集合章节复习(教师版)

合集下载

1.1 集合的概念(教师版)

1.1 集合的概念(教师版)

§1.1集合的概念第1课时集合的概念知识点一元素与集合的概念1.元素:一般地,把研究对象统称为元素(element),常用小写拉丁字母a,b,c,…表示.2.集合:把一些元素组成的总体叫做集合(set)(简称为集),常用大写拉丁字母A,B,C,…表示.3.集合相等:指构成两个集合的元素是一样的.4.集合中元素的特性:给定的集合,它的元素必须是确定的、互不相同的.知识点二元素与集合的关系知识点三常用数集及表示符号第2课时集合的表示知识点一列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.知识点二描述法一般地,设A是一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.第1课时 集合的概念1.有下列各组对象:∈接近于0的数的全体; ∈比较小的正整数的全体;∈平面上到点O 的距离等于1的点的全体; ∈直角三角形的全体. 其中能构成集合的个数是 ( )A .2B .3C .4D .52.已知集合A 由x <1的数构成,则有( )A .3∈AB .1∈AC .0∈AD .-1∈A3.集合A 中只含有元素a ,则下列各式一定正确的是( )A .0∈AB .a ∈AC .a ∈AD .a =A4.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( )A .矩形B .平行四边形C .菱形D .梯形5.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .06.若x ∈N ,则满足2x -5<0的元素组成的集合中所有元素之和为________. 7.已知∈5∈R ;∈13∈Q ;∈0∈N ;∈π∈Q ;∈-3∈Z .正确的个数为________.8.已知x ,y 都是非零实数,z =x |x |+y |y |+xy|xy |可能的取值组成集合A ,则( )A .2∈AB .3∈AC .-1∈AD .1∈A9.已知集合A 中含有三个元素1,a ,a -1,若-2∈A ,则实数a 的值为( )A .-2B .-1C .-1或-2D .-2或-310.集合A 中含有三个元素2,4,6,若a ∈A ,且6-a ∈A ,那么a =________. 11.由实数x ,-x ,|x |,x 2及-3x 3所组成的集合,最多含有________个元素.12.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且M =N .求a ,b 的值.13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集.14.已知方程ax 2-3x -4=0的解组成的集合为A .(1)若A 中有两个元素,求实数a 的取值范围; (2)若A 中至多有一个元素,求实数a 的取值范围.第2课时 集合的表示1.集合A ={x ∈Z |-2<x <3}的元素个数为( ) A .1 B .2 C .3 D .42.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A.⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x +y =3,x -y =-1 B.⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x =1,y =2 C .{1,2} D .{(1,2)} 3.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合4.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A.{}x |x 是小于18的正奇数 B.{}x |x =4k +1,k ∈Z ,且k <5 C.{}x |x =4t -3,t ∈N ,且t ≤5 D.{}x |x =4s -3,s ∈N *,且s ≤55.集合M ={(x ,y )|xy <0,x ∈R ,y ∈R }是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集6.集合{x ∈N |x 2+x -2=0}用列举法可表示为________.7.将集合{(x ,y )|2x +3y =16,x ,y ∈N }用列举法表示为________. 8.有下面四个结论:∈0与{0}表示同一个集合;∈集合M ={3,4}与N ={(3,4)}表示同一个集合;∈方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ∈集合{x |4<x <5}不能用列举法表示. 其中正确的结论是________(填写序号).9.已知x ,y 为非零实数,则集合M =⎩⎨⎧⎭⎬⎫m ⎪⎪m =x |x |+y |y |+xy |xy |为( ) A .{0,3} B .{1,3} C .{-1,3}D .{1,-3}10.已知集合A ={}x |x =2m -1,m ∈Z ,B ={}x |x =2n ,n ∈Z ,且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( ) A .x 1·x 2∈A B .x 2·x 3∈B C .x 1+x 2∈BD .x 1+x 2+x 3∈A11.已知集合A ={x |x =3m ,m ∈N *},B ={x |x =3m -1,m ∈N *},C ={x |x =3m -2,m ∈N *},若a ∈A ,b ∈B , c ∈C ,则下列结论中可能成立的是( ) A .2 006=a +b +c B .2 006=abc C .2 006=a +bcD .2 006=a (b +c )12.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________. 13.定义集合A -B ={x |x ∈A ,且x ∈B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -23<0,则集合A -B =________.14.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .15.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2014+b 2014.16.若P ={0,2,5},Q ={1,2,6},定义集合P +Q ={a +b |a ∈P ,b ∈Q },用列举法表示集合P +Q .【参考答案】1.A 解析 ∈不能构成集合,“接近”的概念模糊,无明确标准.∈不能构成集合,“比较小”也是不明确的,多小算小没明确标准.∈∈均可构成集合,因为任取一个元素是否是此集合的元素有明确的标准可依.2.C 解析 很明显3,1不满足不等式,而0,-1满足不等式.3.C 解析 由题意知A 中只有一个元素a ,∈a ∈A ,元素a 与集合A 的关系不能用“=”,a 是否等于0不确定,因此0是否属于A 不确定,故选C .4.D 解析 由集合中的元素具有互异性可知a ,b ,c ,d 互不相等,而梯形的四条边可以互不相等.5.B 解析 若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∈A .6.3 解析 由2x -5<0,得x <52,又x ∈N ,∈x =0,1,2,故所有元素之和为3.7.3 解析 ∈∈∈是正确的;∈∈是错误的. 8.C 解析 ∈当x >0,y >0时,z =1+1+1=3;∈当x >0,y <0时,z =1-1-1=-1; ∈当x <0,y >0时,z =-1+1-1=-1; ∈当x <0,y <0时,z =-1-1+1=-1, ∈集合A ={-1,3}. ∈-1∈A .9.C 解析 由题意可知a =-2或a -1=-2,即a =-2或a =-1,故选C .10.2或4 解析若a =2,则6-2=4∈A ;若a =4,则6-4=2∈A ;若a =6,则6-6=0∈A .故a =2或4.11.2 解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x ,-x ,故合中最多含有2个元素. 12.解 法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧ a =b 2b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.法二 ∈两个集合相同,则其中的对应元素相同.∈⎩⎪⎨⎪⎧ a +b =2a +b 2a ·b =2a ·b 2,即⎩⎪⎨⎪⎧a +b b -1=0 ∈ab ·2b -1=0 ∈∈集合中的元素互异,∈a ,b 不能同时为零.当b ≠0时,由∈得a =0,或b =12.当a =0时,由∈得b =1,或b =0(舍去). 当b =12时,由∈得a =14.当b =0时,a =0(舍去).∈⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.13.证明 (1)若a ∈A ,则11-a∈A .又∈2∈A ,∈11-2=-1∈A .∈-1∈A ,∈11--1=12∈A .∈12∈A ,∈11-12=2∈A . ∈A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解. ∈a ≠11-a,∈集合A 不可能是单元素集.14.解 (1)因为A 中有两个元素,所以方程ax 2-3x -4=0有两个不等的实数根,所以⎩⎪⎨⎪⎧a ≠0,Δ=9+16a >0, 即a >-916且a ≠0.所以实数a 的取值范围为a >-916,且a ≠0.(2)当a =0时,由-3x -4=0得x =-43;当a ≠0时,若关于x 的方程ax 2-3x -4=0有两个相等的实数根,则Δ=9+16a =0,即a =-916;若关于x 的方程无实数根,则Δ=9+16a <0,即a <-916, 故所求的a 的取值范围是a ≤-916或a =0.1. D 解析 因为A ={x ∈Z |-2<x <3},所以x 的取值为-1,0,1,2,共4个.2. C 解析 C 选项表示两个数.3. D 解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.4. D 解析 对于x =4s -3,当s 依次取1,2,3,4,5时,恰好对应的x 的值为1,5,9,13,17.5. D 解析因xy <0,所以有x >0,y <0;或者x <0,y >0.因此集合M 表示的点集在第四象限和第二象限.6. {1} 解析 由x 2+x -2=0,得x =-2或x =1. 又x ∈N ,∈x =1.7. {(2,4),(5,2),(8,0)} 解析 ∈3y =16-2x =2(8-x ),且x ∈N ,y ∈N ,∈y 为偶数且y ≤5,∈当x =2时,y =4,当x =5时y =2,当x =8时,y =0.8. ∈ 解析 {0}表示元素为0的集合,而0只表示一个元素,故∈错误;∈集合M 是实数3,4的集合,而集合N 是实数对(3,4)的集合,不正确;∈不符合集合中元素的互异性,错误;∈中元素有无穷多个,不能一一列举,故不能用列举法表示.9. C 解析 当x >0,y >0时,m =3,当x <0,y <0时,m =-1-1+1=-1.当x ,y 异号,不妨设x >0,y <0时,m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}.10. D ∈集合A 表示奇数集,集合B 表示偶数集,∈x 1,x 2是奇数,x 3是偶数,∈x 1+x 2+x 3为偶数.11. C 解析 由于2 006=3×669-1,不能被3整除,而a +b +c =3m 1+3m 2-1+3m 3-2=3(m 1+m 2+m 3-1)不满足;abc =3m 1(3m 2-1)(3m 3-2)不满足;a +bc =3m 1+(3m 2-1)(3m 3-2)=3m -1适合; a (b +c )=3m 1(3m 2-1+3m 3-2)不满足.12. 3 解析 根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.13. {x |x ≥2} 解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12且x ≥2={x |x ≥2}. 14. 解 ∈1是集合A 中的一个元素,∈1是关于x 的方程ax 2+2x +1=0的一个根,∈a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∈集合A={-13,1}.15.解 ∈A =B ,∈⎩⎪⎨⎪⎧ a 2=1,ab =b 或⎩⎪⎨⎪⎧ a 2=b ,ab =1.解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数.由集合元素的互异性得a ≠1,∈a =-1,b =0,故a 2014+b 2014=1.16. 解 ∈当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的 值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11. ∈P +Q ={1,2,3,4,6,7,8,11}.。

