初中数学不等式专题复习
不等式知识点归纳总结初中

不等式知识点归纳总结初中不等式是数学中一个重要的概念,它是比较两个不相等的数值大小关系的表达方式。
在初中数学学习中,我们经常会遇到不等式的问题。
下面,我们将对初中的不等式知识点进行归纳总结,帮助大家更好地理解和掌握这一概念。
1. 不等式的定义和表示方法不等式是比较两个数的大小关系的数学语句,表示为a<b、a>b、a≤b或a≥b。
其中,a、b是实数或者变量,<、>、≤和≥是比较符号,表示小于、大于、小于等于和大于等于的关系。
2. 不等式的性质(1)传递性:如果a>b,b>c,则a>c。
(2)加减法性质:如果a>b,则a+c>b+c,a-c>b-c(其中c是一个实数)。
(3)乘除法性质:如果a>b,且c是一个正数,则ac>bc;如果a>b,且c是一个负数,则ac<bc(需要注意的是,如果c是一个负数,则不等号方向需要反转)。
3. 不等式的解集表示对于不等式a<b,它的解集可以通过数轴上的点或者数对的形式来表示。
比如,在数轴上,我们可以用一个开区间(,)、一个闭区间[ ]、一个半开半闭区间( ]或[ )来表示。
另外,不等式的解集也可以通过一个数对(x,y)的形式表示,其中x表示不等式的下界,y表示不等式的上界。
4. 不等式的求解方法(1)加减法解不等式:对于不等式a+b>c,我们可以先将不等式转化为a>c-b,然后根据不等号的性质和数轴上的表示方法,得到解集。
(2)乘除法解不等式:对于不等式a×b>c或a/b>c,我们可以先将不等式转化为a>c/b,然后根据不等号的性质和数轴上的表示方法,得到解集。
(3)绝对值不等式的解法:对于形如|a|<b或|a|>b的绝对值不等式,可以根据绝对值的定义和性质,转化为两个简单的不等式,然后进行求解。
(4)复合不等式的解法:对于形如a<b<c的复合不等式,可以将其分解为两个简单的不等式,然后求解得到解集的交集。
初中数学复习解方程与不等式的常见方法

初中数学复习解方程与不等式的常见方法一、方程的解法在初中数学中,解方程是一个重要的内容。
解方程的基本思想是通过找到未知数的取值,使得等式两边成立。
下面介绍几种常见的解方程方法。
1.1 代入法代入法是解一元一次方程的简单有效方法。
首先将方程中的一边用已知数值替代,然后求解未知数的值。
例题:求解方程2x + 3 = 7。
解法:将7代入方程,得到2x + 3 = 7,然后解得x = 2。
1.2 消元法消元法是解一元一次方程的常用方法。
通过加减或乘除等运算,将方程中的未知数系数相消,最终求得未知数的值。
例题:求解方程3x + 2 = 5x - 1。
解法:将5x-1减去3x+2,得到2x=-3,然后解得x=-1.5。
1.3 因式分解法因式分解法适用于一些特殊的多项式方程。
通过因式分解,将方程化简为两个乘积等于零的方程,然后求解未知数的值。
例题:求解方程x^2 - 4 = 0。
解法:将方程进行因式分解,得到(x+2)(x-2) = 0,然后解得x=-2或x=2。
二、不等式的解法解不等式与解方程类似,不同之处在于不等式的解集通常是一个区间。
下面介绍几种常见的解不等式方法。
2.1 图解法图解法是解不等式的直观方法。
首先画出不等式的图像,然后确定满足不等式条件的区域。
例题:求解不等式2x + 3 > 5。
解法:将不等式化简,得到2x > 2,然后画出2x=2的直线,由于不等式为大于号,所以直线右侧的区域满足条件。
因此,解集为x>1。
2.2 代入法代入法也可以用于解不等式。
通过代入不同的数值,确定满足不等式条件的数值范围。
例题:求解不等式x^2 - 4x + 3 <= 0。
解法:将不等式中的不等号改为等号,得到x^2 - 4x + 3 = 0,然后解得x=1或x=3。
代入数值x=2,得到2^2 - 4*2 + 3 = -1;代入数值x=0,得到0^2 - 4*0 + 3 = 3。
由于题目要求的是小于等于0的解,所以解集为x<=1或x>=3。
自学初中数学资料 不等式综合复习(资料附答案)

自学资料一、不等式综合复习【错题精练】例1.已知关于x的不等式ax<b的解为x>﹣2,则下列关于x的不等式中,解为x<2的是()A. ax+2<﹣b+2B. ﹣ax﹣1<b﹣1C. ax>bD.【解答】由已知不等式的解集确定出a为负数,确定出所求不等式即可.解:∵关于x的不等式ax<b的解为x>﹣2,∴a<0,则解为x<2的是﹣ax﹣1<b﹣1,故选:B.【答案】B例2.若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是()第1页共25页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 1<a≤7B. a≤7C. a<1或a≥7D. a=7【解答】求出不等式2x<4的解,求出不等式(a﹣1)x<a+5的解集,得出关于a的不等式,求出a即可.本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于a的不等式是解此题的关键.解:解不等式2x<4得:x<2,∵不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,∴a﹣1>0,x,∴≥2,﹣2≥0,≥0,≥0,∵a﹣1>0,∴解得:1<a≤7,故选:A.【答案】A例3.