⎭⎪⎫a·a a·b b ,则向量a 与c 的夹角为( )A .0 B.π6 C.π3D.π2解析:∵c·a =⎣⎢⎡⎦⎥⎤a -⎝ ⎛⎭⎪⎫a·a a·b b ·a =a·a -⎝ ⎛⎭⎪⎫a·a a·b b·a =a·a -a·a =0,∴c ⊥a ,即向量a 与c 的夹角为π2,故选D.答案:D4.(2015·苏州二模)设向量a =(x,2),b =(2,1),若a ,b 的夹角为锐角,则实数x 的取值范围为________.解析:由题意可得,a·b =2x +2>0,且x -4≠0,故实数x 的取值范围为(-1,4)∪(4,+∞).答案:(-1,4)∪(4,+∞) 探究三 平面向量的垂直5.(2015·高考福建卷)设a =(1,2),b =(1,1),c =a +k b ,若b ⊥c ,则实数k 值等于( )A .-32B .-53 C.53D.32解析:因为c =(1+k,2+k ),b·c =0,所以1+k +2+k =0,解得k =-32,故选A.答案:A6.(2015·高考重庆卷)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π解析:由条件,得(a -b )·(3a +2b )=3a 2-2b 2-a·b =0,即a·b =3a 2-2b 2.又|a |=223|b |,所以a·b =3·⎝ ⎛⎭⎪⎫223|b |2-2b 2=23b 2,所以cos 〈a ,b 〉=a·b|a ||b |=23b 2223b2=22,所以〈a ,b 〉=π4,故选A.答案:A平面向量数量积求解问题的三个策略(1)求两向量的夹角:cos θ=a·b|a |·|b |,要注意θ∈[0,π].(2)两向量垂直的应用:两非零向量垂直的充要条件是a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |.(3)求向量的模:利用数量积求解长度问题的处理方法有: ①a 2=a ·a =|a |2或|a |=a·a . ②|a ±b |=(a ±b )2=a 2±2a·b +b 2.③若a =(x ,y ),则|a |=x 2+y 2.考点三 平面向量与三角函数的综合应用|在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =x ,其中O 为坐标原点. (1)若x =34π,设点D 为线段OA 上的动点,求|OC →+OD→|的最小值; (2)若x ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC→,n =(1-cos x ,sin x -2cos x ),求m·n 的最小值及对应的x 值.[解] (1)设D (t,0)(0≤t ≤1),由题易知C ⎝ ⎛⎭⎪⎫-22,22,所以OC →+OD →=⎝⎛⎭⎪⎫-22+t ,22,所以|OC→+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC →+OD →|最小,为22. (2)由题意得C (cos x ,sin x ),m =BC→=(cos x +1,sin x ), 则m·n =1-cos 2x +sin 2x -2sin x cos x =1-cos 2x -sin 2x =1-2sin ⎝⎛⎭⎪⎫2x +π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2x +π4≤5π4,所以当2x +π4=π2,即x =π8时,sin ⎝⎛⎭⎪⎫2x +π4取得最大值1,所以m·n 的最小值为1-2,此时x =π8.平面向量与三角函数的综合问题的两个解题策略(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.(2015·惠州二调)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a·b ,求f (x )的最大值. 解:(1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2x =1. 又x ∈⎣⎢⎡⎦⎥⎤0,π2 ,从而sin x =12,所以x =π6.(2)f (x )=a·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝ ⎛⎭⎪⎫2x -π6+12, 当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1. 所以f (x )的最大值为32.8.忽视向量夹角范围致误【典例】 设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.[解] 因为e 1·e 2=|e 1||e 2|cos 60°=2×1×12=1,所以(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+7t e 22+(2t 2+7)e 1·e 2=8t +7t +2t 2+7=2t 2+15t +7.