高一第1讲 集合概念与运算(教师)

高一第1讲 集合概念与运算(教师)

第1讲 集合概念与运算(教师版)一. 学习目标(1)了解集合的含义,元素与集合的属于关系;能用列举法或描述法表示集合.(2)理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.(3)理解并会求并集、交集、补集;能用Venn 图表达集合的关系与运算.二.重点难点重点:(1)理解集合、子集,空集的概念(2)了解属于、包含、相等关系的意义(3)掌握集合的有关术语和符号(4)理解集合的交、并、补运算的概念及性质(5)会用Venn 图及数轴解有关集合问题难点:子集与真子集、属于与包含关系、交集与并集之间的区别与联系.三.知识梳理1.集合的基本概念:(1)集合的概念: 具有某种公共属性的一类事物的全体形成一个集合。

;(2)集合中元素的三个特性: 确定性,互异性,无序性。

;(3)集合的三种表示方法: 描述法,列举法,图示法。

2.集合的运算(1)子集:若 集合A 中任意一个元素都是集合B 中的元素,则A ⊆B ;真子集:若A ⊆B ,且 B 中至少有一个元素不在A 中 ,则A ⊂B ;∅是 任何 集合的子集,是 任何非空 集合的真子集.(2)交集:A ∩B ={|x x A B ∈∈且x };(3)并集:A ∪B ={|x x A B ∈∈或x }.(4)补集:若U 为全集,A ⊆U ,则u C A ={|x x U A ∈∉且x },3.集合的常用运算性质(1)A ∩φ=φ;A ∩A =A ;(2)A ∪φ=A ;A ∪A =A ;(3) A ∩(u C A )= φ ;A ∪(u C A )= U ;u C (u C A )= A ;(4)A ⊆B ⇔A ∩B = A ,A ∪B = B ;(5)()u C A B =()()u u C A C B ;()u C A B =()()u u C A C B ;(6)card(A ∪B )=card(A )+card(B )-()card A B四.典例剖析题型一 集合的基本概念例1 考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)2012年度诺贝尔文学奖获得者.思路探索: 紧扣集合的概念,根据集合元素的确定性逐一分析,作出判断.解 (1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)2012年度诺贝尔文学奖获得者是中国作家莫言,是确定的,能构成集合.综上:(1),(2)不能构成集合;(3),(4)能构成集合.教师点评:1.判断元素能否构成集合,关键在于是否有一个明确的客观标准来衡量这些对象,即看这些元素是否具有确定性,如果条件满足就可以断定这些元素可以组成集合,否则就不能构成集合.2.注意集合元素的互异性,相同的元素在集合中只能出现一次.例2 (1) 若所有形如3a +2b (a ∈Z ,b ∈Z)的数组成集合A ,判断6-22是不是集合A 中的元素.解:根据元素与集合的关系判断,可令a=2,b=-2.所以6-2 2是集合A中的元素.(2)已知A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数2 013a的值;思路探索:(1)1∈A,则a+2,(a+1)2,a2+3a+3可以分别为1,但又要注意它们互不相同.(2)从集合元素互异性的特点分析,它们必须具备两两不等.解:(1)当a+2=1,即a=-1时,(a+1)2=0,a2+3a+3=1与a+2相同,∴不符合题意.当(a+1)2=1,即a=0或a=-2时,①a=0符合要求.②a=-2时,a2+3a+3=1与(a +1)2相同,不符合题意.当a2+3a+3=1,即a=-2或a=-1.①当a=-2时,a2+3a +3=(a+1)2=1,不符合题意.②当a=-1时,a2+3a+3=a+2=1,不符合题意.综上所述,a=0.∴2 013a=1.教师点评:1.(1)判断一个元素是不是某个集合的元素关键是判断这个元素是否具有这个集合中元素的共同特征.(2)要熟练掌握R、Q、Z、N、N*表示什么数集.(2)加强对集合中元素的特征的理解,互异性常常容易忽略,求解问题时要特别注意.(3)分类讨论的思想方法常用于解决集合问题.例3 用适当的方法表示下列集合:(1)A={(x,y)|x+y=4,x∈N*,y∈N*};(2)平面直角坐标系中所有第二象限的点.解(1)∵x∈N*,y∈N*,∴x=1,y=3或x=2,y=2或x=3,y=1,∴A={(1,3),(2,2),(3,1)}.(2){(x,y)|x<0,y>0}.教师点评:表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则.(2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.课堂练习1:(1)下列各组对象可以组成集合的是( )A.数学必修1课本中所有的难题.B.方程x2-9=0在实数范围内的解C.直角坐标平面内第一象限的一些点.D.3的近似值的全体解析A中“难题”的标准不确定,不能构成集合;B中只有两个元素3与-3,是确定的,B 能构成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D中“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.答案 B(2)下列所给关系正确的个数是( )①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *.A .1B .2C .3D .4解析 ∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数, ∴①②正确,③④不正确,正确的个数为2..答案 B(3)(2013年高考江西卷(文))若集合A ={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a=A .4B .2C .0D .0或4【答案】A 题型二 集合间的基本关系例4(1)(2012年高考大纲文)已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则 ( )A .A B ⊆B .C B ⊆ C .D C ⊆ D .A D ⊆解析:B (2)、(2011·新课标全国)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个解析 P =M ∩N ={1,3},故P 的子集有22=4个.