BZ振荡反应

合集下载

BZ振荡反应

BZ振荡反应

一、实验目的1、了解BZ 反应的基本原理。

2、初步理解自然界中普遍存在的非平衡非线形的问题。

二、实验原理非平衡非线性问题是自然界普遍存在的问题,大量研究工作正在进行。

研究的主要问题是:体系在远离平衡态下,由于本身的非线性动力学机制而产生宏观时空有序结构,称为耗散结构。

最典型的耗散结构是BZ 体系的时空有序结构,所谓BZ 体系是指由溴酸盐,有机物在酸性介质中,在有(或无)金属离子催化剂催化下构成的体系,它是由苏联科学家Belousov 发现,后经Zhabotingskii 发现而得名。

其主要思想是:系统中存在着两个受溴离子浓度控制过程A 和B ,当[Br -]高于临界浓度[Br -]crit时发生A 过程,当[Br -]低于[Br -]crit 发生B 过程。

在A 过程,由化学反应[Br -]降低,当[Br -]低于[Br -]crit时,B 过程发生。

在B 过程中,Br -再生,[Br -]增加,当[Br -]达到[Br -]crit 时,A 过程发生,这样系统就在A 过程,B 过程间往复振荡。

下面用BrO 3~Ce 4+~MA ~H 2SO 4系统为例加以说明。

过程A :当[Br —]足够大时,体系按这个过程进行:(1) BrO 3-+Br —+2H +−→−1K HBrO 2+HBrO (慢) (2) HBrO 2+Br —+H +−→−2K 2HBrO (快) 过程B :当只剩少量[Br —]时,Ce 3+按下式被氧化:(3) BrO 3-+HBrO 2+H +−→−3K 2BrO 2*+H 2O (慢) (4) BrO 2+Ce 3++H +−→−4K HBrO 2+Ce 4+ (快) (注:BrO 2*是自由基,反应(4)是瞬间完成的)(5) 2HBrO 2−→−5K BrO 3-+HBrO +H + 在A 过程中,慢反应(1)是决定速度的步骤,反应(2)是快反应,k 1/k 2=10-9,当k 2[HBrO 2]A [Br —] +[H +]= k 1[BrO 3-] [Br —] [H +]2,即[HBrO 2]A =( k 1/k 2) [BrO 3-] [H +]= 10-9[BrO 3-] [H +]时,反应达准定态。

B-Z化学振荡反应

B-Z化学振荡反应

B-Z化学振荡反应B-Z 化学振荡反应⼀、实验⽬的:1、了解Belousov-Zhabotinsky 反应(简称BZ 反应)的基本原理及研究化学震荡反应的⽅法;2、掌握在硫酸介质中以⾦属铈离⼦作催化剂时,丙⼆酸别溴酸氧化体系的基本原理;3、了解化学震荡反应的表观活化能计算⽅法。

⼆、实验原理:BZ 振荡反应是⽤⾸先发现这类反应的前苏联科学家Belousov 及Zhabotinsky 的名字⽽命名。

该反应由三个主过程组成:322322234223243222A 1)22)2B3)24)5)2C6)4()2436Br BrO H HBrO HBrO Br HBrO H HBrO HBrO BrO H BrO H O BrO Ce H HBrO Ce HBrO BrO H HBrO Ce BrCH COOH H O HBrO Br Ce CO H --+-+-++++-++-++++→+++→++→+++→+→+++++→+++过程过程过程总反应为322222223()2()3+4CeH Br CH COOH BrCH COOH CO H O ++-++→+根据公式ln1/t 诱=-E 诱/RT+C 可计算出表观活化能E 诱三、实验试剂与仪器BZOAS-IIS 型BZ 反应数据采集接⼝系统、微型计算机、HK-2A 型恒温槽、反应器、磁⼒搅拌器;丙⼆酸0.45mol ·dm-3、溴酸钾0.25 mol ·dm-3、硫酸3.00 mol ·dm-3、硫酸铈铵4×10-3 mol ·dm-3。

四、实验步骤1、连接好仪器,打开超级恒温⽔浴,将温度调节⾄35±0.1℃;2、打开电脑,双击打开bzl ﹒exe 系统软件,选择“设置参数”选项进⾏参数设置:横坐标极值:1000s 纵坐标极值:1200mv纵坐标零点:700mv 起始阀值:6 “画图起始点”选择“从测量开始即画”;3、在反应器中加⼊已配好的丙⼆酸溶液、溴酸钾溶液、硫酸溶液各10ml ,恒温搅拌10min后,加⼊硫酸铈铵溶液10ml,迅速插⼊电极,点击“开始实验”。