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值范围是__________ .第2页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】【答案】1<z<11例4.若不等式x<a只有5个正整数解,则a的取值范围.【答案】5<a≤6.例5.定义新运算:对于任意实数a,b都有:a⊕b=a(a−b)+1.如:2⊕5=2×(2﹣5)+1=﹣5,那么不等式3⊕x<13的解集为.【答案】x>−1.【举一反三】1.若关于x的不等式3m−2x<5的解集是x>3,则实数m的值为..【答案】1132.我们把称作二阶行列式,规定他的运算法则为,如:,如果有,则x__________ .第3页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】解:列不等式得:2x﹣(3﹣x)>0,整理得:2x﹣3+x>0,解得:x>1.故答案为:x>1.【答案】x>13.不等式组无解,则a的取值范围是__________.【解答】二、三角形的初步知识综合复习【错题精练】例1.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF的度数为()A. 45°∠AB. 90∠AC. 90°﹣∠AD. 180﹣∠A【解答】由题中条件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°与∠BDE、∠CDF的差表示,进而求解即可.解:∵AB=AC,∴∠B=∠C,∵BD=CF,BE=CD∴△BDE≌△CFD,∴∠BDE=∠CFD,第4页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=∠C,∵∠A+∠B+∠C=180°.∴∠A+2∠EDF=180°,∴∠EDF=90°﹣∠A.故选:B.【答案】B例2.如图∠BAC的平分线AD与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=22,AC=10,则BE=.【答案】6.例3.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,求∠EFC的度数.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45∘,又∵AB=AC,∴∠ABC=12(180∘−∠BAC)=12(180∘−45∘)=67.5∘,∴∠CBE=∠ABC−∠ABE=67.5∘−45∘=22.5∘,∵AB=AC,AF⊥BC,∴BF=CF,第5页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∴BF=EF,∴∠BEF=∠CBE=22.5∘,∴∠EFC=∠BEF+∠CBE=22.5∘+22.5∘=45∘.【答案】45°.例4.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图,若AC=BC,AD=BE,CD=CE,∠ACE=55∘,∠BCD=155∘,则∠BPD的度数为.【答案】130°.【举一反三】1.(1)如图1所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O,试说明∠BOC=90∘+∠A.(2)如图2所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线,试说明∠D=90∘−∠A.(3)如图3,B、C、D在一条直线上,∠PBC=∠ABC,∠PCD=∠ACD,求证∠BPC=∠BAC.【解答】(1)证明:∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∠A为x∘∴∠OBC+∠OCB=12(180∘−∠A)=12×(180∘−x∘)=90∘−12∠A故∠BOC=180∘−(∠OBC+∠OCB)=180∘−(90∘−12∠A)=90∘+12∠A(2)证明:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∠A为x∘∴∠BCD=12(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180∘−∠BCD−∠DBC第6页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训[∠A+(∠A+∠ABC+∠ACB)]=180∘−12(∠A+180∘)=180∘−12=90∘−1∠A2(3)证明:∵BD为△ABC的角平分线,交AC与点ECD为△ABC外角∠ACE的平分线,两角平分线交于点D(∠A+2∠1),∠3=∠4,∴∠1=∠2,∠5=12在△ABE中,∠A=180∘−∠1−∠3∴∠1+∠3=180∘−∠A−−−−①在△CDE中,∠D=180∘−∠4−∠5=180∘−∠3−(∠A+2∠1),即2∠D=360∘−2∠3−∠A−2∠1=360∘−2(∠1+∠3)−∠A−−−−②,把①代入②得:2∠D=∠A.【答案】略.2.如图,△ABC中,∠ACB=90∘,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22∘,则∠BDC等于()A. 44°;B. 60°;C. 67°;D. 77°.