因为向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,所以(2t e 1+7e 2)·(e 1+t e 2)<0,即2t 2+15t +7<0,解得-7<t <-12.当向量2t e 1+7e 2与向量e 1+t e 2反向时, 设2t e 1+7e 2=λ(e 1+t e 2),λ<0,则⎩⎪⎨⎪⎧2t =λ,λt =7⇒2t 2=7⇒t =-142或t =142(舍去). 因为向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角, 所以t ≠-142,故t 的取值范围为⎝⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12. [易误点评] 向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角可得(2t e 1+7e 2)·(e 1+t e 2)<0.易忽略,共线反向的情况导致出错.[防范措施] (1)切记向量夹角的范围是[0,π].(2)a 与b 夹角为锐角⇔a·b >0且a ·b ≠1,a 与b 夹角为钝角⇔a ·b <0且a ·b ≠-1.[跟踪练习] 已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,求实数λ的取值范围.解:∵a 与a +λb 均为非零向量,且夹角为锐角, ∴a ·(a +λb )>0,即(1,2)·(1+λ,2+λ)>0. ∴(1+λ)+2(2+λ)>0. ∴λ>-53.当a 与a +λb 共线时,存在实数m ,使a +λb =m a , 即(1+λ,2+λ)=m (1,2),∴⎩⎨⎧1+λ=m ,2+λ=2m ,解得λ=0.即当λ=0时,a 与a +λb 共线,综上可知,实数λ的取值范围为⎝ ⎛⎭⎪⎫-53,0∪(0,+∞).A 组 考点能力演练1.(2015·陕西模拟)设向量a ,b 满足|a +b |=20,a ·b =4,则|a -b |=( )A. 2 B .2 3 C .2D. 6解析:∵|a +b |=20,a·b =4,∴|a +b |2-|a -b |2=4a·b =16,∴|a -b |=2,选C.答案:C2.对于任意向量a ,b ,c ,下列命题中正确的是( ) A .|a·b |=|a ||b | B .|a +b |=|a |+|b | C .(a·b )·c =a ·(b·c ) D .a·a =|a |2解析:法一:因为|a·b |=|a ||b ||cos 〈a ,b 〉|,只有当a ,b 共线时,才有|a·b |=|a ||b |,A 不正确;因为|a +b |≤|a |+|b |,所以B 不正确;向量的数量积运算不满足结合律,即(a·b )·c ≠a·(b·c ),C 不正确;由数量积的定义可得a·a =|a |2,D 正确,故选D.法二:令a =(1,0),b =(0,1),c =(1,1),易验证A ,B ,C 错误,故选D.答案:D3.(2015·湘潭调研)在三角形ABC 中,E ,F 分别为边AB ,AC 上的点,且AE →=2EB →,AF →=FC →,若|AB |=3,|AC |=2,A =60°,则BF →·EF →等于( )A.92B.72C.154D.134解析:因为AE →=2EB →,AF →=FC →,所以AE →=23AB →,AF →=12AC →,所以BF →·EF →=(AF →-AB →)·(AF →-AE →)=⎝⎛⎭⎪⎫12AC →-AB →·⎝⎛⎭⎪⎫12AC →-23AB →=14AC →2+23AB →2-56AB →·AC →=14×22+23×32-56×2×3×12=92,故选A.答案:A4.已知O ,A ,B 三点的坐标分别为O (0,0),A (3,0),B (0,3),且P 在线段AB 上,AP →=tAB →(0≤t ≤1),则OA →·OP→的最大值为( ) A. 3 B .3 C .2 2D .9解析:设P (x ,y ),x ∈[0,3],则(x -3,y )=t (-3,3),⎩⎨⎧x -3=-3t ,y =3t ,即⎩⎨⎧x =3-3t ,y =3t ,t ∈[0,1],所以OA →·OP →=3x =9(1-t )∈[0,9],即OA →·OP→的最大值为9.答案:D5.已知向量a ,b 满足|a |=3,|b |=1,且对于任意实数x ,不等式|a +x b |≥|a +b |恒成立,设a ,b 的夹角为θ,则sin θ=( )A.22B.13C.33D.63解析:如图所示,当(a +b )⊥b 时,对于任意实数x ,a +x b =OA →或a +x b =OB →,三角形中斜边大于直角边恒成立,不等式恒成立,因为(a +b )⊥b ,|a |=3,|b |=1,所以tan α=2,tan θ=-2,sin θ=63. 答案:D6.已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角的大小为________.解析:因为a ·(a +b )=3,|a |=2,|b |=1,所以a ·(a +b )=|a |2+a·b =3,得a·b =-1.