*(3)(2011 年高考安徽)设集合 A ={1,2,3,4,5,6},B ={4,5,6,7},则满足 S ⊆A 且 S ∩B ≠∅的集合 S 的个数为( )(A )57 (B )56 (C )49 (D )8【答案】B教师点评:1.写有限集合的所有子集,首先要注意两个特殊的子集:∅和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A 含n 个元素,那么它子集个数为2n ;真子集个数为2n -1,非空真子集个数为2n -2.例5 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.[思路探索] 借助数轴分析,注意B 是否为空集.解 ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.课堂练习2:(2011·北京高考改编)已知集合P ={x|x 2≤1},M ={x|-a +2≤x ≤2a -7}, 若P ∪M =P ,求实数a 的取值范围.【解析】 由P ∪M =P ,知M ⊆P ,(1)若-a +2>2a -7,即a <3时,M =∅,满足P ∪M =P.(2)当a ≥3时,M ≠∅,由M ⊆P ,得⎩⎪⎨⎪⎧-a +2≥-1,2a -7≤1.解之得a ≤3,∴a =3. 综合(1)、(2)可知,若P ∪M =P ,实数a 的取值范围是a ≤3.,教师点评:在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行分类讨论.分类时要遵循“不重不漏”的分类原则,然后对每一类情况都要给出问题的解答.分类讨论的一般步骤:①确定标准;②恰当分类;③逐类讨论;④归纳结论. 题型三 集合的基本运算例6 (1)(2013年高考课标Ⅰ卷(文))已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = A .{1,4} B .{2,3} C .{9,16} D .{1,2}【答案】A(2)设集合 A ={x |x >3},B ={x |x 2-5x +4<0},则 A ∪B =( )A .∅B .{x |3<x <4}C .{x |-2<x <1}D .{x |x >1}【答案】D(3)(2013年高考陕西卷(理))设全集为R ,函数()f x M , 则C M R 为(A) [-1,1] (B) (-1,1) (C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-【答案】D(4)(2013年高考安徽(文))已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,1 【答案】A 例7 设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0}.若A ∩B =B ,求a 的取值范围.[思路探索] 由A ∩B =B ,得B ⊆A ,由子集的定义建立关于a 的方程或不等式求解. 解 由已知得A ={-4,0},且A ∩B =B ,∴B ⊆A ,则B =ϕ,{-4},{0},{-4,0}.①若B =ϕ,则Δ=4(a +1)2-4(a 2-1)=8(a +1)<0,得a <-1.②若B ={-4},则方程x 2+2(a +1)x +a 2-1=0有两个相等的实根x 1=x 2=-4.∴⎩⎪⎨⎪⎧ -42+2a +1·-4+a 2-1=0,Δ=8a +1=0,方程组无解. ③若B ={0},则⎩⎪⎨⎪⎧a 2-1=0,Δ=8a +1=0,∴a =-1. ④若B ={-4,0},则⎩⎪⎨⎪⎧ -2a +1=-4,a 2-1=0,Δ=8a +1>0.解得a =1.综上可知,a =1或a ≤-1.教师点评:1.在利用集合的交集、并集性质解题时,常常会遇到A ∩B =A ,A ∪B =B 等这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等,解答时应灵活处理.2.当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时要考虑B =∅的情况,切不可漏掉.课堂练习3:(1)已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.解 ∵A ∪B =A ,∴B ⊆A .,若B =∅时,2a >a +3,即a >3;若B ≠∅时,⎩⎪⎨⎪⎧ 2a ≥-2,a +3≤5,2a ≤a +3,解得:-1≤a ≤2,综上所述,a 的取值范围是{a |-1≤a ≤2或a >3}.*(2)(2013年上海高考数学试题(文科))设常数a ∈R ,集合()(){}|10A x x x a =--≥, {}|1B x x a =≥-.若A B =R ,则a 的取值范围为 A .(),2-∞B .(],2-∞C .()2,+∞D .[)2,+∞【答案】B 题型四 用韦恩图解题例8 (1) 已知全集 U =R ,则正确表示集合 M ={-1,0,1}和 N ={x |x 2+x =0}关系的韦恩(Venn)图是( )答:B .(2) (2013年上海市春季高考数学试卷)设全集U R =,下列集合运算结果为R 的是( )(A)u Z N ð (B)u N N ð (C)()u u ∅痧 (D){0}u ð【答案】A (3)设全集U ={1,2,3,4,5},集合A ∩B ={2},(∁U A )∩B ={4},(∁U A )∩(∁U B )={1,5},求集合A 和B .解:由Venn 图,可知A ={2,3},B ={2,4}.教师点评:Venn 图直观形象地反映了元素、集合之间的关系.在解题中将隐性的关系显性化,利用韦恩图易于找到元素与元素、元素与集合、集合与集合之间的联系.例9.向50名学生调查对A 、B 两事件的态度,有如下结果赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人。