【答案】C3.如图,P是等边△ABC外一点,把△ABP绕点B顺时针旋转60∘到△CBP′,已知∠AP′B=150∘,P′A:P′C=2:3,求PB:P′A.图一图二第7页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第8页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第9页 共25页 自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞 非学科培训【解答】、(1)证明:在△ABC 和△BAD 中,{AC =BD∠CAB =∠DBA AB =BA,∴△ABC ≌△BAD (SAS ),∴∠C =∠D ,在△ACE 和△BDE 中,{∠AEC =∠BED∠C =∠D AC =BD,∴△ACE ≌△BDE (AAS ),∴AE =BE ;(2)解:①四边形ACBF 为平行四边形,理由如下:由(1)得AE =BE ,∴∠EAB =∠EBA ,∵△ABF 与△ABD 关于直线AB 对称,∴∠EAB =∠BAF 且AD =AF ,∴∠EBA =∠BAF ,又∵△ABC ≌△BAD ,∴BC =AD ,∴BC =AF ,∴四边形ACBF 为平行四边形;②由题意得∠DAB =∠FAB =30∘,∴∠DAF =60∘,过E 作EG ⊥AF 于G ,∵AE =5,DE =3,∴AD =8,∴AF =8,AG =52,GE =5√32,∴GF =112, ∴EF =√EG 2+BF 2=7.【答案】(1)略;(2)平行四边形;7.例2.如图,PA⊥OA,PB⊥OB,垂足分别为A,B,AB交OP于点Q,且PA=PB,则下列结论:①OP平分∠AOB;②AB是OP的中垂线;③OP平分∠APB;④OP是AB的中垂线;⑤OQ=PQ;其中全部正确的序号是()A. ①②③;B. ①②④;C. ①③④;D. ③④⑤.【答案】C例3.在△ABC中,AB=AC,∠BAC=90∘,点D为AC上一动点.(1)如图1,点E、点F均是射线BD上的点并且满足AE=AF,∠EAF=90∘.求证:△ABE≌△ACF;(2)在(1)的条件下,求证:CF⊥BD;(3)由(1)我们知道∠AFB=45∘,如图2,当点D的位置发生变化时,过点C作CF⊥BD于F,连接AF.那么∠AFB的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘∴∠BAE=∠CAF在△ABE和△ACF中第10页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训{AB =AC∠BAE =∠CAF AE =AF∴△ABE ≌△ACF (SAS )(2)证明: ∵∠BAC =90∘∴∠ABE +∠BDA =90∘,由(1)得△ABE ≌△ACF∴∠ABE =∠ACF∴∠BDA +∠ACF =90∘又∵∠BDA =∠CDF∴∠CDF +∠ACF =90∘∴∠BFC =90∘∴CF ⊥BD(3)解:∠AFB =45∘不变化,理由如下:点A 作AF 的垂线交BM 于点E ,∵CF ⊥BD∴∠BAC =90∘∴∠ABD +∠BDA =90∘同理∠ACF +∠CDF =90∘∵∠CDF =∠ADB∴∠ABD =∠ACF同(1)理得∠BAE =∠CAF在△ABE 和△ACF 中{∠BAE =∠CAFAB =AC ∠ABD =ACF∴△ABE ≌△ACF (ASA )∴AE =AF∴△AEF 是等腰直角三角形∴∠AFB =45∘.【答案】(1)略;(2)略;(3)∠AFB =45∘不变化,理由:略.【举一反三】1.在△ABC 中,AB =AC ,∠BAC =90∘,点D 为AC 上一动点.(1)如图1,点E 、点F 均是射线BD 上的点并且满足AE =AF ,∠EAF =90∘.求证:△ABE ≌△ACF ;(2)在(1)的条件下,求证:CF ⊥BD ;(3)由(1)我们知道∠AFB =45∘,如图2,当点D 的位置发生变化时,过点C 作CF ⊥BD 于F ,连接AF .那么∠AFB 的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘,∴∠BAE=∠CAF,在△ABE和△ACF中{AB=AC∠BAE=∠CAFAE=AF∴△ABE≌△ACF(SAS);(2)证明:∵∠BAC=90∘,∴∠ABE+∠BDA=90∘,由(1)得△ABE≌△ACF,∴∠ABE=∠ACF,∴∠BDA+∠ACF=90∘,又∵∠BDA=∠CDF,∴∠CDF+∠ACF=90∘,∴∠BFC=90∘,∴CF⊥BD;(3)解:∠AFB=45∘不变化,理由如下:过点A作AF的垂线交BM于点E,∵CF⊥BD,∴∠BAC=90∘,∴∠ABD+∠BDA=90∘,同理:∠ACF+∠CDF=90∘,∵∠CDF=∠ADB,∴∠ABD=∠ACF,同(1)理得:∠BAE=∠CAF,在△ABE和△ACF中{∠BAE=∠CAF AB=AC∠ABD=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等腰直角三角形,∴∠AFB=45∘.【答案】略.2.如图,已知AC⊥BC,AD⊥BD,E为AB的中点.