指数函数、对数函数、幂函数练习题大全

合集下载

指数函数、对数函数、幂函数练习题大全(答案)

指数函数、对数函数、幂函数练习题大全(答案)

精心整理一、选择题(每小题4分,共计40分)1.下列各式中成立的一项是()A .7177(m n mn=B .3339=C .43433)(y x y x +=+D .31243)3(-=-2511112A 3A C 4A 5 A 67||2)(x x f -=A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数2221(++-=x x y 得单调递增区间是()A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[-1112 1314151617.有以②第2m 3m 6m 分别为1t 、2t 、3t ,则123t t t +=. 1 0 t/月2 3其中正确的是.三、解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----;(2)1122aa-+;(3)22(1)a a a -->.19.已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值. 20.(2k 1A 、a2、A 、413A 、4lg5lg 70=的两根是β的值是()A 、lg5lg7B 、lg35C 、35D 、355、已知732log [log (log )]0x =,那么12x -等于() A 、13B C D6、函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于()A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称 7、函数(21)log x y -=A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭82A 、R 9A 、10、A 、()1,⎛+∞ ⎝B 2,3⎫⎛⎫+∞⎪ ⎪⎭⎝⎭11、下列函数中,在上为增函数的是() A 、y C 、y 12A C 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n a a m n a +===。

高一幂函数,指数函数与对数函数小练习

高一幂函数,指数函数与对数函数小练习

幂函数、指数函数与对数函数1、 解方程:(1)192327x x ---⋅= (2)649x x x +=2、 若函数)10(log)(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为3、设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c 2log 21=⎪⎭⎫ ⎝⎛.则( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<4、已知幂函数223()m m f x x--=,()m Z ∈,图像关于Y 轴对称,且在(0,)+∞上为减函数,求函数的解析式。

5、已知函数()log ,(0,0,1)a x b f x a b a x b +=>>≠-且。

(1)求()f x 的定义域;(2)判断函数()f x 的奇偶性;6、若函数()f x =R ,求a 的取值范围。

7、函数对于)32(log )(221+-=ax x x f 。

(1)当定义域为R 时,求a 的取值范围; (2)当值域为R 时,求a 的取值范围。

8、已知函数11()3x y +=;(1) 做出图像; (2) 有图像指出其单调区间;(3) 当x 取什么值时,函数取最大值。

9、求函数1(2y =的定义域,值域,单调区间。

10、函数21133(log )log 1y x x =++的单调增区间为11、已知910390x x -∙+≤,求函数111()4()242x x y -=-+的最值。

12、已知函数2()log ,(01)2a x f x a x +=<<-。

(1)判断函数()f x 的奇偶性;(2)解不等式()log 3a f x x ≥。

13、求函数1()425x x f x +=--的定义域,值域,单调区间。

14、设关于x 的方程∈=--+b b x x (0241R )有实数解,求实数b 的取值范围。

幂函数、指数函数、对数函数专练习题(含答案)

幂函数、指数函数、对数函数专练习题(含答案)

若 x≥0,则 3x≥2x≥1,∴ f (3 x) ≥f (2 x) .
若 x<0,则 3x<2x<1,∴ f (3 x)> f (2 x) .
∴f
(3
x
)

f
(2
x
)

答案: A
3. 解析:由于函数 y= |2 x-1| 在 ( -∞, 0) 内单调递减,在 (0 ,+∞ ) 内单调递增,而函数在 区间 ( k- 1, k+ 1) 内不单调,所以有 k-1<0<k+ 1,解得- 1<k<1.
1 f ( x)< ,则实数
a 的取值范围
2
是(
)
1 A. (0 , ] ∪ [2 ,+∞ )
2
1 B. [ , 1) ∪ (1,4]
4
1 C. [ 2, 1) ∪ (1,2]
1
D.
(0