集合复习教案正式版

集合复习教案正式版

集合复习教案正式版一、教学目标1. 知识与技能:(1)理解集合的含义,掌握集合的表示方法;(2)熟练掌握集合的基本运算,包括并集、交集、补集等;(3)能够运用集合的知识解决实际问题。

2. 过程与方法:(1)通过复习,巩固集合的基本概念和运算方法;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣;(2)培养学生的团队协作精神和自主学习能力。

二、教学内容1. 集合的含义与表示方法(1)集合的含义(2)集合的表示方法(列举法、描述法)2. 集合的基本运算(1)并集(2)交集(3)补集3. 集合的关系(1)子集(2)真子集(3)相等集合三、教学重点与难点1. 教学重点:(1)集合的含义和表示方法;(2)集合的基本运算及其应用。

2. 教学难点:(1)集合的表示方法;(2)集合的运算规律。

四、教学方法1. 自主学习法:学生通过自主学习,掌握集合的基本概念和运算方法;2. 讲解法:教师对集合的难点知识进行讲解,帮助学生理解;3. 案例分析法:教师通过典型例题,引导学生运用集合的知识解决问题。

五、教学过程1. 导入新课:复习集合的基本概念和表示方法;2. 讲解与示范:讲解集合的基本运算及其应用;3. 自主学习:学生自主完成课后练习,巩固所学知识;4. 课堂练习:教师出示典型例题,学生独立解答;5. 总结与评价:教师对学生的学习情况进行点评,总结课堂内容。

六、教学内容4. 集合在实际问题中的应用(1)利用集合解决实际问题;(2)举例说明集合在其他学科中的应用。

七、课堂练习1. 选择题:(1)下列哪个选项是集合{1, 2, 3, 4, 5}的子集?A. {2, 4}B. {1, 3, 5}C. {1, 2, 3, 4, 5}D. {2, 3}(2)如果A={x | x是小于5的整数},B={x | x是偶数},A∩B是什么集合?A. {2, 4}B. {1, 2, 3, 4}C. {2, 4}D. {1, 3}2. 填空题:(1)设A={1, 2, 3, 4, 5},B={2, 4, 6},A∪B______。