设向量a 与b 的夹角为θ,θ∈[0,π],则cos θ=a·b |a |·|b |=-12,解得θ=2π3.答案:2π37.(2016·石家庄质检)若a ,b 是两个互相垂直的单位向量,则向量a -3b 在向量b 方向上的投影为________.解析:依题意得(a -3b )·b =a·b -3b 2=-3,因此a -3b 在向量b 方向上的投影为(a -3b )·b|b |=- 3.答案:- 38.在边长为1的正方形ABCD 中,E ,F 分别为BC ,DC 的中点,则AE →·AF→=________. 解析:因为AE →=AB →+12AD →,AF →=AD →+12AB →,AD →·AB →=0,所以AE →·AF →=⎝⎛⎭⎪⎫AB →+12AD →·⎝⎛⎭⎪⎫AD →+12AB →=12AB →2+12AD →2=1. 答案:19.已知△ABC 的面积为2,且满足0<AB →·AC →≤4,AB →和AC →的夹角为θ.(1)求θ的取值范围;(2)求函数f (θ)=2sin 2⎝⎛⎭⎪⎫π4+θ-3cos 2θ的取值范围.解:(1)设△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则由题意得12bc sin θ=2,0<bc cos θ≤4,可得tan θ≥1,又θ∈[0,π],∴θ∈⎣⎢⎡⎭⎪⎫π4,π2.(2)f (θ)=2sin 2⎝⎛⎭⎪⎫π4+θ-3cos 2θ=⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2θ-3cos 2θ=(1+sin 2θ)-3cos 2θ=sin 2θ-3cos 2θ+1=2sin ⎝ ⎛⎭⎪⎫2θ-π3+1,∵θ∈⎣⎢⎡⎭⎪⎫π4,π2,∴2θ-π3∈⎣⎢⎡⎭⎪⎫π6,2π3.∴2≤2sin ⎝ ⎛⎭⎪⎫2θ-π3+1≤3,∴函数f (θ)的取值范围是[2,3].10.(2015·杭州模拟)设△ABC 是边长为1的正三角形,点P 1,P 2,P 3四等分线段BC (如图所示).(1)求AB →·AP 1→+AP 1→·AP 2→的值; (2)设动点P 在边BC 上,①请写出一个|BP →|的值使P A →·PC →>0,并说明理由; ②当P A →·PC →取得最小值时,求cos ∠P AB 的值. 解:(1)原式=AP 1→·(AB →+AP 2→) =2AP →21=138.(2)①写0到12(0可取到,12取不到)之间的任何一个值均可,理由:此时向量P A →与PC→之间的夹角为锐角. ②P A →·PC →=|PC →||P A →|cos ∠APC . a .当P 在线段BP 2上时,P A →·PC→≥0. b .当P 在线段P 2C 上时,P A →·PC →≤0,要使P A →·PC →最小,则P 必在线段P 2C 上.设|PC→|=x ,则P A →·PC →=|PC →||P A →|cos ∠APB =|PC →|·(-|PP 2→|)=x 2-12x , 当x =14,即当P 在P 3时,P A →·PC →最小, 此时cos ∠P AB =52613.B 组 高考题型专练1.(2014·高考四川卷)平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2解析:a =(1,2),b =(4,2),则c =m a +b =(m +4,2m +2),|a |=5,|b |=25,a ·c =5m +8,b ·c =8m +20.∵c 与a 的夹角等于c 与b 的夹角, ∴c ·a |c |·|a |=c ·b |c |·|b |,∴5m +85=8m +2025, 解得m =2. 答案:D2.(2014·高考山东卷)已知向量a =(1,3),b =(3,m ),若向量a ,b 的夹角为π6,则实数m =( )A .2 3 B. 3 C .0D .- 3解析:a ·b =|a ||b |cos π6,则3+3m =2·9+m 2·32.(3+m )2=9+m 2,解得m = 3.答案:B3.(2015·高考广东卷)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC→=( ) A .5 B .4 C .3D .2解析:由AC→=AB →+AD →=(1,-2)+(2,1)=(3,-1), 得AD →·AC →=(2,1)·(3,-1)=5,故选A. 答案:A4.(2015·高考广东卷)在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值. 解:(1)∵m ⊥n ,∴m·n =0. 故22sin x -22cos x =0,∴tan x =1.(2)∵m 与n 的夹角为π3,∴cos 〈m ,n 〉=m·n|m |·|n |=22sin x -22cos x 1×1=12,∴sin ⎝ ⎛⎭⎪⎫x -π4=12,又x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,x -π4=π6,即x =5π12,∴x 的值为512π.。