) 4

[4
,+∞)
二、填空题
7.函数 y= ax( a>0,且 a≠1) 在 [1,2] 上的最大值比最小值大
u( x) 在 (1,2) 上单调递增,则 u( x)> u(1) = a- 3,即 a≥3. 答案: B 5. 解析:数列 { an} 满足 an= f ( n)( n∈ N*) ,则函数 f ( n) 为增函数,
x
B
、 y log 2 x2 1
D、 y log 1 (x2 4x 5)
2
12 、 已 知 g( x) loga x+1 (a 0且a 1) 在 1,0 上 有 g( x ) 0, 则 f ( x) a x 1 是


A、在 ,0 上是增加的

(完整版)指数函数对数函数幂函数单元测试题

(完整版)指数函数对数函数幂函数单元测试题

指数函数、对数函数、幂函数测试题一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)l.设指数函数C1:y=a x,C2:y=b x,C3:y=c x的图象如图,则()A.0<c<1<b<a B.0<a<1<b<c C.c<b<a D.0<c<1<a<b2.函数y=a x-1(a>0,a≠1)过定点,则这个定点是()A.(0,1)B.(1,2)C.(-1,0.5)D.(1,1)3.若函数y=f(x)的图象与y=2-x的图象关于y轴对称,则f(3)=()A.8 B.4 C.81D.414.若指数函数y=a x经过点(-1,3),则a等于()A.3 B.31C.2 D.215.函数y=f(x)的图象与y=21-x的图象关于直线x=1对称,则f(x)为()A.y=2x-1 B.y=2x+1 C.y=2x-2 D.y=22-x6.对于∀x1,x2∈R(注:∀表示“任意”),恒有f(x1)·f(x2)=f(x1+x2)成立,且f(1)=2,则f(6)=()A.22B.4 C.2D.87.若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a=()A.41B.21C.22D.428.在同一坐标系中,函数y=2-x与y=log2x的图象是()9.设函数⎪⎩⎪⎨⎧>≤-=-).(),(12)(21xxxxfx若f(x0)>1,则x0的取值范围是()A.(-1,1) B.(-∞,-2)∪(0,+∞)C .(-1,+∞)D .(-∞,-1)∪(1,+∞)10.已知0<m <n <1,则a =log m (m +1)与b =log n (n +1)的大小关系是( ) A .a >b B .a =bf C .a <b D .不能确定 11.设函数F(x)=f(x)-)(1x f ,其中x-log 2f(x)=0,则函数F(x)是( ) A.奇函数且在(-∞,+∞)上是增函数 B.奇函数且在(-∞,+∞)上是减函数 C.偶函数且在(-∞,+∞)上是增函数 D.偶函数且在(-∞,+∞)上是减函数12.已知函数f(x)=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数f(x)x在区间(1,+∞)上A .有两个零点B .有一个零点C .无零点D .无法确定二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知对数函数C 1:y =log a x ,C 2:y =log b x ,如图所示,则a 、b 的大小是__________.14.函数)34(log 5.0-=x y 的定义域是__________. 15.(1)计算:log 2.56.25+lg 1001+ln e +3log 122+= . (2).0.02731--(-71)-2+25643-3-1+(2-1)0=________.16.已知f (e x )=x ,则f (5)等于_________________3log 9log 28的值是__________________________ 三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)17.已知二次函数()f x 满足(0)1f =,及(1)()2f x f x x +-=. (1)求()f x 的解析式;(2)若()(log )(01)a g x f x a a =>≠且,1,x a a ⎡⎤∈⎢⎥⎣⎦,试求()g x 的值域.18.当某种药品注射到人体内,它在血液中的残留量成指数型函数衰减.(1)药品A 在血液中的残留量可以用以下指数型函数描述:y =5e -0.2t ,其中,t 是注射一剂药A后的时间(单位:h ),y 是药品A 在人体内的残留量(单位:mg ).描出这个函数图象,求出y 的初始值,当t =20时,y 值是多少?(2)另一种药品B 在人体中的残留量可以表示成y =5e -0.5t .与药品A 相比,它在人体内衰减得慢还是快?19.已知函数f (x )=log a 11--x mx(a >0,a ≠1)是奇函数.(1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性.21.设函数)(x f 对于x 、y ∈R 都有)()()(y f x f y x f +=+,且x <0时,)(x f <0,2)1(-=-f . (1)求证:函数)(x f 是奇函数;(2)试问)(x f 在]4,4[-∈x 上是否有最值?若有,求出最值;若无,说明理由.(3)解关于x 的不等式)()(21)()(2122b f x b f x f bx f ->-(0≤b ).21.设函数2()21x f x a =-+.(1)证明:不论a 为何实数函数)(x f 总为增函数; (2)当)(x f 为奇函数时,求函数)(x f 的值域。