集合复习教案正式版

集合复习教案正式版

集合复习教案正式版一、教学目标1. 理解集合的概念,掌握集合的表示方法。

2. 学会运用集合的基本运算,包括并集、交集、补集等。

3. 能够解决实际问题中与集合相关的题目,提高运用集合知识解决问题的能力。

二、教学内容1. 集合的概念与表示方法集合的定义集合的表示方法(列举法、描述法)2. 集合的基本运算并集:两个集合的并集是指包含两个集合中所有元素的集合。

交集:两个集合的交集是指属于两个集合的元素组成的集合。

补集:一个集合的补集是指在全集中不属于该集合的元素组成的集合。

3. 集合的实际应用运用集合的知识解决实际问题,如统计、概率、几何等领域的题目。

三、教学重点与难点1. 重点:集合的概念与表示方法,集合的基本运算。

2. 难点:集合的实际应用,解决实际问题中与集合相关的题目。

四、教学方法1. 采用讲解法,引导学生理解集合的概念和表示方法。

2. 通过示例和练习,让学生掌握集合的基本运算。

3. 提供实际问题,让学生运用集合知识解决问题。

五、教学准备1. 教案、PPT、黑板。

2. 练习题和答案。

3. 教学资源(如几何图形、统计数据等)用于实际问题的解决。

一、集合的概念与表示方法1. 引入集合的概念,解释集合的定义。

2. 讲解列举法和描述法,展示如何表示集合。

二、集合的基本运算1. 讲解并集的定义和运算方法。

2. 讲解交集的定义和运算方法。

3. 讲解补集的定义和运算方法。

三、集合的实际应用1. 提供实际问题,让学生运用集合知识解决问题。

2. 讲解集合在统计、概率、几何等领域的应用。

四、集合的综合练习1. 提供练习题,让学生巩固集合的知识。

2. 讲解练习题的解法和答案。

五、集合的拓展知识1. 讲解集合的其他运算,如对称差、Cartesian 积等。

2. 讲解集合在数学和其他领域的应用,如计算机科学、逻辑学等。

六、集合的性质与公理系统1. 介绍集合的几个基本性质:无序性、确定性、互异性。

2. 引入集合论的公理系统,讲解常用的公理如集合论的三公理、幂集公理等。

1.1.2集合间的基本关系附答案教师版

1.1.2集合间的基本关系附答案教师版

1.1.2集合间的基本关系一、单选题1.集合A={x∈N|-1<x<4}的真子集个数为()A.8B.15C.16D.17【答案】B【解析】【解答】由题意,集合={∈U−1<<4}={0,1,2,3},所以集合的真子集的个数为24−1=15个.故答案为:B.【分析】求得集合={0,1,2,3},根据集合真子集个数的计算方法,即可求解. 2.设,∈,集合={1,+s V,={0,,V,若=,则−=()A.2B.−1C.1D.−2【答案】A【解析】【解答】由已知,≠0,故+=0,则=−1,所以=−1,=1.故答案为:A【分析】由已知集合相等=列式,得到=−1,=1,即可求出b-a的值.3.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9【答案】C【解析】【解答】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.【分析】依题意,可求得集合B={﹣2,﹣1,0,1,2},从而可得答案.4.若集合={∈b−1<<2},则A的真子集个数为()A.1B.2C.3D.4【答案】C【解析】【解答】因为集合={∈b−1<<2},所有集合={0,1},所以A的真子集个数为:22−2=3。

故答案为:C【分析】利用集合A的定义求出集合A,再利用真子集的定义,从而求出集合A的真子集的个数。

5.下列各组两个集合A和B表示同一集合的是()A.={V,={3.141 59}B.={2,3},={(2,3)}C.={1,3,V,={s1,|−3|}D.={U−1<≤1,∈V,={1}【答案】C【解析】【解答】A选项中集合A中的元素为无理数,而B中的元素为有理数,故≠HB选项中集合A中的元素为实数,而B中的元素为有序数对,故≠HD选项中集合A中的元素为0,1,而B中的元素为1,故≠.故答案为:C.【分析】两个集合相等,必须是两个集合的元素完全相同才行,观察各选项中两个集合的元素是不是完全相同得到正确选项.6.已知集合={∈∗|0≤<2},则集合的子集的个数为()A.2B.3C.4D.8【答案】A【解析】【解答】={∈∗|0≤<2}={1},则集合的子集的个数为2.故选:A.【分析】根据已知条件,求出={1},再根据子集的含义得出答案.7.已知集合P={-1,0,1,2},Q={-1,0,1},则()A.B.C.D.【答案】C【解析】【解答】集合P={-1,0,1,2},Q={-1,0,1},可知集合Q中的元素都在集合P中,所以Q⊆P.【分析】根据P和Q中的元素,判断两集合的关系即可.8.下列各组中的两个集合和表示同一集合的是()A.={V,={3.1415926}B.={0,1},={(0,1)}C.={∈U2=1},={0,1}D.={∈∗|−1<≤1},={1}【答案】D【解析】【解答】A选项,集合中元素为无理数,中元素为有理数,故≠;B选项,集合中元素为实数,中元素为有序数对,故≠;C选项,集合中元素为-1,1,中元素为0,1,故≠.故答案为:D.【分析】两个集合是同一集合必须所有元素完全相同才行.9.已知集合A={x∈Z|x2+x-2<0},则集合A的一个真子集为()A.{x|-2<x<0}B.{x|0<x<2}C.{0}D.{Ø}【答案】C【解析】【解答】解不等式得-2<x<1因为x∈Z所以x=-1,0所以集合A的真子集为,{−1},{0},{−1,0}故答案为:C【分析】计算出集合A,结合子集的写法,即可得出答案。