实验三十七BZ振荡反应

实验三十七BZ振荡反应
实验数据及结果处理
根据t诱与温度数据作lnl/t诱~1/T图,求出表现活化能。
实验讨论
1、实验中溴酸钾试剂纯度要求高。 2、217 型甘汞电极用lmol·L -1H2SO4作液接。 3、配 0.004 mol·L -1的硫酸铈铵溶液时,一定要在 0.20 mol·L -1硫酸介质中配制。防止发 生水解呈混浊。 4、所使用的反应容器一定要冲洗干净,转子位置及速度都必须加以控制。
kf
kf + knr
(38-10)
Φ=
k f [ A* ]
=
kf
k f ⋅[ A* ] + knr ⋅[ A* ] + kq ⋅[Q] ⋅[ A* ] k f + knr + kq ⋅[Q]
(38-11)
Φ0、Φ分别表示不加和加猝灭剂时的光量子产率。而
I0 = Φ0 =
k f /(k f + knr )
度后,再稳定 5 分钟,加入 10mL硫酸铈铵(4X10-3mol/L)后,点击“开始实验”,输入文件名,
保存实验波形及数据。注意观察溶液颜色的变化及信号电压值的变化。观察反应曲线,待反
应完成后,按“查看峰谷值”键可观察各波的峰、谷值。
7.如果需要打印此次实验波形,按下“打印”键,选择打印比例,程序根据操作者选择的
BrO3- + HBrO2 + H+ KK3 4
2BrO2 + H2O
(37-3)
BrO2 + Ce+3 + H+
HBrO2 + Ce+4
(37-4)
2HBrO2 KK5 5
BrO3- + HOBr + H+

B-Z化学振荡反应

B-Z化学振荡反应

化学振荡——BZ振荡反应一、背景材料在化学反应中,反应产物本身可作为反应催化剂的化学反应称为催化反应。

一般的化学反应最终都能达到平衡状态(组分浓度不随时间而改变),而在自催化反应中,有一类是发生在远离平衡态的体系中,在反应过程中的一些参数(如压力、温度、热效应等)或某些组分的浓度会随时间或空间位置作周期的变化,人们称之为“化学振荡”。

由于化学振荡反应的特点,如体系中某组分浓度的规律变化在适当条件下能显示出来时,可形成色彩丰富的时空有序现象(如空间结构、振荡、化学波……等)。

这种在开放体系中出现的有序耗散结构也证明负熵流的存在,因为在开放体系中,只有足够的负熵流才能使体系维持有序的结构。

化学振荡属于时间上的有序耗散结构。

别洛索夫(Belousov)在1958年首先报道以金属锌离子作催化剂在柠檬酸介质中被溴酸盐氧化时某中间产物浓度随时间周期性变化的化学振荡现象,扎勃丁斯基(Zhabotinski)进一步深入研究在1964年证明化学振荡体系还能呈现空间有序周期性变化现象。

为纪念他们最早期的研究成果,,将后来发现大量的可呈现化学振荡的含溴酸盐的反应体系为B-Z振荡反应。

随着研究的深入,人们发现所有的振荡反应都含有自催化反馈步骤,同时也发现了许多能发生振荡反应的体系(振荡器Dscillator)尽管如此,但化学振荡的动力学机理,特别是产生时一些有序现象的机理仍步完全清楚。

对于B-Z振荡反应,人们比较认可的FKN机理,是由Field、Koros、Noyes 等完成的。

近年来研究表明还存在着其他类型的振荡(如连续振荡、双周期振荡、多周期振荡等)化学振荡直观地展现了自然科学中普遍存在的非平衡非线性问题,故自发现以来一直得到人们的重视。