(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.【解答】(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90∘,∠ADB=90∘,又∵E为AB的中点,∴CE=12AB,DE=12AB,∴CE=DE,即△ECD是等腰三角形;(2)解:∵AD=BD,E为AB的中点,∴DE⊥AB,已知EF=3,DE=4,∴DF=5,过点E作EH⊥CD,∵∠FED=90∘,EH⊥DF,∴EH=EF⋅EDDF =125,∴DH=√DE2−EH2=165,∵△ECD是等腰三角形,∴CD=2DH=225.【答案】(1)略;(2)225.3.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AE=AF;(2)若AB+AC=16,S△ABC=24,∠EDF=120∘,求AD的长.【解答】(1)证明:∵DE、DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90∘,∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∵AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF;(2)解:∵△ADE≌△ADF,∴DE=DF,∴S△ABC=12⋅AB⋅DE+12⋅AC⋅DF=12⋅DE(AB+AC)=24,∵AB+AC=16,∴DE=3,∵∠ADE=∠ADF=60∘,∴∠DAE=30∘,∴AD=2DE=6.【答案】(1)略;(2)6.4.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.【解答】(1)证明:∵∠BAC=∠DAE=90∘,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAEAD=AE,∴△BAD≌△CAE(SAS);(2)解:BD=CE,BD⊥CE,理由如下:由(1)知:△BAD≌△CAE,∴BD=CE,∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45∘,∴∠ACE+∠DBC=45∘,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90∘,则BD⊥CE.【答案】(1)略;(2)BD=CE,BD⊥CE.5.如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)在图1中,你发现线段AC,BD的数量关系是,直线AC,BD相交成度角.(2)将图1中的△OAB绕点O顺时针旋转90∘角,这时(1)中的两个结论是否成立?请做出判断并说明理由.(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.【解答】(1)解:在图1中,线段AC,BD的数量关系是相等,直线AC,BD相交成90度角;(2)解:(1)中结论仍成立;证明如下:如图延长CA交BD于点E,∵等腰直角三角形OAB和OCD,∴OA=OB,OC=OD.∵AC2=AO2+CO2,BD2=OD2+OB2,∴AC=BD.∴△DOB≌△COA(SSS).∴∠CAO=∠DBO,∠ACO=∠BDO.∵∠ACO+∠CAO=90∘,∴∠ACO+∠DBO=90∘,则∠AEB=90∘,即直线AC,BD相交成90∘角.(3)解:结论仍成立;如图延长CA交OD于E,交BD于F,∵∠COD=∠AOB=90∘,∴∠COA+∠AOD=∠AOD+∠DOB,即:∠COA=∠DOB.∵CO=OD,OA=OB,∴△COA≌△DOB(SAS).∴AC=BD,∠ACO=∠ODB.∵∠CEO=∠DEF,∴∠COE=∠EFD=90∘.∴AC⊥BD,即直线AC,BD相交成90∘角.【答案】见解答.四、全等三角形综合复习【错题精练】例1.如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.【解答】解:BM=BN,BM⊥BN.理由:在△ABE和△DBC中,{AB=DB∠ABD=∠DBCEB=CB,∴△ABE≌△DBC(SAS).∴∠BAE=∠BDC.∴AE=CD.∵M,N分别是AE,CD的中点,∴AM=DN.在△ABM和△DBN中,{AB=DB∠BAM=∠BDNAM=BN,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∵∠ABD=∠DBC,∠ABD+∠DBC=180∘,∴∠ABD=∠ABM+∠MBE=90∘.∴∠MBE+∠DBN=90∘.即BM⊥BN.∴BM=BN,BM⊥BN.【答案】BM=BN,BM⊥BN.例2.如图,在Rt△ABC中,∠B=90∘,AC=10,∠C=30∘,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)DF=;(用含t的代数式表示)(2)求证:△AED≌△FDE;(3)当t为何值时,△DEF是等边三角形?说明理由;(4)当t为何值时,△DEF为直角三角形?(请直接写出t的值)【解答】(1)解:∵DF⊥BC,∴∠CFD=90∘,在Rt△CDF中,∠CFD=90∘,∠C=30∘,CD=2t,∴DF=12CD=t.