集合复习教案正式版

集合复习教案正式版

集合复习教案正式版第一章:集合的基本概念1.1 集合的定义与表示方法集合的定义:一个无序的、不重复元素的全体。

集合的表示方法:列举法、描述法、区间表示法。

1.2 集合之间的关系子集:如果一个集合的所有元素都是另一个集合的元素,这个集合是另一个集合的子集。

真子集:如果一个集合是另一个集合的子集,并且两个集合不相等,这个集合是另一个集合的真子集。

并集、交集、补集的概念与运算。

第二章:集合的运算2.1 集合的并集并集的定义:两个集合中所有元素的全体。

并集的运算规则:A ∪B = {x | x ∈A 或x ∈B}。

2.2 集合的交集交集的定义:两个集合中共有元素的全体。

交集的运算规则:A ∩B = {x | x ∈A 且x ∈B}。

2.3 集合的补集补集的定义:一个集合在另一个集合中的补集是指不属于另一个集合的元素全体。

补集的运算规则:A 的补集= U A,其中U 是全集。

第三章:集合的属性3.1 集合的无限性无限集合的定义:包含无限多个元素的集合。

无穷集合的例子:自然数集合、实数集合等。

3.2 集合的序性序集合的定义:具有顺序关系的集合。

线性序集合与树状序集合的概念。

3.3 集合的分类集合的分类:有限集合、无限集合、可数集合、不可数集合等。

第四章:集合的应用4.1 集合在数学中的应用集合在几何、代数、概率等数学分支中的应用。

4.2 集合在日常生活中的应用集合在数据分析、逻辑推理、垃圾分类等方面的应用。

4.3 集合在其他学科中的应用集合在计算机科学、生物学、化学等学科中的应用。

第五章:集合的练习与拓展5.1 集合的基本概念练习判断题、选择题、填空题等形式的练习题。

5.2 集合的运算练习给出具体的集合,进行并集、交集、补集的运算练习。

5.3 集合的应用练习结合实际例子,运用集合的知识解决问题。

集合复习教案正式版第六章:集合的属性(续)6.1 集合的基数与势集合的基数:集合中元素的个数。

集合的势:集合中元素的多少。

集合的运算教师版

集合的运算教师版

第2课时 补集及综合应用一、基础过关1.已知集合U ={1,3,5,7,9},A ={1,5,7},则∁U A 等于( ) A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}2.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则∁U A∪B 为( ) A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}3.设集合A ={x|1<x<4},B ={x|-1≤x≤3},则A∩∁R B 等于( ) A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4) 4.设全集U ={x||x|<4,且x∈Z },S ={-2,1,3},若∁U P ⊆S ,则这样的集合P 共有( )A .5个B .6个C .7个D .8个 5.设U ={0,1,2,3},A ={x∈U|x 2+mx =0},若∁U A ={1,2},则实数m =________.6.设全集U ={x|x<9且x∈N },A ={2,4,6},B ={0,1,2,3,4,5,6},则∁U A =________,∁U B =______,∁B A =______.7.设全集是数集U ={2,3,a 2+2a -3},已知A ={b,2},∁U A ={5},求实数a ,b 的值.8.(1)设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},求N∩∁U M ;(2)设集合M ={m∈Z |-3<m <2},N ={n∈Z |-1≤n≤3},求M∪N.二、能力提升9.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A .(M∩P)∩SB .(M∩P)∪SC .(M∩P)∩∁I SD .(M∩P)∪∁I S10.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B={2,4,5,6,8},则∁U A∩∁U B 等于 ( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6} 11.已知全集U ,A B ,则∁U A 与∁U B 的关系是____________________.12.已知集合A ={1,3,x},B ={1,x 2},设全集为U ,若B∪∁U B =A ,求∁U B.三、探究与拓展13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?答案1.D 2.C 3.B 4.D5.-36.{0,1,3,5,7,8} {7,8} {0,1,3,5}7.解 ∵∁U A ={5},∴5∈U 且5∉A.又b∈A,∴b∈U,由此得⎩⎪⎨⎪⎧ a 2+2a -3=5,b =3. 解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧ a =-4,b =3经检验都符合题意.8.解 (1)∵U={1,2,3,4,5},M ={1,4},∴∁U M ={2,3,5}.又∵N={1,3,5},∴N∩∁U M ={3,5} .(2)∵M={m∈Z |-3<m <2},∴M={-2,-1,0,1};∵N={n∈Z |-1≤n≤3},∴N={-1,0,1,2,3},∴M∪N={-2,-1,0,1,2,3}.9.C 10.B 11.∁U B ∁U A12.解 因为B∪(∁U B)=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x.①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x≠1;当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}.综上所述,∁U B ={3}或{-3}或{3}.13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x.根据题意有⎩⎪⎨⎪⎧ a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.。

第02讲 1.2集合间的基本关系(教师版)

第02讲 1.2集合间的基本关系(教师版)

第02讲 1.2集合间的基本关系课程标准学习目标①理解集合之间包含与相等的含义,能识别给定集合的子集、真子集;②理解与掌握空集的含义,在解题中把握空集与非空集合、任意集合的关系。

1.能利用集合间的包含关系解决两个集合间的问题。

2. 在解决集合问题时,易漏集合的特殊形式,比如集合是空集时参数所具备的意义。

3. 能利用Venn 图表达集合间的关系。

4.判断集合之间的关系时,要从元素入手。

知识点01:venn 图(韦恩图)在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图形称为Venn 图。