2018年一轮复习《平面向量的数量积及应用》教学教案

2018年一轮复习《平面向量的数量积及应用》教学教案

平面向量的数量积及应用知识梳理:平面向量的夹角及表示:(1).平面向量的夹角的定义(2).范围: 表示方法:当夹角为0或错误!未找到引用源。

时,则称a与b ,记作: ;当夹角为9错误!未找到引用源。

时,则称a与b ,记作: ;2.向量的数量积定义:3.数量积几何意义与投影的概念:4.数量积的性质:设a与b是非零向量,e是单位向量,错误!未找到引用源。

是a与e的夹角,则①错误!未找到引用源。

= ;②a错误!未找到引用源。

b时,a错误!未找到引用源。

b错误!未找到引用源。

③错误!未找到引用源。

同向量,错误!未找到引用源。

④错误!未找到引用源。

反向量,错误!未找到引用源。

⑤错误!未找到引用源。

|错误!未找到引用源。

=错误!未找到引用源。

特别地:错误!未找到引用源。

=错误!未找到引用源。

+错误!未找到引用源。

+2a错误!未找到引用源。

b 错误!未找到引用源。

=错误!未找到引用源。

+错误!未找到引用源。

-2a 错误!未找到引用源。

b (a+b)错误!未找到引用源。

(a-b)=错误!未找到引用源。

-错误!未找到引用源。

⑥数量积的运算律: 交换律:;结合律:;分配律:⑦数量积的坐标运算:;⑧两向量垂直叛定:;⑨两向量夹角公式: ;⑩向量的模及两点间的距离: ;二、题型探究探究一:平面向量的数量积运算例1:已知|a |=5,|b |=4,a 与b 的夹角为12错误!未找到引用源。

,求:○1错误!未找到引用源。

○2错误!未找到引用源。

○3错误!未找到引用源。

-错误!未找到引用源。

;○4(2a-b )错误!未找到引用源。

(a+3b )(答案:-10;21;9;-48)探究二、数量积的综合应用例2:已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a ⋅-)2(=例3:已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°,(1)求证:)(b a -⊥c ;(2)若1||>++c b a k )(R k ∈,求k 的取值范围.解:(1)∵ 1||||||===c b a ,且a 、b 、c 之间的夹角均为120°,∴ 0120c o s ||||120cos ||||)(00=-=⋅-⋅=⋅-c b c a c b c a c b a∴ 0)(=⋅-c b a(2)∵ 1||>++c b a k ,即1||2>++c b a k也就是12222222>⋅+⋅+⋅+++c b c a k b a k c b a k ∵ 21-=⋅=⋅=⋅c a c b b a ,∴022>-k k 所以 0<k 或2>k .例4:已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2)(1)若|c |52=,且//,求的坐标;(2)若|b |=,25且b a 2+与-2垂直,求a 与b 的夹角θ. 解:(1)设),(y x =,由//和52|=c 可得:⎩⎨⎧2002122=+=⋅-⋅y x x y ∴ ⎩⎨⎧42==y x 或 ⎩⎨⎧42-=-=y x ∴)4,2(=,或)4,2(--=(2) ),2()2(-⊥+ 0)2()2(=-⋅+∴b a b a 即222320,a a b b +⋅-= 222||32||0a a b b ∴+⋅-=∴ 0452352=⨯-⋅+⨯b a , 所以25-=⋅b a ∴ ,1||||c o s -=⋅=b a b a θ ∵ ],0[πθ∈ ∴ πθ=.三、方法提升运用向是的数量积可以解决有关长度、角度等问题,也可以解决有关向量位置关系问题。

高三数学一轮复习备考教学设计:平面向量的应用

高三数学一轮复习备考教学设计:平面向量的应用

《平面向量》一轮复习(文科)教学设计一.考纲要求平面向量是高中数学的新增内容是高考命题的基本素材和主要背景之一,也是近几年高考的热点。

向量有着极其丰富的实际背景,是近代数学中重要和基本的概念之一。

向量是沟通代数、几何与三角函数的一种工具,它同时具有代数的运算性和几何的直观性,是数形结合的典范。

向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,能与中学数学教学内容的许多主干知识综合,形成知识交汇。

(一)、2016考试说明及解读(二)近三年全国卷部分考题展示:平面向量与解三角形交汇的题目3个选择题和7个填空题,其中有3道题是平面向量与解三角形的交汇(四)考情分析1.考查题型主要是以选择、填空为主,分值为10分左右,基本属容易题,也可以为中档的解答题.2.考查内容主要是平面向量的共线与垂直的充要条件,平面向量的线性运算和数量积运算,平面向量的应用等.(五)高考预测1.预计本章在今后的高考中,还将以向量的线性运算、向量的夹角、模、数量积为命题热点,将更加注重向量与其他知识的交汇,以考查基础知识、基本技能为主.2.题型主要以选择、填空为主,因此训练题的难度多数应该控制在中档即可,要适当增加以向量为载体考查平面几何,三角函数,解析几何,数列,不等式等问题的综合训练.3.对于能力型高考题的准备,向量具有基础知识的特点,是一种工具性和方法性知识,更要立足基本知识,基本方法,基本技能。