幂函数、指数函数、对数函数专练习题(含答案)

幂函数、指数函数、对数函数专练习题(含答案)

高中数学对数函数、指数函数、幂函数练习题1.函数f (x )=x21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2.函数x y 2log =的定义域是A.(0,1]B.(0,+∞)C.(1,+∞)D.[1,+∞)3.函数y =A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)4.若集合{|2},{|xM y y N y y ====,则M N ⋂=A.}1|{≥y yB.}1|{>y yC.}0|{>y yD.}0|{≥y y5.函数y=-11-x 的图象是 6.函数y =1-11-x ,则下列说法正确的是A.y 在(-1,+∞)内单调递增B.y 在(-1,+∞)内单调递减C.y 在(1,+∞)内单调递增D.y 在(1,+∞)内单调递减7.函数y =的定义域是A.(2,3)B.[2,3)C.[2,)+∞D.(,3)-∞ 8.函数xx x f 1)(+=在]3,0(上是 A.增函数B.减函数C.在]10,(上是减函数,]31[,上是增函数D.在]10,(上是增函数,]31[,上是减函数 9.的定义域是函数 )2(x lg y -= A.(-∞,+∞)B.(-∞,2)C.(-∞,0]D(-∞,1]10.的取值范围是则若设函数o xx x x x f ,1)f(x 0)(x )0(,12)(o >⎪⎩⎪⎨⎧>≤-=-11.21||x y =函数A.是偶函数,在区间(﹣∞,0)上单调递增B.是偶函数,在区间(﹣∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 12.的定义域是函数xx x y -+=||)1(013.函数y =A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14.下列四个图象中,函数xx x f 1)(-=的图象是15.设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于 A.[0,1)∪(2,+∞)B.[0,1]∪[2,+∞)C.[0,1]D.[0,2]16.设a =20.3,b =0.32,c =log3.02,则Aa >c >bB.a >b >cC.b >c >aD.c >b >a17.已知点(39在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B.3()f x x = C.2()f x x-=D.1()()2xf x =18.已知幂函数αx x f =)(的部分对应值如下表:则不等式1)(<x f 的解集是A.{}20≤<x x B.{}40≤≤x x C.{}22≤≤-x x D.{}44≤≤-x x19.已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x∞+--+=A.3B.4C.5D.6指数函数习题一、选择题1.定义运算a ?b =?a ≤b ?,b ?a >b ?)),则函数f (x )=1?2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .f (b x )≤f (c x ) B .f (b x )≥f (c x ) C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( )A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A?B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a 的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________. 三、解答题10.求函数y =211.(2011·银川模拟)若函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.对数与对数函数同步练习一、选择题 1、已知32a=,那么33log 82log 6-用a 表示是()A 、2a -B 、52a -C 、23(1)a a -+D 、23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为() A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于() A 、m n +B 、m n -C 、()12m n +D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是()A 、lg5lg7B 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于()A 、13B C D6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于()A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是()A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞9、若log 9log 90m n <<,那么,m n 满足的条件是() A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是() A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是()A 、12log (1)y x =+B 、2log y =C 、21log yx =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是()A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题13、若2log 2,log 3,m na a m n a+===。