(2)证明:∵∠CFD=90∘,∠B=90∘,∴DF∥AB.∴∠AED=∠FDE.在△AED和△FDE中,{AE=FD=t∠AED=∠FDEED=DE,∴△AED≌△FDE(SAS).(3)解:∵△AED≌△FDE,∴当△DEF是等边三角形时,△EDA是等边三角形.∵∠A=90∘−∠C=60∘,∴AD=AE.∵AE=t,AD=AC−CD=10−2t,∴t =10−2t .∴t =103. ∴当t 为103时,△DEF 是等边三角形.(4)解:∵△AED ≌△FDE ,∴当△DEF 为直角三角形时,△EDA 是直角三角形.当∠AED =90∘时,AD =2AE ,即10−2t =2t .解得:t =52;当∠ADE =90∘时,AE =2AD ,即t =2(10−2t ).解得:t =4.综上所述:当t 为52或4时,△DEF 为直角三角形.【答案】(1)t ;(2)略;(3)103;(4)52或4.【举一反三】1.如图,△ABC 中,∠ABC =45∘,AD ⊥BC 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与AD 相交于点G ,DF ⊥AB 于F ,交BE 于H .下列结论:①AD =BD ;②CE =BH ;③AE =12BG ;④CD +AG =BD .其中正确的序号是_________.【答案】①③④2.数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF =90∘,且EF 交正方形外角∠DCG 的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证△AME ≌△ECF ,所以AE =EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【答案】解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∵BM=BE.∴∠BME=45∘,∴∠AME=135∘.∵CF是外角平分线,∴∠DCF=45∘,∴∠ECF=135∘.∴∠AME=∠ECF.∵∠AEB+∠BAE=90∘,∠AEB+∠CEF=90∘,∴∠BAE=∠CEF∴△AME≌△BCF(ASA).∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE.∴∠N=∠PCE=45∘.四边形ABCD是正方形,∴AD∥BE.∴∠DAE=∠BEA.∴∠NAE=∠CEF.∴△ANE≌△ECF(ASA).∴AE=EF.3.如图,等边△ABC的边长为6,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.【解答】(1)解:如图,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB=60∘,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,且△PBF是等边三角形CF,BF=PB∴DF=CD=12∵P是AB的中点,即PB=1AB=3,2∴BF=3∴;(2)解:分两种情况讨论,得ED为定值,是不变的线段如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,由(1)证得△PFD≌△QCD,且△PBF是等边三角形∴FD=12FC,EF=12BF∴ED=FD+EF=12FC+12BF=12BC=3∴ED为定值同理,如图,若P在BA的延长线上,作PM∥AC的延长线于M,∴∠PMC=∠ACB,又∵AB=AC,∴∠B=∠ACB=60∘,∴∠B=∠PMC=60∘,∴PM=PB,且PE⊥BC∴BE=EM=12BM,△PBM是等边三角形∴PM=PB=CQ∵PM∥AC∴∠PMB=∠QCM,∠MPD=∠CQD且PM=CQ ∴△PMD≌△QCD(ASA),∴CD=DM=12CM,∴DE=EM−DM=12BM−12CM=12(BM−CM)=12BC=3综上所述,线段ED的长度保持不变.【答案】(1);(2)线段ED的长度保持不变.1.已知(a-)<0,若b=2-a,则b的取值范围是__________.【解答】根据被开方数大于等于0以及不等式的基本性质求出a的取值范围,然后再求出2-a的范围即可得解.2.有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是__________.【解答】由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.3.若a,b均为整数,a+b=﹣2,且a≥2b,则有最大值是__________ .【解答】【答案】14.如图,在△ABC中,∠ACB=90∘,分别以点A,B为圆心,大于12AB长为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连结CD,BE,下列结论错误的是()A. AD=CD;B. BE>CD;C. ∠BEC=∠BDC;D. BE平分∠CBD.【答案】D.5.如图,Rt△ABC中,∠ACB=90∘,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为();A. 35;B. 45;C. 23.D. √32【答案】B.6.如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动运动至点C,△B′C′D 面积的大小变化情况是()A. 一直减小;B. 一直不变;C. 先减小后增大;D. 先增大后减小.【答案】D7.如图,△ABC中,点D在AC的延长线上,E、F分别在边AC和AB上,∠BFE和∠BCD的平分线相交于点P,若∠B=80∘,∠FEC=70∘,则∠1−∠2=°;∠P=°.【答案】15,95.。
