大学物理作业答案(上)

合集下载

大连理工大学大学物理作业及答案详解1-22

大连理工大学大学物理作业及答案详解1-22

[解] 取半径为 r 、 厚度为 dr 的球壳。 认为球壳内电荷分 布是均匀的
dQ 4 r 2 dr (r ) 4A r 3 dr
R Q0 4r 2 (r )dr
A 4r 3 dr R 4 A
0
R
6.如图所示,一质量 m 1.6 10 kg 的小球,带电量 q 2 10
作业 2
1. 如图所示, 把点电荷 q 从高斯面外 P 移到 R 处 OP OR , ] O 为 S 上一点,则[ A. 穿过 S 的电通量 e 发生改变, O 处 E 变
B. e 不变, E 变。 C. e 变, E 不变。 D. e 不变, E 不变。
答案: 【B】 [解]闭合面外的电荷对穿过闭合面的电通量无贡献,或者说, 闭合面外的电荷产生的电场,穿过闭合面的电通量的代数和为零;移动点电荷,会使电荷重 新分布,或者说改变电荷的分布,因此改变了 O 点的场强。 2.半径为 R 的均匀带电球面上,电荷面密度为 ,在球面上取小面元 S ,则 S 上的电 荷受到的电场力为[ ]。
y a/ 2
y a / 2 处电场最强。
4. 如图所示, 在一无限长的均匀带点细棒旁垂直放置一均匀带电的细棒 MN 。 且二棒共面, 若二棒的电荷线密度均为 ,细棒 MN 长为 l ,且 M 端距长直细棒也为 l ,那么细棒 MN 受到的电场力为 。
答案:
[解] 坐标系建立如图: MN 上长为 dx 的元电荷 dq dx 受力 dF Edq 。 无限长带电直线场强 E
2 2 dx ln 2 ;方向沿 x 轴正向。 2 0 x 2 0
根据叠加原理, 圆心处场强可以看成是半径为 R ,电荷线密度为 的均匀带电园环 (带 电量为 Q1 2R ) 在圆心处产生的场强 E1 与放在空隙处长为 l , 电荷线密度为 的均 匀带电棒(可以看成是点电荷 q l )在圆心产生的场强 E 2 的叠加。即:

232838北交《大学物理》在线作业一15秋答案讲解

232838北交《大学物理》在线作业一15秋答案讲解

北交《大学物理》在线作业一一、单选题(共 10 道试题,共 40 分。

)1. 在下列情况下,能使做简谐运动的单摆振动周期变小的是(). 将摆的振幅减为原来的一半. 将摆从平地移到高山上. 将摆从赤道移到两极. 用一个装满砂的漏斗做成单摆,在摆动过程中让砂逐渐漏出正确答案:2. 在简谐波传播过程中,沿传播方向相距1/2λ(λ为波长)的两点,其振动速度必定[ ] . 大小相同,而方向相反. 大小方向均相同. 大小不同,方向相同. 大小不同,而方向相反正确答案:3. 一定量的刚性双原子分子理想气体,开始时处于压强为 p0 = 1.0×105 P,体积为V0 =4×10-3 m3,温度为T0 = 300 K的初态,后经等压膨胀过程温度上升到T1 = 450 K,再经绝热过程温度降回到T2 = 300 K,气体在整个过程中对外作的功(). 700 J. 800 J. 900 J. 1000 J正确答案:4. 某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见(). 力是使物体产生运动的原因. 力是维持物体运动速度的原因. 力是使物体速度发生改变的原因. 力是使物体惯性改变的原因正确答案:5. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和在两极板间的位置不同,对电容器电容的影响为. 使电容减小,但与介质板相对极板的位置无关. 使电容减小,且与介质板相对极板的位置有关. 使电容增大,但与介质板相对极板的位置无关. 使电容增大,且与介质板相对极板的位置有关正确答案:6. 以下表述正确的是[ ]. 功可以全部转化为热,但热不可以全部转化为功. 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体. 开尔文表述指出热功转换的可逆性. 克劳休斯表述指出了热传导的不可逆性正确答案:7. 固体和液体很难被压缩,这是因为 [ ]. 分子之间没有空隙. 分子之间只有很小的空隙,稍经压缩就不存在了. 分子之间距离较小,稍经压缩,斥力增长比引力增长大得多. 分子在不停地做热运动正确答案:8. 一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中[ ]. 物体的加速度是不断变化的. 物体在最高点处的速率为零. 物体在任一点处的切向加速度均不为零. 物体在最高点处的法向加速度最大正确答案:9. 有两个大小不相同的金属球,大球直径是小球的两倍,大球带电,小球不带电,两者相距很远.今用细长导线将两者相连,在忽略导线的影响下,则大球与小球的带电之比为:. 1. 2. 1/2. 0正确答案:10. 一质点在光滑平面上,在外力作用下沿某一曲线运动,若突然将外力撤消,则该质点将作[ ]. 匀速率曲线运动. 匀速直线运动. 停止运动. 减速运动正确答案:北交《大学物理》在线作业一二、多选题(共 10 道试题,共 40 分。