二.复习目标1、通过平面向量的线性运算和数量积运算,强化对平面向量基本概念的理解及提高向量运算求解能力。

2、通过向量与其它知识交汇的题型,体会向量的工具性作用。

特别是要关注向量与三角函数、解三角形、解析几何的结合。

3、关注数学思想方法在本章中的渗透:思想方法:数形结合的思想、类比的思想、分类讨论的思想、化归的思想、函数与方程的思想等。

解题方法:基向量法、坐标法、待定系数法、几何作图法、函数法等。

三.专题知识体系构建的方法与总体构思(复习计划)(一)进度安排本专题共有四讲内容:第一讲平面向量的概念及其线性运算第二讲平面向量基本定理及坐标表示第三讲平面向量的数量积第四讲平面向量应用举例前三讲每讲3课时,第四讲4课时,包括作业评讲,测试及评讲,共需两周时间。

(完整版)《平面向量的数量积》教学设计及反思

(完整版)《平面向量的数量积》教学设计及反思

《平面向量的数量积》教学设计及反思交口第一中学赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。

向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。

一、总体设想:本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。

教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

二、教学目标:1.了解向量的数量积的抽象根源。

2.了解平面的数量积的概念、向量的夹角3.数量积与向量投影的关系及数量积的几何意义4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算三、重、难点:【重点】1.平面向量数量积的概念和性质2.平面向量数量积的运算律的探究和应用【难点】平面向量数量积的应用四、课时安排:2课时五、教学方案及其设计意图:1.平面向量数量积的物理背景平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。

首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F 的所做的功为Wθ⋅F,这里的θ是矢量F和s的夹角,也即是两个=scos⋅向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。

这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。

2.平面向量数量积(内积)的定义已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π).并规定0与任何向量的数量积为0.零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a⋅b = |a||b|cosθ无法得到,因此另外进行了规定。

2018届高考数学(理)一轮复习人教版课件:第26讲 平面向量的数量积与平面向量应用举例

2018届高考数学(理)一轮复习人教版课件:第26讲  平面向量的数量积与平面向量应用举例

[答案] 3 2
[解析] ∵a,b 的夹角为 45°,|a|=1, 2 ∴a· b=|a||b|cos 45°= 2 |b|,∴|2a- 2 2 b| =4-4× |b|+|b| =10,∴|b|= 2
2
3 2(负值舍去).
课堂考点探究
考点一 平面向量数量积的运算
例 1 (1)[2016· 天津卷] 已知△ABC 是边长为 1 的等边三角形, 点 D,E 分别是边 AB,BC 的中点,连接 DE 并延长到点 F,使 → ·BC → 的值为( 得 DE=2EF,则AF ) 5 1 A.-8 B.8 1 11 C.4 D. 8 (2)[2016· 济宁期末]在△ABC 中, G 是△ABC 的重心, 边 AB, AC → ·BG → =( 的长分别为 2,1,∠BAC=60°,则AG ) 8 10 A.-9 B.- 9 5- 3 5- 3 C. 9 D.- 9

例 2 (1)[2017· 衡阳质检]已知 a =2, b =3, a+b = 19,则 a-b 等于(

[思路点拨] (1)欲求向量差的 模,需先求出 a· b 的值;(2) 1 由题意得 λ,μ 都等于 ,将 2 向量的模转化为向量的数量 2 →2 → 积,即 AD =AD ,计算后
0 (2)a⊥b⇔a· b=________ .
2 | a || b | - | a || b | (3)当 a 与 b 同向时,a· b=________;当 a 与 b 反向时,a· b=________.特别地,a· a=|a|
或|a|= a· a. (4)cos θ=________. (5)|a· b|≤|a|· |b|.
G 3 2 3 1 3 1 2 → = ,- ,BG → =- → ·BG →= ,所以AG ,所以AG , , 3 3 3 3 3 3