初中数学知识点归纳不等式

初中数学知识点归纳不等式初中数学中的不等式是一个非常重要的知识点,它存在于各个章节中,如函数、代数方程组、数列等。
不等式是用不等号连接的含有未知数的数学式,在数学问题中经常用来表示一些量的大小关系。
下面将对初中数学中常见的不等式进行归纳。
一、基本性质:1.不等式变形:对不等式两边同时加上或减去一个相同的数,不等号的方向不变。
2. 相乘型:若a > b,c > 0,则ac > bc;若a < b,c < 0,则ac > bc。
3.相除型:若a>b,c>0,则a/c>b/c;若a<b,c<0,则a/c>b/c。
二、一元一次不等式:1.加减法解不等式:对不等式两边同时加上或减去一个相同的数,不等号的方向不变。
2.乘除法解不等式:对不等式两边同时乘以或除以一个正数,不等号的方向不变;对不等式两边同时乘以或除以一个负数,不等号的方向改变。
3.绝对值不等式:当,x-a,>b时,有x<a-b或x>a+b。
4.复合不等式:可以将不等式分解为两个简单的不等式,再求解。
三、一元二次不等式:1.求解一元二次不等式,可以先将其转化成一元二次方程,求出解的区间。
2.解一元二次不等式的关键是求出与解有关的a值,即把不等式转化为方程,得到轮廓图,再确定解的范围。
3.解一元二次不等式时,当a>0时,不等式的解集为开口向上的抛物线所在的区间;当a<0时,不等式的解集为开口向下的抛物线所在的区间。
四、绝对值不等式:1.解绝对值不等式时可以根据绝对值的定义,将不等式划分成正数和负数的情况进行求解。
2.若,x-a,<b,则-a<x-a<b,从而x-a<b,a-x<b。
3.若,x-a,>b,则x-a>b或x-a<-b。
五、函数与不等式:1.根据函数的性质,可以求解函数不等式。
2.若f(x)>g(x),则将f(x)-g(x)>0,根据函数图像的上下关系求解。
初中数学不等式知识点大全

初中数学不等式知识点大全知识点1:不等式不等式是用不等号(。
≥、<、≤、≠)表示不等关系的式子。
常用的表示不等关系的语言及符号有:1.大于、比……大、超过。
2.小于、比……小、低于。
<;3.不大于、不超过、至多:≥;4.不小于、不低于、至少。
≤;5.正数。
6.负数:<;7.非负数:≥;8.非正数:≤。
例1中是不等式的有-1>2,3x≥-1,3x-4<2y,3x-5=2x+2,a^2+2≥0,a^2+b^2≠c^2.例2中不能用不等式表示的是m+n等于。
练1中是不等式的有5>x,3a+4b>y,2a+3≤7,x^2+1≥8.练2中(1)的含义是x^2大于等于0,(2)的含义是-x小于等于0.知识点2:不等式的基本性质不等式有以下基本性质:1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
即如果a>b,那么a+c>b+c,a-c>b-c。
2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
即如果a>b,c>0,那么ac>bc,a/b>b/b。
3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
即如果a>b,c<0,那么ac<bc,a/b<b/a。
4.如果a>b,那么b<a。
5.如果a>b,b>c,那么a>c。
例1中由a-3<b+1可得到的结论是a<b+4.例2中如果a>b,那么下列变形错误的是2-2a>2-2b。
例3中正确的判断是若a<b,则a^2<b^2.例4中若a1,a+b<ab。
例1】解下列不等式组,结果正确的是()B.不等式组x7的解集是x 1解析:用数轴法解不等式组,先求出每一个不等式的解集,再找出它们的公共部分。
对于不等式组x7的解集是x 1x 1其解集为x7,x1,即x7.结果正确的是B.练1】嘉年华小区计划新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.7万元,新建3个地上停车位和2个地下停车位需1.6万元。
初中数学不等式的解法知识点复习

If the heart is tired, a person loses his soul, and does not have a mind to do things, and everything in the worldseems to have nothing to do with him.(页眉可删)初中数学不等式的解法知识点复习大家要知道不等式两边乘或除以同一个负数,不等号的方向会发生改变。
解不等式主要的有:①不等式F(x) G(x)与不等式 G(x)F(x)同解。