大学物理作业学生新版答案

大学物理作业学生新版答案
《大学物理》作业No.1运动的描述
班级________学号_________姓名_________成绩_______
一、选择题
1.一质点在平面上作一般曲线运动,其瞬时速度为 ,瞬时速率为 ,某一段时间内的平均速度为 ,平均速率为 ,它们之间的关系有
[](A) (B)
(C) (D)
2.某物体的运动规律为 ,式中的k为大于零的常数。当t=0时,初速为 ,则速度v与t的函数关系是
(C)顶点a、c处是正电荷,b、d处是负电荷.
(D)顶点a、b、c、d处都是负电荷.
6、下面说法正确的是:
[](A)等势面上,各点场强的大小一定相等;
(B)在电势高处,电势能也一定高;
(C)场强大处,电势一定高;
(D)场强的方向总是从电势高处指向电势低处。
7、两个薄金属同心球壳,半径各为 和 ( ),分别带有电荷 和 ,两者电势分别为 和 (设无穷远处为电势零点),将两球壳用导线连起来,则它们的电势为:
[ ](A) (B)
(C) (D)
3.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距离分别为r1和r2,如图所示。则在电荷移动过程中电场力做的功为
[](A) ;(B) ;
(C) ;(D) 。
4.某电场的电力线分布情况如图所示,一负电荷从M点移到N点。有人根据这个图得出下列几点结论,其中哪点是正确的?
(A)1>2,S=q/0.
(B)1q/0.
(D)1<2,S=q/0
4、关于高斯定理的理解有下面几种说法,其中正确的是()
(A)如果高斯面上 处处为零,则该面内必无电荷;
(B)如果高斯面内无电荷,则高斯面上 处处为零;