高三高考一轮复习优秀导学案:平面向量的数量积及应用

高三高考一轮复习优秀导学案:平面向量的数量积及应用

平面向量的数量积及应用(导学案)一、知识梳理:(请同学们阅读必修四) 1. 平面向量的夹角及表示:(1).平面向量的夹角的定义 (2).范围: 表示方法:当夹角为0或时,则称a 与b ,记作: ; 当夹角为9时,则称a 与b ,记作: ; 2.向量的数量积定义:3.数量积几何意义与投影的概念:4.数量积的性质:设a 与b 是非零向量,e 是单位向量,是a 与e 的夹角,则 ① = ;②a b 时,a b ③同向量,④反向量,⑤| =特别地:=++2a b=+-2a b (a+b) (a-b)=-⑥数量积的运算律: 交换律: ;结合律: ;分配律:⑦数量积的坐标运算: ; ⑧两向量垂直叛定: ; ⑨两向量夹角公式: ;⑩向量的模及两点间的距离: ; 二、题型探究探究一:平面向量的数量积运算例1:已知|a |=5,|b |=4,a 与b 的夹角为12,求: ○1○2○3- ; ○4(2a-b )(a+3b )探究二、数量积的综合应用例2:已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a⋅-)2(=例3:已知平面上三个向量a 、b 、c的模均为1,它们相互之间的夹角均为120°, (1)求证:)(b a-⊥c ;(2)若1||>++c b a k)(R k ∈,求k 的取值范围.例4:已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (1)若|c |52=,且a c //,求c 的坐标; (2)若|b |=,25且b a 2+与b a -2垂直,求a 与b 的夹角θ. 三、方法提升运用向是的数量积可以解决有关长度、角度等问题,也可以解决有关向量位置关系问题。