②如果不等式F(x) G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)③如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。
④不等式F(x)G(x)0与不等式同解;不等式F(x)G(x)0与不等式同解。
注意事项1.符号:不等式两边都乘以或除以一个负数,要改变不等号的方向。
2.确定解集:比两个值都大,就比大的还大;比两个值都小,就比小的还小;比大的大,比小的小,无解;比小的大,比大的小,有解在中间。
三个或三个以上不等式组成的不等式组,可以类推。
3.另外,也可以在数轴上确定解集:把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。
有几个就要几个。
4.不等式两边相加或相减,同一个数或式子,不等号的方向不变。
(移项要变号)值得大家注意的是,不等式两边相乘或相除,同一个正数,不等号的方向不变。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
中考总复习--不等式专题复习

中考总复习--不等式专题复习概述本文档旨在为中考学生提供关于不等式专题的复资料。
不等式是数学中常见的一种基本关系,掌握不等式的性质和解题方法对于中考数学的成功至关重要。
重要概念不等式:不等式是数学中一种比较关系,用符号"<"(小于)、">"(大于)、"≤"(小于等于)和"≥"(大于等于)来表示。
不等式的性质:- 加减性质:两个不等式,若一个不等式的两边同时加(或减)一个相同的数,不等式的方向不变。
- 乘除性质:如果两个不等式,一个不等式的两边同时乘(或除)一个正(或负)的数,不等式的方向不变;若乘(或除)一个负数,则不等式的方向相反。
- 倒置性质:将不等式两边都倒置,不等式的方向也要倒置。
不等式的解法:- 利用性质进行变形和推理- 图表法:将不等式用图表表示,通过观察图表得出结论- 试值法:假设某个数满足不等式,通过试验来判断常见类型本文档主要介绍以下几种常见的不等式类型:1. 一元一次不等式2. 一元二次不等式3. 绝对值不等式4. 分式不等式5. 线性规划问题复要点1. 掌握不等式的基本性质,包括加减性质、乘除性质和倒置性质。
2. 熟悉不等式的解法,包括利用性质进行变形和推理、图表法和试值法。
3. 熟练掌握一元一次不等式、一元二次不等式、绝对值不等式和分式不等式的解题方法。
4. 了解线性规划问题的基本概念和解题思路,能够解决一些简单的线性规划问题。
总结不等式专题是中考数学中的重要内容,掌握不等式的性质和解题方法是取得好成绩的关键。
希望本文档能够帮助同学们加深对不等式专题的理解,并在中考中取得优异的成绩。
祝同学们取得好成绩!。
初中数学不等式知识点大全

初中数学不等式知识点大全一、不等式的定义不等式是数与数之间大小关系的一种表示形式。
对于实数a、b,若存在一个符号“>”或“<”,使得它们之间满足关系式“a>b”或“a<b”,则称“a与b之间存在不等关系”,这种关系用不等式符号“>”或“<”来表示。
二、不等式的性质1.加减性质:如果一个不等式两边同加(减)一个相同的实数,不等式的方向不变。
2.正数倍性质:如果一个不等式两边同乘以一个正实数,不等式的方向不变。
3.负数倍性质:如果一个不等式两边同乘以一个负实数,不等式的方向反转。
4.零倍性质:如果一个不等式两边同乘以零,不等式的方向不变。
三、常见的不等式形式1. 单变量一次不等式:形如ax+b>0(或<0),其中a、b为实数,x为变量。
2. 绝对值不等式:形如,ax+b,>0(或<0),其中a、b为实数,x为变量。
3. 二次不等式:形如ax²+bx+c>0(或<0),其中a、b、c为实数,x为变量。
4. 有理不等式:形如$\frac{f(x)}{g(x)} >0$(或<0),其中f(x)、g(x)为有理式,x为变量。
5. 分式不等式:形如$\frac{f(x)}{g(x)} >n$(或<n),其中f(x)、g(x)为整式,n为实数,x为变量。
四、不等式的解集表示方法1.集合表示法:使用集合符号表示不等式的解集。
2.区间表示法:使用数轴上的区间表示不等式的解集,包括开区间、闭区间和半开半闭区间。
3.集合与区间混合表示法:使用集合符号和数轴上的区间混合表示不等式的解集。
五、不等式的求解方法1.移项法:将不等式中含有变量的项移到一边,将常数项移到另一边,得到简化的不等式。
2.加减法:根据不等式的性质,可以通过加减相同的实数使不等式变得简单。
3.乘除法:根据不等式的性质,可以通过乘除相同的实数使不等式变得简单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学不等式专题复
习
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
一、不等式的基本性质
1.若x>y,则下列等式不一定成立的是()
A.x+4>y+4 B.﹣3x<﹣3y C.D.x2>y2
2.下列命题中,正确的是()
A.若a>b,则ac2>bc2 B.若a>b,c=d则ac>bd C.若ac2>bc2,则a>b D.若a>b,c<d则
3.下列不等式变形正确的是()
A.由a>b得ac>bc B.由a>b得﹣2a>﹣2b C.由a>b得﹣a<﹣b D.由a>b得a﹣2<b﹣2 4.若a<﹣1,那么不等式(a+1)x>a+1的解集为()二、不等式(组)的解集和整数解