目前,随着对化学振荡研究的深入,许多化学振荡器陆续被设计出来,与此同时,对化学振荡的应用研究也已经开始。

本实验仅对含溴酸盐体系的B-Z 振荡反应进行设计性的探讨。

先通过典型的例子来了解B-Z 振荡反应的原理。

BZ振荡反应

BZ振荡反应
过程A:(1)Br BrO3 2H HBrO 2 HBrO
(2)Br HBrO2 H 2HBrO
过程B:(3)HBrO 2 BrO 3 H BrO2 H 2O (4)BrO2 Ce3 H HBrO 2 Ce4 (5)2HBrO 2 BrO3 H HBrO
• 恒温5min后按下开始实验按钮,根据提示 输入BZ振荡反应即时数据存储文件名。加 入浓度为0.04mol/L硝酸铈铵溶液3ml后, 按OK键进行实验。
• 观察反应曲线,待画完4个波形反应完成 后,按停止实验,记录起波时间。按察看 峰谷值键可以察看各波的峰、谷值。
• 按修改目标温度键修改反应温度。用上述 方法改变温度为30℃、35℃、40℃、45℃、 50℃时重复上述4-6步。
• 通常把化学 反应体系的各种时空有序结构称为非 线性化学现象 ,简称为非线性化学.非线性化学 作为一门新的交叉 学科正在形成之中,它已经成 为化学发展中的一个新的生长点。
BZ化学振荡体系
• 有些 自催化反应有可能使反应体系中某些物质的浓 度随时间(或空间)发生周期性的变化,这类反应称为 化学振荡反应。
• 过程 C为丙二酸被溴化为 BrCH(OOH)2,与 Ce4+ 反应生成 Br-,使 Ce4+还原为 Ce3+ 。
• 过程 C对化学振荡非常重要 ,如果只有.,正是 C 的存在,以丙二酸的消 耗为代价 ,重新得到 Br-和 Ce3+,反应得以 再启动,形成周期性的振荡。
BZ 振荡反应
.实验目的
• 了解B-Z振荡反应的基本原理。
• 掌握在硫酸介质中以金属铈离子作催化剂 时,丙二酸被溴酸氧化的基本原理。
• 初步了解自然界中普遍存在的非平衡非线 形问题。
实验原理

物理化学实验报告-BZ振荡反应

物理化学实验报告-BZ振荡反应

物理化学实验报告-BZ振荡反应
BZ振荡反应是一种经典的化学振荡反应,其特点在于反应体系呈现周期性的颜色变化。

本实验通过观察和分析BZ振荡反应的颜色变化规律,探究了振荡反应机制以及影响反应速率的因素。

实验步骤:
1. 准备工作:准备好测量药品、试管、电子秤等实验装置。

2. 实验操作:将准备好的药品按比例加入试管中,同时加入适量的稀盐酸,用玻璃
棒搅拌均匀。

观察试管液体的颜色变化,当液体呈现蓝色时加入适量的碘离子,不断观察
颜色变化。

3. 观察结果:当反应发生时,液体的颜色会出现周期性变化,从蓝色开始逐渐变为
无色、黄色、橙色、红色等颜色,然后再逐渐回到蓝色。

4. 分析结果:在反应过程中,反应物和产物的浓度随时间而变化,从而导致反应速
率的变化。

此外,碘离子的加入可促进反应的发生,同时稀盐酸的存在也可能影响反应速率。

5. 实验探究:改变反应物的浓度、温度等因素,可以对BZ振荡反应进行更深入的探究,以了解其反应机制和影响因素。

结论:
BZ振荡反应是一种周期性的化学振荡反应,其反应速率随着反应物和产物的浓度变化而变化。

碘离子的加入可促进反应的发生,而稀盐酸的存在也可能影响反应速率。

通过改
变反应物的浓度、温度等因素,可以进一步探究BZ振荡反应的反应机制及影响因素。

物理化学-实验二十六:BZ化学振荡反应

物理化学-实验二十六:BZ化学振荡反应

实验二十六BZ化学振荡反应一、实验目的及要求1. 了解BZ振荡(Belousov-Zhabotinski) 反应的基本原理及研究化学振荡反应的方法。

2. 掌握在硫酸介质中以金属铈离子作催化剂时,丙二酸被溴酸钾氧化过程的基本原理。

3. 测定上述系统在不同温度下的诱导时间及振荡周期,计算在实验温度范围内反应的诱导活化能和振荡活化能。

二、实验原理化学振荡是一种周期性的化学现象,即反应系统中某些物理量如组分的浓度随时间作周期性的变化。

早在17世纪,波义耳就观察到磷放置在留有少量缝隙的带塞烧瓶中时,会发生周期性的闪亮现象。

这是由于磷与氧的反应是一支链反应,自由基累积到一定程度就发生自燃,瓶中的氧气被迅速耗尽,反应停止。

随后氧气由瓶塞缝隙扩散进入,一定时间后又发生自燃。

1921年,勃雷(Bray W C)在一次偶然的机会发现H2O2与KIO3在稀硫酸溶液中反应时,释放出O2的速率以及I2 的浓度会随时间呈现周期性的变化。

从此,这类化学现象开始被人们所注意,特别是1959年,由贝洛索夫(Belousov B P)首先观察到并随后被扎波廷斯基(Zhabotinsky A M)深入研究的反应,即丙二酸在溶有硫酸铈的酸性溶液中被溴酸钾氧化的反应:3H++3BrO- 3+5CH2(COOH)2−−→−+3Ce3BrCH(COOH)2+4CO2+5H2O+2HCOOH这使人们对化学振荡发生了广泛的兴趣,并发现了一批可呈现化学振荡现象的含溴酸盐的反应系统,这类反应称为B-Z振荡反应。

