材料力学 第七章 应力状态及强度理论
合集下载
材料力学第七章应力状态和强度理论

2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学应力状态和强度理论

x 122.5MPa x 64.6MPa
σy 0
τ y 64.6
(122.5 , 64.6)
D1
B2
o
C
B1
(0 , - 64.6)
由 x , x 定出 D1 点 由 y , y 定出 D2 点 以 D1D2 为直径作应力圆。
D2
A1,A2 两点的横坐标分别代表 a 点的两个主应力
1 oA1 150MPa
1 x 136.5MPa
σ x 136.5MPa σy 0
τx0 τy0
2 3 0
D2 (0,0)
D1(136.5,0)
x 136.5MPa
b
σ1
σ x 136.5MPa τ x 0
σy 0
τy0
1 所在的主平面就是 x 平面 , 即梁的横截面 C 。
解析法求 a 点的主平面和主应力
解: x 100MPa, y 20MPa, x 40MPa, 300
20
300
100 40
x 100MPa, y 20MPa, x 40MPa, 300
x
2
y
x
2
y
cos
2
x
sin
2
x
2
y
sin
2
x
cos
2
300
100
(20) 2
100
(20) 2
cos( 600)
m
F
A
F
m
A
F
F
A
A 点 横截面 m—m 上的应力为: F
A
n
m
F
A
F
m
n
F
A
2
材料力学第七章_3_ 应变能密度和强度理论概要

材料力学
第 7章 应力和应变分析·强度理论
[例9-8]证明弹性模量E 、泊松比µ 、切变弹性模量G 之间 的关系为 G E 。
2(1 )
证明: 纯剪应力状态应变能密度为
3
v1
1
2
1 2
2G
1 , 2 0, 3
1
用主应力计算比能
v2
1 2E
[
2 1
2 2
2 3
2 (1 2
2 3
1
3
k
1
3
2
OC
B
3
1
2
1 3
河南理工大学土木工程学院
A
材料力学
第 7章 应力和应变分析·强度理论
各向同性材料的广义胡克定律:
εx
1 E
σx
μ
σy
σz
εy
1 E
σy
μσz
σx
εz
1 E
σz
μ
σx σy
xy
xy
G
,
yz
yz
G
,
zx
zx
G
上述一组方程为用应力表示应变,若用应变表示应力,
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
二、常用四个强度理论
● 第一强度理论(最大拉应力理论) 该理论不论材料处于什么应力状态,引起材料脆性断裂
破坏的主要原因是最大拉应力,并认为当复杂应力状态的最 大拉应力达到单向应力状态破坏时的最大拉应力时,材料便 发生断裂破坏。由此,材料的断裂判据为
一、强度理论的概念
1. 什么是强度理论 强度理论是关于材料破坏原因的学说。
材料力学 第07章 应力状态分析与强度理论