大学物理力学一、二章作业答案

大学物理力学一、二章作业答案

大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。

当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。

A .a ;B .a 2;C .2c ;D .224c a +。

2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。

3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。

从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。

A .2R ;B .R π;C . 0;D .ωπR 。

4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。

A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。

二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。

质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。

2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。

该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。

3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。

4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。

T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。

大学物理上学习指导作业参考答案共16页

大学物理上学习指导作业参考答案共16页

第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分 ()x x xd 62d 020⎰⎰+=v v v2分() 2 213 x x +=v 1分2、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x10 m 处,初速度v0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d tv 2=t 2 3分v d =x /d t 2=t 2 x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分 根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分s t 1=时, v = 4Rt 2= 8 m/s 1分2s /168/m Rt dt d a t ===v1分22s /32/m R a n ==v1分()8.352/122=+=n t a a a m/s 21分5、一敞顶电梯以恒定速率v 10 m/s 上升.当电梯离地面h =10 m时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度 =+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt v s 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, 即 θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 教师评语教师签字月 日第二章 运动与力课 后 作 业1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμsin cos +=MgF 2分令 0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力. 2、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2) 解:人受力如图(1) 图2分 a m g m N T 112=-+ 1分 底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分由以上四式可解得 ∴ 5.2474/))((212=++=a g m m T N 1分 5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分222a m g m T =- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ). 解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r .(取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得:T ( r )T ( r + d r ) = ( M / L ) d r r 2令 T ( r )-T (r + d r ) = d T ( r )LOO ′r O O ′ d r(+d r得 d T =-( M 2/ L ) r d r 4分由于绳子的末端是自由端 T (L ) = 01分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω∴ )2/()()(222L r L M r T -=ω3分第三章 动量与角动量课 后 作 业1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分 设A 对煤粉的平均作用力为f ϖ,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f =∴ 14922=+=y x f f f N2分f ϖ与x 轴正向夹角为= arctg (f x / f y ) = 57.4°1分 由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f ϖ相反.2分 2、质量为1 kg 的物体,它与水平桌面间的摩擦系数= 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少? 解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥1分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μt = 3 s, I = 28.8 N s2分则此时物体的动量的大小为 I m =v 速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2)解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s2分设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ② 由①、②得 t =2 s , v x =500 m/s2分 以2v ϖ表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 mv 0 = mv +M vv = m (v 0 v )/M =3.13 m/s2分T =Mg+Mv 2/l =26.5 N2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v ρ方向为正方向) 2分负号表示冲量方向与0v ϖ方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a r ρρρωωsin cos +=(SI)式中a 、b 、是正值常量,且a >b .(1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F ρ以及当质点从A 点运动到B 点的过程中Fρ的分力x F ρ和y F ρ分别作的功.解:(1)位矢 j t b i t a r ρρρωωsin cos += (SI)可写为 t a x ωcos = , t b y ωsin =在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x ρρρ+==jt mb i t ma ρρωωωωsin cos 22-- 2分由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d ama x x m ωω 2分⎰⎰-==bby y t b m y F W 020dy sin d ωω=⎰-=-bmb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得 222121)(kL kx x L F -=+- ② 2分 由② 解出kFL x 2-=使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功? (2)链条刚离开桌面时的速率是多少? 解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g ly m f μ= 1分 摩擦力的功 ⎰⎰--==00d d al al f y gy lmy f W μ2分 =022al y lmg-μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv2分4、一物体与斜面间的摩擦系数= 0.20,斜面固定,倾角 = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=221v 2分ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分)ctg 1(220αμ+=g h v =4.5 m2分(2)根据功能原理有 fs m mgh =-221v1分αμctg 212mgh mgh m -=v1分[]21)ctg 1(2αμ-=gh v =8.16 m/s2分第五章 刚体的转动课 后 作 业1、一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分 T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分a =r 2分解上述5个联立方程得: T =11mg / 8 2分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2/ 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分 对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J =MR 2 / 4 ③ 2分因绳与滑轮无相对滑动, a =R ④1分①、②、③、④四式联立解得 a =2g / 71分 3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ①2分T r =J ②2分由运动学关系有: a = r ③2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v ϖ和2v ϖ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ①3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m gM lf 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M t f -=⎰ ③2分由①、②和③解得 gm m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =.相应体积为 2201cV xyz V v -==3分观察者A测得立方体的质量 2201c m m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为 面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中2)/(1c a a x x v -=' =0.6×a 221在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm2 3分3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过. (1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 t 1 = L /v =2.25×10-7 s3分(2) 宇航员测得飞船船身的长度为L 0,则t 2 = L 0/v =3.75×10-7 s2分4、半人马星座星是距离太阳系最近的恒星,它距离地球S = 4.3×1016m .设有一宇宙飞船自地球飞到半人马星座星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年? 解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生t=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 )4分那么,在S '系中测得两事件之间距离为:2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m4分 6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = E根据相对论能量公式 E = m 2c 2- m 1c 22分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -=1分 ∴ )1111(22122220ccc m W v v ---==4.72×10-14 J =2.95×105eV2分希望以上资料对你有所帮助,附励志名言3条::1、世事忙忙如水流,休将名利挂心头。