1.如图,数轴所表示的不等式的解集是.
2.不等式2(1﹣x)<4的解集表示正确的是()
A.
B.C.D.
3.不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B.
C.D.
4.不等式组的解集是()
5.不等式11﹣3x>1的所有非负整数解的和为.
6.不等式组的最小整数解为()
7.不等式组的所有整数解的积是()
8.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为.
三、解不等式(组)
1.解不等式,并把解集表示在数轴上.
①2x+9≥3(x+2)②③≤
﹣1
2
2.解不等式组,并把它的解集在数轴上表示出来(注意原点和单位长度的比例).
(1)(2)
(3)(4)
四、可转化为不等式(组)
1.“x的2倍与3的差不大于8”列出的不等式是()
2.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围是 .
3.若代数式的值不小于1,则t的取值范围是.4.已知(x﹣2)2+|2x﹣3y﹣m|=0中,y为正数,则m的取值范围为 .
5.不等式组的解集为﹣1<x<1,求(a+1)(b+1)的值.
6.关于x,y的方程组的解满足x+y>2,求m的取值范围.
7.若方程组中,x是正数,y是非正数.求k的正整数解.
3
五、求不等式(组)中字母的取值范围
1.若不等式组的解集为x<5,则m的取值范围是()2.如果不等式组无解,那么m的取值范围是()
3.若不等式组的解集是x>4,则n的取值范围是
4.若不等式组的解集是x>3,则m 的取值范围是.5.若不等式x<a的正整数解有两个,那么a的取值范围是.6.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()
7.对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据
上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是.
六、不等式(组)与一次函数
1.函数y=中自变量x的取值范围是()
2.如左图,当y>0时,自变量x的取值范围
是.
3.如
中
图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为()
4.如右图直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.
5.在k=1的条件下求一次函数y=与坐标轴围成的面积.
4
七、不等式(组)应用题
1.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对道题才能达到目标要求.
2.出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付6元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地路程是x千米,出租车费为16.5元,那么x的最大值是()
3.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()
A.40% B.33.4% C.33.3% D.30%
4.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)若甲、乙两店各配货
10箱,其中A种水果两店各
5箱,B种水果两店各5箱,
请你计算出经销商能盈利多
少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
选1.某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.
(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);
(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?
(3)从节约开支的角度来看,你认为采用哪种方案更合算?
选2.学校图书馆准备采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?
(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.
A种水果/箱B种水果/箱
甲店11元17元
乙店9元13元
5
选3.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两
种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料
9千克,乙种原料3千克,可获利700元;生产1件B种产品需甲种原
料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品
可获总利润是y元,其中A种产品的生产件数是x.
(1)写出y与x之间的函数关系式;
(2)符合题意的生产方案有几种?请你帮忙设计出来;
(3)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求
出y的最大值.
6。