而水溶液中KBrO3氧化丙二酸CH2(COOH)2的反应是化学振荡反应中最为著名,且研究的最为详细的一例,其催化剂为Ce4+/Ce3+或Mn3+/ Mn2+。

人们曾经对BZ反应做过多方面的探讨,并提出了不少历程来解释BZ振荡反应,其中说服力较强的是KFN历程(即Fidld.Koros及Noyes三姓的简称)。

按此历程,反应是由三个主过程组成:过程A (1) Br-+BrO3-+2H+→ HBrO2+HBrO(2) Br-+HBrO2+H+→ 2HBrO过程B (3) HBrO2+BrO3-+H+→ BrO2·+H2O(4) BrO2·+Ce3++H+→ HBrO2+Ce4+(5) 2HBrO2→ BrO3-+H++HBrO过程C (6) 4Ce4++BrCH(COOH)2+H2O+HBrO 2Br-+4Ce3++3CO2+6H+过程A是消耗Br-,产生能进一步反应的HBrO2,HBrO为中间产物。

BZ振荡反应

BZ振荡反应

(1) 必须是远离平衡态的敞开体系;
(2) 反应历程中含有自催化步骤; (3) 体系必须具有双稳态性,即可以在两个稳态间来回振荡。
二、基本原理
BZ振荡反应的机理:
2BrO3- +3CH2(COOH)2 + 2H+
Ce3+、Br-
2BrCH(COOH)2 +3CO2 +4H2O
体系中存在着两个受溴离子浓度控制的过程: 当Br-足够大时:
3 4
通过测定 (Ce3+/Ce4+)的变化周期,即可得反应的周期。
电势E/V
tu
tz 时间t/min
tz
从曲线中可以得到诱导时间(tu)和振荡周期(tz),根据阿 仑尼乌斯公式
ln E 1 u ln Au tu RT
1 Ez ln ln Az tz RT
通过上式可以分别计算诱导反应和振荡反应的表观活化能。
(1 / tu ) 2 Eu (T2 T1 ) ln (1 / tu )1 RT1T2
(1 / t z ) 2 Ez (T2 T1 ) ln (1 / t z )1 RT1T2
资料:
1958年贝罗索夫(Belousov):金属铈离子作催化剂时,柠 檬酸被HBrO3氧化时呈现化学振荡现象。 柴波廷斯基(Zhabotinskii):有些反应可呈现空间有序。 之后发现了一类振荡反应,称为B-Z 振荡反应。 1969年普利高津(I.Prigogine):在一次理论物理与生物学 的国际会议上,提出了“耗散结构理论”。 普利高津领导的布鲁塞尔学派,是国际上著名的菲平衡态 统计物理学派之一。普利高津曾获1977年诺贝尔奖金。 1978年以来, “耗散结构理论” 在我国得到广泛传播。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BZ振荡反应
刘恺 1120123036
一、实验目的
(1)了解BZ(Belousov-Zhabotinski)反应的基本原理。

(2)观察化学振荡现象。

(3)练习用微机处理实验数据和作图。

二、实验原理
化学振荡:反应系统中,某些物理量(如某组分浓度)随时间做周期性变化。

BZ体系:溴酸盐、有机物在酸性条件以及在有(或无)金属离子催化剂作用下构成的体系。

BZ振荡反应机理(FKN机理):
总反应:(A)2H++2Br0
3-+2CH
2
(COOH)
2
→2BrCH(COOH)
2
+3CO
2
+4H
2
O
过程(1):(B)BrO
3-+Br-+H+→HBrO
2
+HOBr
(C)HBrO
2
+Br-+H+→2HOBr
过程(2):(D)BrO
3-+HBrO
2
+H+→2BrO
2
+H
2
O
(E)BrO
2+Ce3++H+→HBrO
2
+Ce4+
(F)2HBrO
2→BrO
3
-+HOBr+H+
Br-再生过程(G)4Ce4++BrCH(COOH)
2+H
2
O+HOBr→2Br-+4Ce3++3CO
2
+6H+
体系中存在着两个受溴负离子浓度控制的过程(1)与(2)。