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。

指数函数对数函数幂函数单元测试题

指数函数对数函数幂函数单元测试题

指数函数对数函数幂函数单元测试题层层飞跃,挑战巅峰——指数函数、对数函数、幂函数测试题一、选择题1.设指数函数C1:y=ax,C2:y=bx,C3:y=cx的图象如图,则()A。

0<c<1<b<aB。

0<a<1<b<cC。

c<b<aD。

0<c<1<a<b2.函数y=a(a>0,a≠1)过定点,则这个定点是()A。

(,1)B。

(1,2)C。

(-1,0.5)D。

(1,1)3.若函数y=f(x)的图象与y=2的图象关于y轴对称,则f(3)=()A。

8B。

4C。

-4D。

-84.若指数函数y=ax经过点(-1,3),则a等于()A。

3B。

2C。

1/3D。

1/25.函数y=f(x)的图象与y=2的图象关于直线x=1对称,则f(x)为()A。

y=2x-1B。

y=2x+1C。

y=2x-2D。

y=2^(2-x)6.对于任意x1,x2∈R,恒有f(x1)·f(x2)=f(x1+x2)成立,且f(1)=2,则f(6)=()A。

22B。

4C。

2D。

87.若函数f(x)=loga x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a=A。

1/4B。

1/2C。

2/2D。

2/48.在同一坐标系中,函数y=2-x与y=log2 x的图象是()A。

y=log2(2-x)B。

y=log2(2+x)C。

y=log2(2-x)+1D。

y=log2(2+x)-19.设函数f(x)={2-x-1 (x≤2)。

x(x>2)},若f(x)>1,则x 的取值范围是()A。

(-1,1)B。

(-∞,-2)∪(2,+∞)C。

(-1,+∞)D。

(-∞,-1)∪(1,+∞)10.已知0<m<n<1,则a=logm(m+1)与b=logn(n+1)的大小关系是()A。

a>bB。

a=bC。

a<bD。

指数函数、对数函数、幂函数基本性质练习(含答案)

指数函数、对数函数、幂函数基本性质练习(含答案)