四、课时训练:1.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是()()A 0,24 ()B 24,4 ()C 16,0 ()D 4,02.平面直角坐标系中,O 为坐标原点,已知两点)1,3(A ,)3,1(-B ,若点C 满足OB OA OC βα+=,其中R ∈βα,,且1=+βα,则点C 的轨迹方程为:( )()A 01123=--y x ()B 5)2()1(22=-+-y x ()C 02=-y x ()D 052=-+y x3.已知向量)75sin ,75(cos =a ,)15sin ,15(cos=b ,那么||b a -的值是( )()A 21 ()B 22 ()C 23 ()D 14.在ABC ∆中,0<⋅AC AB ,ABC ∆的面积是415,若3||=AB ,5||=AC ,则BAC ∠=( )()A 6π()B 32π ()C 43π ()D 65π5.已知O 为原点,点,A B 的坐标分别为)0,(a A ,),0(a B ,其中常数0>a ,点P 在线段AB 上,且有AB t AP =)10(≤≤t ,则OP OA ⋅的最大值为 ( )()A a ()B a 2 ()C a 3 ()D 2a6.设12,F F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上,且120PF PF ⋅=,则||||21PF PF ⋅的值等于 ( )()A 2 ()B 22 ()C 4 ()D 87.设,,a b c 是任意的非零平面向量,且相互不共线,则 ①()()0a b c c a b ⋅-⋅=; ② ||||||a b a b -<-③()()b c a c a b ⋅-⋅不与c 垂直 ④22(32)(32)9||4||a b a b a b +⋅-=-中,是真命题的有 ( )(A )①② (B )②③ (C )③④ (D )②④8.设,,,O A B C 为平面上四个点,a OA =,b OB =,c OC =,且0=++c b a ,c b b a ⋅=⋅=a c ⋅1-=,则||||||c b a++=___________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题26 平面向量的数量积及平面向量的应用1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.(2)模:|a|=a·a=x21+y21.(3)夹角:cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ x21+y21·x22+y22.3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥b (b ≠0)⇔a =λb ⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量).(3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 5.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识. 6.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.高频考点一 平面向量数量积的运算例1、(1)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A .20 B.15 C .9 D .6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 (1)C (2)1 1故选C.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.【感悟提升】(1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【变式探究】(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22. (2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.高频考点二 用数量积求向量的模、夹角例2、(1)(2016·全国Ⅱ卷)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8B.-6C.6D.8(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.答案 (1)D (2)⎝⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3【方法规律】(1)根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题. (2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【变式探究】 (1)(2016·全国Ⅲ卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析 (1)|BA →|=1,|BC →|=1, cos ∠ABC =BA sup 6(→)·BC→|BA →|·|BC →|=32.由〈BA →,BC →〉∈[0°,180°],得∠ABC =30°. (2)由|a +b |2=|a |2+|b |2,得a ⊥b , 所以m ×1+1×2=0,得m =-2. 答案 (1)A (2)-2【感悟提升】(1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【举一反三】(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6D .6答案 (1)223(2)C(2)∵AB →·AC →=-1,∴|AB →|·|AC →|·cos120°=-1, 即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.高频考点三 平面向量与三角函数例3、在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.【感悟提升】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式探究】已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎪⎫3π2,2π,且OA→⊥OB →,则tan α的值为( ) A .-43B .-45C.45D.34答案 A高频考点四 向量在平面几何中的应用例4、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.【感悟提升】解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.【变式探究】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形 D .菱形答案 (1)12(2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,(2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)·AC →=DB →·AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形. 高频考点五、 向量在解析几何中的应用例5、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x=______.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y-3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k2=3,得k =±3,即y x=± 3.【感悟提升】向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.【变式探究】已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( ) A .5 B .6 C .10 D .12答案 BHE →·HF →=|HE →|·|HF →|cos∠EHF =23×23×12=6,故选B.高频考点六 向量的综合应用例6、(1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( ) A .1B.13C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3(2)由图象可知,M ⎝ ⎛⎭⎪⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝ ⎛⎭⎪⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎪⎫2-12=3.【感悟提升】利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.【变式探究】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域面积是( ) A .2 2 B .2 3 C .4 2 D .4 3答案 D解析 由|OA →|=|OB →|=OA →·OB →=2, 知〈OA →,OB →〉=π3.当λ≥0,μ≥0,λ+μ=1时,在△OAB 中,取OC →=λOA →,过点C 作CD ∥OB 交AB 于点D ,作DE ∥OA 交OB 于点E ,显然OD →=λOA →+CD →.由于CD OB =AC AO ,CD OB =2-2λ2,∴CD →=(1-λ)OB →,∴OD →=λOA →+(1-λ)OB →=λOA →+μOB →=OP →, ∴λ+μ=1时,点P 在线段AB 上,∴λ≥0,μ≥0,λ+μ≤1时,点P 必在△OAB 内(包括边界).考虑|λ|+|μ|≤1的其他情形,点P 构成的集合恰好是以AB 为一边,以OA ,OB 为对角线一半的矩形,其面积为S =4S △OAB =4×12×2×2sin π3=4 3.1.【2016高考江苏卷】如图,在A B C ∆中,D 是B C 的中点,,E F 是,A D 上的两个三等分点,4B C C A ⋅=,1B F C F ⋅=- ,则B E C E ⋅ 的值是 ▲ .【答案】78【2015高考山东,理4】已知菱形A B C D 的边长为,60A B C ∠=,则B D C D ⋅=( )(A )232a -(B )234a -(C )234a (D )232a【答案】D 【解析】因为()B D C D B D B A B A B C B A ⋅=⋅=+⋅()22223c o s 602B A BC B A a a a +⋅=+=故选D.【2015高考陕西,理7】对任意向量,a b ,下列关系式中不恒成立的是( )A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【解析】因为c o s ,a b a b a ba b ⋅=≤,所以选项A 正确;当a 与b 方向相反时,a b a b -≤-不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C 正确;()()22a b a b ab +-=-,所以选项D 正确.故选B .【2015高考四川,理7】设四边形ABCD 为平行四边形,6A B =,4A D =.若点M ,N 满足3B M M C =,2D N N C =,则A M N M ⋅=( )(A )20 (B )15 (C )9 (D )6【答案】C【2015高考安徽,理8】C ∆A B 是边长为2的等边三角形,已知向量a ,b 满足2a A B =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B【答案】D【解析】如图,由题意,(2)2B C A C A B a b a b =-=+-=,则||2b=,故A 错误;|2|2||2a a ==,所以||1a=,又22(2)4||222c o s 602A B A C a a b a a b⋅=⋅+=+=⨯=,所以1a b ⋅=-,故,B C错误;设,B C 中点为D ,则2A B A C A D +=,且A D B C⊥,而22(2)4A D a a b a b=++=+,所以()4C a b +⊥B ,故选D.