大连理工大学大学物理1-22作业及答案详解

大连理工大学大学物理1-22作业及答案详解

答案:
[解] 坐标系建立如图: MN 上长为 dx 的元电荷 dq = λdx 受力 dF = Edq 。 无限长带电直线场强 E =
λ2 ln 2 ,方向沿 MN 2πε 0
λ , 方向:沿 x 轴正向。 2πε 0 x
∴ F = ∫ dF = ∫
2l
l
5.用不导电的细塑料棒弯成半径为 R 的圆弧,两端间空隙为 l ( l << R ) ,若正电荷 Q 均匀 分布在棒上,求圆心处场强的大小和方向。 解:设棒上电荷线密度为 λ ,则: λ =
π
∴ E0 = 2 ∫ − dE+ cos θ = −2 ∫
方向沿 y 轴负方向。 7.线电荷密度为 λ 的“无限长”均匀带电细线,弯成图示形状,若圆弧半径为 R ,试求 O 点的场强。
答案:按题给坐标,O 点的场强可以看作是两个半无限长直导线、半圆在 O 点产生场强的 叠加。即: E 0 = E1 + E 2 + E 3 上半无限长导线取电荷元 dq1 = λdx ,它在 O 点的场强沿 x 方向的分量: 由对称性, E1 和 E2 在 y 方向的矢量和为零;在 x 方向矢量和是单根的 2 倍。
大连理工大学大学物理作业及答案详解
作业 1 (静电场一)
1.关于电场强度定义式,下列说法中哪个是正确的?[
A.场强 E 的大小与试探电荷 q0 的大小成反比。 B.对场中某点,试探电荷受力 F 与 q0 的比值不因 q0 而变。 C.试探电荷受力 F 的方向就是场强 E 的方向。 D.若场中某点不放试探电荷 q0 ,则 F = 0 ,从而 E = 0 。
Q , 2πR − l
E 0 = E1 + E 2
;

大学物理活页作业答案(全套)

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m j i v-= )/(222--=s m ja8.解:t A tdt A adt v tot oωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=ωths2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=toxdt t t dx 64620.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv o t m k mg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mgk m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

大学物理活页作业答案(全套)马文蔚

大学物理活页作业答案(全套)马文蔚

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

段中张力为 T 2T1 cos 2m1g mg
故当去掉右边小球的外界约束时,右边小球所受合力仍 精品PPT 为零,且原来静止,故不会运动。
精品PPT
一、选择题
标准化作业(2)
1. 在相对地面静止的坐标系内,A、B二船都以2 m/s速率匀速行驶,
A船沿x轴正向,B船沿y轴正向.今在A船上设置与静止坐标系方向
i 相同的坐标系(x、y方向单位矢用
j 表示),
那(么A)在2Ai+船2上的j 坐(标B)系中2 ,iB+船2的j 速度(以m/s为单位)为
2
运动的切向加速度at=_____-_c___ ;法向加速度an=____(_b_-_c_t_)_2/R
4.点沿半径为R的圆周运动,运动学方程为 3 2t 2
(SI) ,则t时刻质点的法向加速度大小为an= 16 R t2 ; 角加速度 = 4 rad /s2
精品PPT
三质、点计,算试题用:半对径于r在、x角y平速面度内w和,单以、位原i矢点j 量O为表圆示心其作t时匀刻速的圆位周置运矢动量的.
dx dt dx
10 6x2 2 vdv
v
2 vdv
4 (10 6x2 )dx v 13m/ s
dx 0
0
解2:用动能定理,对物体
1 mv 2 0
4
Fdx
4(10 6x2 )dx
2
0
0
10x
2x3
4 0
=168
精品PPT
解出
v=13 m/s
绳子通过两个定滑轮,右端挂质量为m的小球,左端挂有两个质
已知在t = 0时,y = 0, x (2)由(1)导出速度 v
= r, 角速度w如 图所示; 与加速度 a 的矢量表示式;
解(:3)(1)试r证加x i速度y指j 向 r圆c心os.w t
i
r sinw t
j
(2)
v
d r
rw sinw t
i
rw cosw t
j
y
w
j r (x,y)
x
Oi
当t 0 时,初速为v0,则速度 v 与时间t的函数关系是
(A)
v
1 2
kt2
v0
,(B)
v
1 2
kt2
v0
精品PPT
(C) 1 kt2 1
v
2 v0
(D)
1 v
kt2 2
1 v0
[ C]
二3一、物填体空在题某瞬时,以初速度v从0 某点开始运动,在
t时间内,
经一长度为S的曲线路径后,又回到出发点,此时速度为 -v 0
(A)
mg
.
k
(C) gk
g (B)
2k
(D) gk.
[A ]
2. 一质量为M的斜面原来静止于水平光滑平面上,
m
将一质量为m的木块轻轻放于斜面上,如图.如
果此后木块能静止于斜面上,则斜面将
M
(A) 保持静止. (B) 向右加速运动.
(C) 向右匀速运动. (D) 向左加速运动.
精品PPT
[A ]
3.在如图所示的装置中,两个定滑轮与绳的
B
A的加速度大小aA=___0___,
精品PPT
B的加速度的大小aB=__2__g___.
三、计算题
5.质量m=2 kg的物体沿x轴作直线运动,所受合外力F=10
+6x2 (SI).如果在x=0处时速度v0=0;试求该物体运动到x=4
m处时速度的大小.
解1:F m dv m
dv
dx
m
dv
v
dt
标准化作业(1)
1.某质点作直线运动的运动学方程为x=3t-5t3 + 6 (SI),则该质点作
(A)匀加速直线运动,加速度沿x轴正方向.
(B)匀加速直线运动,加速度沿x轴负方向.
(C)变加速直线运动,加速度沿x轴正方向.
(D)变加速直线运动,加速度沿x轴负方向.
[ D]
2.某物体的运动规律为 dv / dt kv 2t ,式中的k为大于零的常量.
a
dt
dv
rw
2
cosw
tiBiblioteka rw 2sin w
t
j
dt
(3)
a
w
2
r
cosw
t
i
r
sin w
t
j
w
2
r
精品PPT
r a a 这说明 与 方向相反,即
指向圆心
标准化作业(3)
一、选择题 1. 质量为m的物体自空中落下,它除受重力外,还受到一个与 速度平方成正比的阻力的作用,比例系数为k,k为正值常量. 该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是
质量以及滑轮与其轴之间的摩擦都可忽略不
计,绳子不可伸长,m1与平面之间的摩擦也
可不计,在水平外力F的作用下,物体m1与
F
m1
T
m2
F m2 g
m2的加速度a=___m__1____m__2___,
绳中的张力T=_m__1m__2m__2_(_F____m_1_g_)_.
4.质量相等的两物体A和B,分别固定在弹簧的两端, A 竖直放在光滑水平面C上,如图所示.弹簧的质量 与物体A、B的质量相比,可以忽略不计.若把支持 面C迅速移走,则在移开的一瞬间,
,则在这段时间内: S
物体的平均速率是 t ;
物体的平均加速度是
2v 0 t