Venn 图和数轴一样,都是用来解决集合问题的直观的工具。

利用Venn 图,可以使问题简单明了地得到解决。

对Venn 图的理解(1)表示集合的Venn图的边界是封闭曲线,它可以是圆、椭圆、矩形,也可以是其他封闭曲线.(2)用Venn 图表示集合的优点是能够呈现清晰的视觉形象,即能够直观地表示集合之间的关系,缺点是集合元素的公共特征不明显.知识点02:子集1子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集(1)记法与读法:记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”)(2)性质:①任何一个集合是它本身的子集,即A A ⊆.②对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆(3)venn 图表示:2集合与集合的关系与元素与集合关系的区别符号“⊆”表示集合与集合之间的包含关系,而符号“Δ表示元素与集合之间的从属关系.【即学即练1】(2024·全国·高三专题练习)写出集合{,}a b 的所有子集.【答案】{}{}{},,,,a b a b f 【详解】集合{,}a b 的所有子集有:{}{}{},,,,a b a b f 知识点03:集合相等一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A B =.也就是说,若A B ⊆,且B A ⊆,则A B =.(1)A B =的venn 图表示(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关【即学即练2】(2024秋·辽宁沈阳·高一沈阳二中校考阶段练习)下面说法中不正确的为( )A .{}{}1||1x x y y x y +==+=B .(){}{},2||2x y x y x x y +==+=C .{|2}{|2}x x y y >=>D .{}{}1,22,1=【答案】B【详解】对于A ,因{}1|R x x y +==,{}1|R y x y ==+,即{}{}1||1x x y y x y +==+=,A 正确;对于B ,因集合(){},2|x y x y +=的元素为有序数对,而{}2|x x y +=的元素为实数,两个集合的对象不同,B 不正确;对于C ,因集合{|2}x x >与{|2}y y >都表示大于2的数形成的集合,即{|2}{|2}x x y y >=>,C 正确;对于D ,由列举法表示集合知{}{}1,22,1=正确,D 正确.故选:B知识点04:真子集的含义如果集合A B ⊆,但存在元素x B Î,且x A ∉,我们称集合A 是集合B 的真子集;(1)记法与读法:记作A B Ü,读作“A 真包含于B ”(或“B 真包含A ”)【即学即练3】(2024·全国【答案】7【详解】由{}a ￿{,,M a b ⊆M 中的元素个数多于{}a 中的元素个数,不多于因此M 中的元素来自于b ,c,d 即在b ,c,d 中取1元素时,M 故足条件:{}a ￿{,,M a b ⊆故答案为:7.{}{}Ì,故③正确,④错误,正确的个数为2.11,2,3故选:B题型01 判断两个集合的包含关系【详解】由题意知,,M xì=【典例1】(2024·陕西咸阳·统考三模)设集合*{|13}A x N x =Î-<£,则集合A 的真子集个数是( )A .6B .7C .8D .15【答案】B【详解】因为*{|13}A x N x =Î-<£,【典例1】(多选)(2024·全国·高三专题练习)已知集合{17}A xx =-££∣,{221}B x a x a =+££-∣,若使B A ⊆成立的实数a 的取值集合为M ,则M 的一个真子集可以是( )A .{4}x x £∣B .{3}xx £∣C .{|34}x x <£D .{|45}x x £<【答案】BC【详解】由题意集合{17}A xx =-££∣,{221}B x a x a =+££-∣,因为B A ⊆,所以当B =∅时,221a a +>-,即3a < ;当B ≠∅时,有12217a a -£+£-£ ,解得34a ££,故(,4]M =-¥,则M 的一个真子集可以是(,3]-¥或(]3,4,故选:BC.【典例2】(2024·高一课时练习)设{1,2}A =,{|}B x x A =⊆若用列举法表示,则集合B 是________.【答案】{∅,{1},{2},{1,2}}【详解】由题意得,A ={1,2},B ={x |x ⊆A },则集合B 中的元素是集合A 的子集:∅,{1},{2},{1,2},所以集合B ={∅,{1},{2},{1,2}},故答案为:{∅,{1},{2},{1,2}}.【变式1】(多选)(2024秋·福建宁德·高一福建省霞浦第一中学校考期末)已知集合{2,4}M =,集合M N N ⊆,是{1,2,3,4,5}的真子集,则集合N 可以是( )A .{2,4}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】ABC【详解】集合{2,4}M =,集合M N ⊆￿{1,2,3,4,5},则集合N 中至少包含2,4两个元素,又不能等于或多于{1,2,3,4,5}中的元素,所以集合N 可以是{2,4},{2,3,4},{1,2,3,4},故选:ABC题型04空集的概念集判断【典例1】(2024·河北·高三学业考试)下列集合中,结果是空集的是( )A .2{|10}x R x Î-=B .{|61}x x x ><或C .22{(,)|0}x y x y +=D .{|61}x x x ><且【答案】D【详解】A 选项:21{|10}x R x ±ÎÎ-=,不是空集;B 选项:7$Î{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数,即:{x |x >6且x <1}=∅.故选:D【典例2】(2024春·宁夏银川·高二银川一中校考期中)下列各式中:①{}{}00,1,2Î;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}(){}0,10,1=;⑥{}00=.正确的个数是()A .1B .2C .3D .4【答案】B【详解】①集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{}{}0,1,22,1,0⊆,正确;③空集是任意集合的子集,故{}0,1,2∅⊆,正确;④空集没有任何元素,故{}0∅≠,错误;⑤两个集合所研究的对象不同,故{}(){}0,1,0,1为不同集合,错误;⑥元素与集合之间只有属于、不属于关系,故错误;∴②③正确.故选:B.【变式1】(2024·上海·高一专题练习)下列六个关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅⊆;⑥{}00Î.其中正确的个数是( )A .1B .3C .4D .6【答案】C【详解】①正确,集合中元素具有无序性;②正确,任何集合是自身的子集;③错误,∅表示空集,而{}∅表示的是含∅这个元素的集合,所以{}∅=∅不成立.④错误,∅表示空集,而{}0表示含有一个元素0的集合,并非空集,所以{}0=∅不成立;⑤正确,空集是任何非空集合的真子集;⑥正确,由元素与集合的关系知,{}00Î.故选:C.【变式1】(多选)(2024·全国·高一校联考阶段练习)下列关系中正确的是( )A .0Î∅B .{}∅Î∅C .{}∅⊆∅D .{}0∅⊆【答案】BCD【详解】选项A :空集中没有元素,故A 错误;选项B :{}∅中只有一个元素∅,故B 正确;选项C ,D :空集是任意集合的子集,故C ,D 正确故选:BCD题型05 空集的性质及应用【典例1】(2024·全国·高一专题练习)已知集合{|21}M x m x m =<<+,且M =∅,则实数m 的取值范围是____.【答案】m ≥1【详解】∵M =∅,∴2m ≥m +1,∴m ≥1.故答案为m ≥1【典例2】(2024·高一课时练习)不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,则实数a 的取值范围是_____________.【答案】{|1}a a £-【详解】解:∵不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,①当0a >时,由0ax >求得0x >;由10x a ++>,求得1x a >--,故不等式组10(0)0x a a ax ++>ì≠í>î的解集为{|0}x x >≠∅,故不满足条件;②当a<0时,由0ax >求得0x <;由10x a ++>,求得1x a >--,若10a --³,即1a £-时,不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,满足条件;若10a --<,即01a >>-时,不等式组10(0)0x a a ax ++>ì≠í>î的解集为{|10}x a x --<<≠∅,不满足条件,综上可得实数a 的取值范围是{|1}a a £-,故答案为:{|1}a a £-.【变式1】(2024秋·湖南永州·高一校考阶段练习)若集合{}R 2x a x Σ£ 为空集,则实数a 的取值范围是______.【典例1】(2024·全国·高三专题练习)已知集合{}20,1,A a =,{}1,0,32B a =-,若A B =,则a 等于( )A .1或2B .1-或2-C .2D .1【答案】C【详解】解:因为A B =,所以232a a =-,解得1a =或2a =.当1a =时,21a =,与集合元素互异性矛盾,故1a =不正确.题型08根据集合的包含关系求参数【典例1】(2024·全国·高一专题练习)给定集合{}1,2,3,4,5,6,7,8S =,对于x S Î,如果11x S x S +∉-∉,,那么x 是S 的一个“好元素”,由S 的3个元素构成的所有集合中,不含“好元素”的集合共有_________个.【答案】6【详解】若不含好元素,则集合S 中的3个元素必须为连续的三个数,故不含好元素的集合共有{}{}{}{}1,2,3,2,3,43,4,545,6,5,6,7,6,7,8{},{},,,共有6个.故答案为:6.【典例2】(2024·高一课时练习)设A 是整数集的一个非空子集,对于k A Î,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个.【答案】7【详解】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”,则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.故答案为:7.本节重点方法(数轴辅助法)【典例1】(2024·全国·高三专题练习)已知集合{|4A x x =³或}5x <-,{}|13B x a x a =+££+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <-或}3a ³【详解】用数轴表示两集合的位置关系,如上图所示,要使B A ⊆,只需35a +<-或14a +³,解得8a <-或3a ³.所以实数a 的取值范围{|8a a <-或}3a ³.故答案为:{|8a a <-或}3a ³ 综上,实数a 的取值范围为{4a a -或}2a >.本节数学思想方法(分类讨论法){},|34B A A x x ⊆=-££Q ,213m \-³-且14m +£,解得:13m -≤≤,所以12m -£<,②若B 为空集,符合题意,可得:211m m -³+,解得:2m ³.综上,实数m 的取值范围是1m ³-.故答案为:[)1,-+¥.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.4集合章节复习一、教学目标:(1)掌握集合、交集、并集、补集的概念及有关性质; (2)掌握集合的有关术语和符号; (3)运用性质解决一些简单的问题。