2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
工程力学c材料力学部分第七章 应力状态和强度理论

无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学第七章 应力状态

主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
材料力学 第七章 应力状态和强度理论

y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
第7章-应力状态和强度理论03

3)最大切应力理论(第三强度理论)
假设最大切应力max是引起材料塑性屈服的因 素,则:
max jx
对低碳钢等塑性材料,单向拉伸时的屈服是 由45°斜截面上的切应力引起的,因而极限应力 jx可由单拉时的屈服应力求得,即:
jx
因为: max
ss
2
常数
s1 s 3
对图示平面应力状态,不能分别用
s max [s ]
max [ ]
来建立,因为s与之间会相互影响。 研究复杂应力状态下材料破坏的原因,根据一 定的假设来确定破坏条件,从而建立强度条件,这 就是强度理论的研究内容。
4)材料破坏的形式 常温、静载时材料的破坏形式大致可分为: • 脆性断裂型: 例如: 铸铁:拉伸、扭转等; 低碳钢:三向拉应力状态。 • 塑性屈服型: 例如: 低碳钢:拉伸、扭转等; 铸铁:三向压缩应力状态。 可见:材料破坏的形式不仅与材料有关,还与 应力状态有关。
单拉: s r 4 3 s s s 由此可得: s
1
3 [ ] 0.577[s ] 0.6[s ]
s s 0.577s s
例:两端简支的工字钢梁承受荷载如图a所示。已 知材料(Q235钢)的许用应力为[s]=170MPa和[]= 100MPa。试按强度条件选择工字钢号码。
W 508 10 m
6
3
再按切应力强度条件进行校核。对28a号工 字钢,查表可得截面几何性质为:
I z 71.14 10 6 m 4
Iz S z ,max
d 0.85 10 m
2
24.62 10 2 m
中性轴处的最大切应力(纯剪应力状态)为:
max
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 4 x y x 2
2 x
cos 2 0
将
1 1 tg 2 2 0
2 4 x y x 2
x y
sin 2 0 tg 2 0 cos 2 0
2 4 x y x 2
2 x
x y x y cos 2 x sin 2 2 2 10 30 10 30 cos 60 20 sin 60 2 2 2.32MPa
x y
2 10 30 sin 60 20 cos 60 2 1.33MPa
第七章
应力状态与强度理论
7-1 何谓应力状态 1、什么是应力状态 同一点处,不同方向斜截面上 应力也不一样, 同一点处,不同方向斜截 面上应力的集合,称为该 点的应力状态 一点处所有斜截面上的应力情况 研究应力状态:
cos2
sin 2
1 2
最大、最小正应力、切应力
主应力采用符号:
1 , 2 , 3
并且规定
1 2 3
5、按主应力分类应力状态 (1)单向应力状态:三个主应力中只有一个不为零 (2)平面应力状态:若三个主应力中有两个不为零 .
(3)空间应力状态:三个主应力都不等于零
7-2 平面应力状态
有一对面没有应力(假设前、后一对面没有),将单元体用平 面图形表示
sin 2 x cos 2
二、 最大正应力和最大剪应力
1、最大正应力
令
当
x y
2
x y
2
cos 2 x sin 2
f ( )
d 0 d
x y sin 2 x cos 2 0 2
x y
取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
0
o 0 0 90
两个主平面相互垂直, 因此,主应力也一定互 相垂直。
正应力极值所在平面(主平面)也可由下式计算:
cos 2 0
1 1 tg 2 0
2
2 4 x y x 2
x y
sin 2 0 tg 2 0 cos 2 0
2
满足上式时,正应力取极值,比较切应力公式
可见在
sin 2 x cos 2
0
的截面上,正应力具有极值(最大或者最小)
因此,正应力极值(最大或最小)就是主应力
由
x y sin 2 x cos 2 0 2
2 x tg2 0 x y
2、研究应力状态的方法—单元体 围绕某点截取的无限小的 正六面体
dV dxdydz
当单元体边长趋于零, 单元体趋于一个点,因 此当说某“点”的应力 状态,是指单元体的应 力状态
轴向拉伸时的单元体
纯扭转时的单元体
弯曲时的单元体
弯曲与扭转组合变形时的单元体
3、应力状态的分类 一般情况下,每个基本微分面上 有三个应力分量:1 个正应力和 2 个剪应力
由切应力互等定理
x y
2 2
和三角关系式
x y
x y
cos 2 x sin 2
x y
2
sin 2 x cos 2
x y
2
x y
2
cos 2 x sin 2
x y
2
sin 2 x cos 2
只要已知基准面上的应力 由上式可以求)
的应力
也就是说,通过某点所有截面上的应力都可求。即知道一 点处的“应力状态”
例7-1 应力。
一单元体如图所示,试求在 = 30的斜截面上的
x 10MPa, y 30MPa , x 20MPa, y 20MPa, 30
假设: 1、相互平行的微面上,应力相等 2、同一面上的应力均匀
单向应力状态 三对面上,只有一对面上有,另两对面 上没有应力
平面应力状态
三对面上,有两对面上有
,另一对面上没有应力
空间应力状态:三对面上都有应力
平面应力状态和空间应力状态统称为 复杂应力状态
4、主平面和主应力
剪应力为零( = 0)的平面叫作主平面 主平面上的正应力叫作主应力 可以证明,弹性体内任意一点一定存在 三对主平面和三个主应力,且相互垂直
代入
x y
2
x y
2
cos 2 x sin 2
2
max x y x y 2 x 2 2 min
基准面:x面,y面
基准面上应力:
x面: x, x
y面: y, y
计算时规定:
正应力以拉应力为正,压应力为负
切应力以使单元体顺时针转动为正。逆时针转动为负。 图中应力正负?
一、斜截面上的应力
在单元体中截取一个斜面,斜面角度 逆时针转过的角度为正。反之为负
从x轴开始
取三角形单元建立静力平衡方程