当溴负离子含量足够高时,主要发生过程(1),其中步骤B是速率控制步骤。

当溴负离子含量低时,主要发生过程(2),其中D是速率控制步骤。

如此,体系在过程(1)与(2)之间往复振荡。

反应进行时,系统中Br-、HBrO
2
、Ce3+、Ce4+的浓度均随时间做周期性变化。

实验中,可选用溴离子选择电极测定Br-,用铂丝电极测定Ce4+、Ce3+随时间变化。

从加入硫酸铈铵到体系开始振荡的时间为t

,诱导期与反应速率成反比,
即1/t
诱正比于k=Aexp(-E

/RT),并且有,
Ln(1/t
诱)=LnA-E

/RT.
作图Ln(1/t
诱)-1/T,根据斜率可求出表观活化能E
表。

三、仪器与试剂
BZ反应数据采集接口系统、微型计算机、恒温槽、反应器、磁力搅拌器、丙二酸(0.45mol/L)、溴酸钾(0.25mol/L)、硫酸(3.00mol/L)、硫酸铈铵(4×10-3mol/L).
四、实验步骤
(1)恒温槽水浴接通电源,设置温度为30℃。

用去离子水清洗反应器、铂电极、参比电极。

检查仪器连线(铂电极-BZ反应数据采集接口正极,参比电极-BZ反应数据采集接口负极,温度传感器探头-恒温水浴)。

(2)启动微机,接通BZ反应数据采集接口系统电源,进入BZ振荡软件主菜单。

(3)文件-新建;实验-设置参数(使用默认值);实验-反应记录。

(4)取8ml 硫酸铈铵溶液于锥形瓶中,放于恒温槽中恒温。

(待恒温槽温度稳定在设置温度
并在软件窗口出现提示。

)分别取丙二酸溶液、溴酸钾溶液、硫酸溶液8ml混合,加入反应器中,固定好电极,用磁力搅拌器搅拌,并调好搅拌速度,实验中不得改变速度。

(5)将恒温5分钟后的硫酸铈铵溶液加入反应器中,立即单击“开始记录”键,系统开始采集记录,显示电位信号。

(6)系统画完10个振荡周期后,单击“停止实验”。

(7)重新设置恒温槽温度36℃,升温期间,去离子水清洗电极、反应器(原反应液倒入废液瓶中)。

(8)取8ml硫酸铈铵溶液于锥形瓶中,放于恒温槽中恒温。

(待恒温槽温度稳定在设置温度并在软件窗口出现提示。

)分别取丙二酸溶液、溴酸钾溶液、硫酸溶液8ml混合,加入反应器中,固定好电极,用磁力搅拌器搅拌,并调好搅拌速度,实验中不得改变速度。

(9)之后的反应依次进行,之后再分别设置39℃、42℃,同样方法进行实验。

(10)实验-查看波形;对于系统判断错误的起波时间进行修正。

(11)实验-处理数据;据软件提示,进行A、B处理,打印处理结果。

并拷贝实验数据。

(12)清洗化学仪器,关闭恒温槽、BZ反应数据采集接口系统、微机电源。

五、数据处理
在开始震荡后,溶液颜色逐渐由黄色变为无色。

之后在黄色和无色之间振荡。

用origin处理每次实验的数据,各个温度下(30、33、36、39)bz振荡曲线作图如下
30 度
33 度
36 度
39 度
拟合曲线得到:
直线斜率K=-E诱/R=-6631.3
得出E诱 = K•(-R)=55132.63J/mol
六、实验总结
随着温度的升高,导致反应速度提高,因而使振荡周期和振荡反应起波时间都减小。

实验中由于软件误差只能自己读取起波时间,采用的是第一个波波峰与波谷中间值,读数有一定误差。

实际观察中,黄色与无色之间的振荡颜色变化不很明显。

可能是由于反应振荡速度较快,不同颜色的停留时间比较短导致人眼不能准确区分。

七、思考题
1、什么是化学振荡现象?产生化学振荡需要哪些条件?
在自催化反应中,有一类反应发生在远离平衡态的体系中,在反应过程中的一些参数(如压力、温度、热效应等)或某些组分的浓度会随时间或空间位置作周期的变化,人们称之为“化学振荡”。

化学振荡的条件有:(1)远离平衡态;(2)含有自催化反馈步骤;(3)具有双重稳定态;(4)在开放系统中进行
2、本实验中直接测定的量是什么?目的是什么?
本实验直接测出的是波形图,图中直接反应起波时间、电势差(波峰、波谷)、温度和震荡周期。

不同时间下的电势差可以反映体系的振荡;起波时间与温度一起可以用来计算表观化学能,温度影响反应速度体现在震荡周期和起波时间的减小上。

相关文档
最新文档