【2015高考福建,理9】已知1,,A B A C A B A C t t⊥== ,若P 点是A B C ∆ 所在平面内一点,且4A B A C A P A BA C=+,则P B P C ⋅ 的最大值等于( )A .13B . 15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1A P =(,0)+4(0,1)=(1,4),即1P (,4),所以11P B t-=(,-4),【2015高考天津,理14】在等腰梯形A B C D 中,已知//,2,1,60A B D C A B B C A B C ==∠= ,动点E 和F 分别在线段B C 和D C 上,且,1,,9B E B C D F D C λλ== 则A E A F⋅的最小值为 .【答案】2918【解析】因为1,9D F D C λ=12D C A B =,119199918C F D F D C D C D C D C A B λλλλλ--=-=-==,A E AB B E A B BC λ=+=+,19191818A F A B B C C F A B B C A B A B B C λλλλ-+=++=++=+,()221919191181818A E A F A B B CA B B C A B B CA B B C λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421c o s 1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+=当且仅当2192λλ=即23λ=时A E A F⋅的最小值为2918.BA1.(2014·北京卷)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 【答案】 5【解析】∵λa +b =0,∴λa =-b ,∴|λ|=|b ||a |=51= 5.2.(2014·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________. 【答案】±33.(2014·江西卷)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b=3e 1-e 2的夹角为β,则cos β=________. 【答案】2 23【解析】cos β=a ·b |a||b|=(3e 1-2e 2)·(3e 1-e 2)|3e 1-2e 2||3e 1-e 2|=9e 21-9e 1e 2+2e 229e 21-12e 1·e 2+4e 229e 21-6e 1·e 2+e 22= 9-9×13+29-12×13+4·9-6×13+1=83×2 2=2 23.4.(2014·全国卷)若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=( ) A .2 B. 2 C .1 D.22【答案】B【解析】因为(a +b )⊥a ,所以(a +b )=0,即2+=因为(+b )⊥b ,所以(+b )=0,即b +2=0,与2+=0联立,可得-2=0,所以=2= 2.5.(2014·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b |=10,|a -b |=6,则=( ) A .1 B .2 C .3 D .5 【答案】A【解析】由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ·b =4,所以a ·b =1. 6.(2014·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.【答案】16【解析】因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC的面积S =12|AB →|·|AC →|sin A =12×23×sin π6=16.7.(2014·天津卷)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.712 【答案】CCE →·CF →=(λ-1, 3(λ-1))·(μ-1, 3(1-μ))=-23.②①-②得λ+μ=56.8.(2013年高考湖北卷)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152C .-322D .-3152解析:AB →=(2,1),CD →=(5,5),向量AB →=(2,1)在CD →=(5,5)上的投影为|AB →|cos 〈AB →,CD →〉=|AB →|AB sup10(→)·CD →|AB →||CD →|=AB sup10(→)·CD →|CD →|=1552=322,故选A.答案:A9.(2013年高考湖南卷)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( ) A .[2-1,2+1]B.[]2-1,2+2C .[1,2+1]D .[1,2+2]答案:A10.(2013年高考辽宁卷)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a·b ,求f (x )的最大值. 解析:(1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1. 又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎪⎫2x -π6+12, 当x =π3∈[0,π2]时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1. 所以f (x )的最大值为32.11.(2013年高考陕西卷)已知向量a =⎝ ⎛⎭⎪⎫cos x ,-12,b = (3sin x ,cos 2x ),x ∈R,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.当2x -π6=-π6,即x =0时,f (x )取得最小值-12.因此,f (x )在[0,π2]上的最大值是1,最小值是-12.1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A .22+ 3 B .2 3 C .4 D .12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos60°=4+4+2×2×2×12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A .2 3 B. 3 C .0 D .- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m ,a ·b =12+32×32+m 2×cos π6,∴3+3m =12+32×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( ) A.32 B.22 C.52 D.72答案 A4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A .正三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, ∴(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269 答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝ ⎛⎭⎪⎫avs4alco1(o(AC ,sup6(→))+13CB →)·⎝ ⎛⎭⎪⎫avs4alco1(o(AB ,sup6(→))+13BC →)=⎝⎛⎭⎪⎫avs4alco1(f(2,3)AC →+13AB →)·⎝ ⎛⎭⎪⎫avs4alco1(f(1,3)AC →+23AB →)=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则PA →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以PA →·(PB →+PC →)=PA →·2PM → =2×2×1×cos180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案1328.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”). 答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线. 同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心. 9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积. 解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6. ∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3.∴S △ABC =12|AB →||BC →|sin∠ABC =12×4×3×32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得asin A =b sin B ,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35, 解得c =1,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22. 11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.把a =-x 2代入①,得-x 2⎝ ⎛⎭⎪⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0). 所以动点M 的轨迹方程为y =14x 2(x ≠0). 12.已知向量a =⎝⎛⎭⎪⎫sin x ,34,b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围.解 (1)因为a ∥b , 所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b =2sin ⎝ ⎛⎭⎪⎫2x +π4+32.由正弦定理a sin A =bsin B ,得sin A =22,所以A =π4,或A =3π4.因为b >a ,所以A =π4.f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6=2sin ⎝ ⎛⎭⎪⎫2x +π4-12,因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12,32-1≤f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6≤2-12.∴所求范围是⎣⎢⎡⎦⎥⎤32-1,2-12.13.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3. 又|AB →|=|a|=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3. 14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35, 得cos(A -B )cos B -sin(A -B )sin B =-35,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22. 15.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R).(1)若m =n =23,求|OP →|; (2)用x ,y 表示m -n ,并求m -n 的最大值.解 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2), ∴|OP →|=22+22=2 2.(2)∵OP →=m (1,2)+n (2,1)=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n , 两式相减,得m -n =y -x .令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.。

相关文档
最新文档