4一质点沿x方向运动,其加速度随时间变化关系为a = 3+2 t (SI) ,
如果初始时质点的速度v 0为5 m/s,则当t为3s时,质点的速
度 v = 23m/s .
精品PPT
三、计算题
5.质点沿x轴作直线运动,t时刻的坐标为x = 4.5 t2 – 2 t3 (SI) .
试求:
(1)第2秒内的平均速度;
(2)第2秒末的瞬时速度;
第2秒内的路程.
解:(1) v x x(2) x(1) 0.5 m/s
t
1
(2) v = d x/d t = 9t - 6t2
v(2) =-6 m/s
v=9t - 6t2=0 t =1.5s
(3) S = |x(1.5)-x(1)| + |x(2)-x(1.5)| = 2.25 m
量m1=
1m 2
的小球.将右边小球约束,使之不动. 使左边两小球绕竖直轴对称匀速
地旋转, 如图所示.则去掉约束时, 右边小球将向上运动, 向下运动或
保持不动?说明理由.
答:右边小球不动
理由:右边小球受约束不动时,
在左边对任一小球有
1m 2
1
m2
m
m
式中T1为斜悬绳中张 力,这时左边绳竖直
T1 cos m1g 0
(C) -2 i -2 j (D) 2 i -2
2. 以下五种运动形式中,a
j
保持不变的运动是
[ B]
(A) 单摆的运动. (B) 匀速率圆周运动.
(C) 行星的椭圆轨道运动. (D) 抛体运动.
精品PPT
(E) 圆锥摆运动.
[D ]
二、填空题 3.质点沿半径为R的圆周运动,其路程S随时间t变化的规律为 S bt 1 ct 2 (SI) , 式中b、c为大于零的常量,且b2>Rc. 则此质点
相关文档
最新文档