1、用根式的形式表示下列各式)0(>a 151a = 232a- =2、用分数指数幂的形式表示下列各式: 134y x = 2)0(2>=m mm3、求下列各式的值 12325= 232254-⎛⎫⎪⎝⎭=4、解下列方程 11318x - = 2151243=-x1、下列函数是指数函数的是 填序号1xy 4= 24x y = 3xy )4(-= 424x y =..2、函数)1,0(12≠>=-a a a y x 的图象必过定点 ..3、若指数函数xa y )12(+=在R 上是增函数;求实数a 的取值范围 ..4、如果指数函数xa x f )1()(-=是R 上的单调减函数;那么a 取值范围是 A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中;正确的是A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:10.53.1 2.33.1 20.323-⎛⎫⎪⎝⎭0.2423-⎛⎫⎪⎝⎭3 2.52.3- 0.10.2-7、函数xx f 10)(=在区间1-;2上的最大值为 ;最小值为 .. 函数xx f 1.0)(=在区间1-;2上的最大值为 ;最小值为 ..8、求满足下列条件的实数x 的范围:182>x22.05<x9、已知下列不等式;试比较n m ,的大小:1nm22< 2nm 2.02.0< 3)10(<<<a a a n m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-;求该函数的表达式并指出它的定义域、值域和单调区间..11、函数x y ⎪⎭⎫ ⎝⎛=31的图象与xy -⎪⎭⎫⎝⎛=31的图象关于 对称..12、已知函数)1,0(≠>=a a a y x在[]2,1上的最大值比最小值多2;求a 的值 ..13、已知函数)(x f =122+-x x a是奇函数;求a 的值 ..14、已知)(x f y =是定义在R 上的奇函数;且当0<x 时;xx f 21)(+=;求此函数的解析式..对数第11份1、将下列指数式改写成对数式11624= 2205=a答案为:1 2 2、将下列对数式改写成指数式13125log 5= 210log 2a =-答案为:1 2 3、求下列各式的值164log 2= 227log 9 = 30001.0lg = 41lg = 59log 3= 69log 31= 78log 32=4、此题有着广泛的应用;望大家引起高度的重视已知.,0,1,0R b N a a ∈>≠>12log a a =_________ 5log a a =_________ 3log -a a =_________ 51log a a =________一般地;ba a log =__________2证明:N a Na =log5、已知0>a ;且1≠a ;m a =2log ;n a =3log ;求n m a +2的值..6、1对数的真数大于0; 2若0>a 且1≠a ;则01log =a ; 3若0>a 且1≠a ;则1log =a a ;4若0>a 且1≠a ;则33log =a a;以上四个命题中;正确的命题是 7、若33log =x ;则=x8、若)1(log 3a -有意义;则a 的范围是 9、已知48log 2=x ;求x 的值10、已知0)](lg [log log 25=x ;求x 的值对数第12份1、下列等式中;正确的是___________________________.. 131log 3= 210log 3=303log 3= 413log 3=53log 53log 252= 612lg 20lg =-7481log 3= 824log 21=2、设1,0≠>a a 且;下列等式中;正确的是________________________.. 1)0,0(log log )(log >>+=+N M N M N M a a a 2)0,0(log log )(log >>-=-N M NM N M a a a3)0,0(log log log >>=N M NMN M a a a4)0,0(log log log >>=-N M NMN M a a3、求下列各式的值1)42(log 532⨯=__________2125log 5=__________31)01.0lg(10lg 2lg 25lg 21-+++=__________ 45log 38log 932log 2log 25333-+- =__________525lg 50lg 2lg 20lg 5lg -⋅-⋅=__________ 61lg 872lg 49lg 2167lg214lg +-+-=__________ 750lg 2lg )5(lg 2⋅+=__________85lg 2lg 3)5(lg )2(lg 33⋅++=__________ 4、已知b a ==3lg ,2lg ;试用b a ,表示下列各对数.. 1108lg =__________ 22518lg=__________ 5、1求32log 9log 38⨯的值__________;28log 7log 6log 5log 4log 3log 765432⨯⨯⨯⨯⨯=__________6、设3643==yx ;求yx 12+的值__________.. 7、若nm 110log ,2lg 3==;则6log 5等于 ..对数函数第13份1、求下列函数的定义域: 1)4(log 2x y -= 2)1,0(1log ≠>-=a a x y a 3)12(log 2+=x y411lg-=x y 5)1(log )(31-=x x f 6)3(log )()1(x x f x -=- 答案为1 2 3 4 5 6 2、比较下列各组数中两个值的大小:133log 5.4log 5.5⎽⎽⎽⎽⎽ 21133log log e π⎽⎽⎽⎽⎽3lg 0.02lg3.12⎽⎽⎽⎽⎽ 4ln 0.55ln 0.56⎽⎽⎽⎽⎽ 52log 7⎽⎽⎽⎽⎽4log 50 676log 5log 7⎽⎽⎽⎽⎽ 75.0log 7.0⎽⎽⎽⎽⎽ 1.17.080.5log 0.3;0.3log 3;3log 2 97.0log 2 7.0log 3 7.0log 2.0 答案为8 93、已知函数x y a )1(log -=在),0(+∞上为增函数;则a 的取值范围是 ..4、设函数)1(log 2-=x y ;若[]2,1∈y ;则∈x5、已知||lg )(x x f =;设)2(),3(f b f a =-=;则a 与b 的大小关系是 ..6、求下列函数的值域1 )1lg(2+=x y 2)8(log 25.0+-=x y对数函数2第14份1、已知5log,5.0log ,6.0log 325.0===c b a ;则c b a ,,的大小 ..2、函数0(3)3(log >+-=a x y a 且)1≠a 恒过定点 ..3、将函数)2(log 3+=x y 的图象向 得到函数x y 3log =的图象;将明函数3log 2y x =+的图象向 得到函数x y 3log =的图象..4、1函数1lg 1lg )(++-=x x x f 的奇偶性是 .. 2函数()1()log (0,1)111a xf x a a x x+=>≠-<<-的奇偶性为5、若函数x x f 21log )(=;则)3(),31(),41(-f f f 的大小关系为 ..6、已知函数)1,0(log ≠>=a a x y a 在]4,2[∈x 上的最大值比最小值多1;求实数a 的值 ..幂函数第15份幂函数的性质A 、xy 2= B 、2x y -=C 、x y 2log =D 、21-=xy2、写出下列函数的定义域;判断其奇偶性12x y =的定义域 ;奇偶性为 23x y =的定义域 ;奇偶性为 321x y =的定义域 ;奇偶性为 431x y =的定义域 ;奇偶性为 51-=x y 的定义域 ;奇偶性为3、若一个幂函数)(x f 的图象过点)41,2(;则)(x f 的解析式为4、比较下列各组数的大小 17.17.14.3____5.3 23.03.03.1___2.1 36.16.15.2___4.2--5、已知函数12+=m x y 在区间()+∞,0上是增函数;求实数m 的取值范围为 ..6、已知函数2221()(1)m m f x m m x --=++是幂函数;求实数m 的值为 ..函数与零点第16份1、证明:1函数462++=x x y 有两个不同的零点;2函数13)(3-+=x x x f 在区间0;1上有零点2、二次函数243y x x =-+的零点为 ..3、若方程方程2570x x a --=的一个根在区间1-;0内;另一个在区间1;2内;求实数a 的取值范围 ..二分法第17份1、设0x 是方程062ln =-+x x 的近似解;且),(0b a x ∈;1=-a b ;z b a ∈,;则b a ,的值分别为 、2、函数x x y 26ln +-=的零点一定位于如下哪个区间A 、()2,1B 、()3,2C 、()4,3D 、()6,53、已知函数()35xf x x =+-的零点[]0,x a b ∈;且1b a -=;a ;b N *∈;则a b += .4、根据表格中的数据;可以判定方程20xe x --=的一个根所在的区间 为5、函数()lg 3f x x x =+-的零点在区间(,1)m m +()m Z ∈内;则m = .6、用二分法求函数43)(--=x x f x 的一个零点;其参考数据如下:据此数据;可得方程043=--x x的一个近似解精确到0.01为 7、利用计算器;列出自变量和函数值的对应值如下表:那么方程22xx =的一个根位于下列区间的分数指数幂第9份答案12、33222,x y m3、1125 281254、1512 216指数函数第10份答案1、12、1,12⎛⎫⎪⎝⎭3、12a >- 4、C5、C6、,,<<<7、11100,,10,10100 8、13(2)1x x ><-9、1m n <2m n >3m n >10、12xy ⎛⎫= ⎪⎝⎭;定义域R;值域()0,+∞单调减区间(),-∞+∞11、y 轴12、213、114、12,0()0,012,0xx x f x x x -⎧+<⎪==⎨⎪-->⎩对数第11份答案1、略2、略3、1623234-405262-7354、12;5;3-;15;b 2略5、126、123478、1a <9、10、100对数第12份答案1、45672、43、1132337241-51-607181 4、123a b +2322a b +-5、1103236、17、1m n m+- 对数函数第13份答案1、1{}|4x x <2{}|1x x > 31|2x x ⎧⎫>-⎨⎬⎩⎭4{}|1x x >5{}|12x x <≤6{}|132x x x <<≠且2、1<2<3<4<5<6<7>80.5log 0.3>3log 2>0.3log 3; 92log 0.7<3log 0.7<7.0log 2.03、2a >4、[]3,55、a b >6、1[)0,+∞2{}|3y y ≥- 对数函数2第14份答案1、c a b >>2、()4,33、向右平移2各单位;向下平移2各单位4、1偶函数2奇函数5、11()()(3)43f f f >>-6、122或 幂函数第15份答案1、D2、略3、1R;偶函数;2R;奇函数;3{}|0x x ≥;非奇非偶函数;4R;奇函数;5{}|0x x ≠;奇函数;6{}|0x x ≠;偶函数4、245、{}|0x x >6、原点7、减8、B 9、C10、D 11、2()f x x -=12、,,><> 13、12m >-14 函数与零点第16份答案1、 略2、 3;13、解:令2()57f x x x a =--则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-<⇒>⎪⎨<⇒--<⇒>-⎪⎪>⇒-->⇒<⎩ 06a ∴<<二分法第17份答案1、2;32、B3、3其中1,2a b ==4、1;25、26、1.567、(1.8,2.2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn = B .3339= C .43433)(y x y x +=+ D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为 .12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 . 三、解答题:(10+10+12=32分)18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值;1 0 t/月2 3(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m na a m n a+=== 。

14、函数(-1)log (3-)x y x =的定义域是 。

15、2lg 25lg 2lg 50(lg 2)++= 。

16、函数)()lgf x x =是 (奇、偶)函数。

三、解答题:(本题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.)17、已知函数1010()1010x xx x f x ---=+,判断()f x 的奇偶性和单调性。

18、已知函数222(3)lg 6x f x x -=-,(1)求()f x 的定义域; (2)判断()f x 的奇偶性。

19、已知函数2328()log 1mx x nf x x ++=+的定义域为R ,值域为[]0,2,求,m n 的值。

一、选择题1.下列所给出的函数中,是幂函数的是( )A .3x y -= B .3-=x y C .32x y = D .13-=x y2.函数3yx =( )A .是奇函数,且在R 上是单调增函数B .是奇函数,且在R 上是单调减函数C .是偶函数,且在R 上是单调增函数D .是偶函数,且在R 上是单调减函数 3.函数43y x =的图象是( )4.下列函数中既是偶函数又在(,0)-∞上是增函数的是( )A .43y x = B .32y x = C .2y x -= D .14y x -=5.幂函数()3521----=m xm m y ,当x∈(0,+∞)时为减函数,则实数m 的值为( )A. m =2B. m =-1C. m =-1或m =2D. 251±≠m 6.当0<x <1时,f(x)=x 2,21)(x x g =,h(x)=x -2的大小关系是 ( )A. h(x)<g(x)<f(x)B. h(x)<f(x)<g(x)C. g(x)<h(x)<f(x)D. f(x)<g(x)<h(x) 7. 函数2-=xy 在区间]2,21[上的最大值是( )A .41B .1-C .4D .4- 8. 函数3x y =和31x y =图象满 ( )A . 关于原点对称B . 关于x 轴对称C . 关于y 轴对称D . 关于直线x y =对称9. 函数R x x x y ∈=|,|,满足 ( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数10.在下列函数中定义域和值域不同的是( )A.31x y = B.21-=xy C.35x y = D.32x y =11.如图所示,是幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小为( ) A .102431<<<<<αααα B .104321<<<<<αααα C .134210αααα<<<<< D .142310αααα<<<<<12.设(),125212+⨯-=-x xx f 它的最小值是( )(A )21-(B )3- (C )169- (D )0二、填空题13.函数2223()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =____14.函数y x=-32的定义域是15.下列命题中,正确命题的序号是 __________ (写出你认为正确的所有序号)① 当0=α时函数y x α=的图象是一条直线; ② 幂函数的图象都经过(0,0)和(1,1)点;③ 若幂函数y x α=是奇函数,则y x α=是定义域上的增函数; ④ 幂函数的图象不可能出现在第四象限. 16.若22xx ≥,+∈R x ,则x 的取值范围是____________。

相关文档
最新文档