二、教学重难点:教学重点:集合的相关运算。

教学难点:集合知识的综合运用。

三、基础知识(一):集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:文字语言 符号语言属于 ∈不属于∉4.常见集合的符号表示 数集 自然数集正整数集整数集 有理数集实数集 复数集符号N*N 或+NZ QR C(二): 集合间的基本关系关系 文字语言符号语言相等集合A 与集合B 中的所有元素都相同B A ⊆且A ⊆B ⇔B A =子集A 中任意一元素均为B 中的元素 B A ⊆或A B ⊇真子集A 中任意一元素均为B 中的元素,且B 中至少有一元素不是A 的元素 A B补集全集是U,集合A U ⊆,全集U 中不属于集合A 的所有元素组成的集合{},U C A x x U x A =∈∉且2空集空集是任何集合的子集,是任何非空集合的真子集A ⊆φ,φB (φ≠B )若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有真子集的个数是n 2-1, 所有非空真子集的个数是22-n(三):集合的基本运算 1.两个集合的交集:A B = {}x x A x B ∈∈且; 2.两个集合的并集: AB ={}x x A x B ∈∈或;(四):方法指导1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.5.强化数形结合、分类讨论的数学思想.四、典型例题考点一 集合的相关概念理解例1:用适当的方法表示下列集合 (1)非负奇数组成的集合;(2)小于18的既是奇数又是质数的数组成的集合; (3)方程()()012122=++-x x x 的解组成的集合; (4)平面直角坐标系内所有第三象限的点组成的集合;(5)方程组⎩⎨⎧=+=-+1012y x x x 的解集例2、求集合{}1),(≤+y x y x ,所围成图形的面积?3分析:面积为2例3.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =,则a 的值为( ) A.0 B.1 C.2 D.4例4.已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )A. 3个B. 2个C. 1个D. 无穷多个练习:1 、设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为 ( )A .{2}B .{3}C .{-3,2}D .{-2,3}2、由实数332,,,,a a a a a -所组成的集合,所含元素的个数最多的有 个考点2、集合的运算xy14例5、已知集合{}2,1,0=A ,{}A a a x x B ∈==,2|,则B A ⋂=( )A 、{}0B 、{}1,0C 、{}31, D 、{}2,0例6、设U=R ,A={x|-5<x<5},B={x|0≤x<7},求A ∩B 、A ∪B 、C U A 、C U B 、(C U A)∩(C U B)、(C U A)∪(C U B)、C U (A ∪B)、C U (A ∩B)。

例7、设集合{}4,12,2--=x x A ,{}9,1,5x x B --=,若{}9=⋂B A ,求B A ⋃.练习3 已知关于x 的方程0732=-+px x 的解集为A ,方程0732=+-q x x 的解集为B ,若⎭⎬⎫⎩⎨⎧-=⋂31B A ,求B A ⋃考点3、利用集合的运算求参数的取值范围 1、利用集合元素特征求参数取值范围例8、已知集合{}R x x ax x A ∈=+-=,012|2,若A 中至多只有一个元素,求实数a 的取值范围?5练习4 已知集合{}4,12,32---=a a a A ,若A ∈-3,求实数a 的取值范围2、利用集合的相等关系求参数的取值范围例9、设集合{}y x y x A +=,,,{}xy x B ,02,=,若A=B ,求x,y 的值。

练习5 已知集合{}b a A ,2,=,{}2,2,2b a B =,若A=B ,求a,b 的值3、利用集合关系求参数值例10、设集合{}61|≤≤-=x x A ,{}121|+≤≤-=m x m x B ,已知A B ⊆,(1)求实数m 的取值范围;(2)当N x ∈时,求集合A 的子集的个数;练习6 已知集合A={x|x>6或x<-3},B={x|a<x<a+3},若A ∪B=A ,求实数a 的取值范围。

6例11、A={x|x 2+4x=0},B={x|x 2+2(a+1)x +a 2-1=0}, 若A ∪B=A ,求实数a 的值。

练习7 若集合{}06|2=-+=x x x A ,{}01|=+=mx x B ,且A B ≠⊂,求m 的取值范围。

4、利用补集的相关知识求参数的取值例12、已知关于x 的方程()0222=---m x x 与024122=++++m m mx x ,若这两个方程至少有一个方程有实数解,求实数m 的取值范围。

练习8 已知集合{}0624|2=++-=m mx x x A ,{}0|<=x x B ,若∅≠⋂B A ,求实数m 的取值范围五、课后练习1. 设全集{}{}R,(3)0,1U A x x x B x x ==+<=<-, 则右图中阴影部分表示的集合为 ( )UBA7A .{}0x x >;B .{}30x x -<<;C .{}31x x -<<-;D .{}1x x <-2.已知集合{}2),(=+=y x y x M ,{}4),(=-=y x y x N ,那么集合N M 为( )A.1,3-==y x ;B.)1,3(-;C.{}1,3-;D.{})1,3(-3.设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是( ) A .13-<<-a ;B .13-≤≤-a C .3-≤a 或1-≥a ;D .3-<a 或1->a4.已知集合A ={-1,1},B ={x|mx =1},且A ∪B =A ,则m 的值为 ( )A .1B .-1C .1或-1D .1或-1或0 5.若集合P ={x|3<x ≤22},非空集合Q ={x|2a +1≤x<3a -5},则能使Q ⊆(P ∩Q )成立的所有实数a 的取值范围( )A .(1,9)B .[1,9]C .(6,9)D .[6,9) 6.设I 为全集,M 、N 、P 都是它的子集,则图1-1-3-12中阴影部分表示的集合是( ) A.M∩[(N)∩P] B.M∩(N ∪P) C.[(M)∩(N)]∩P D.M∩N ∪(N∩P)图1-1-3-127.定义集合运算:{}B y x xy y x B ∈∈+==⊗A,,z A 22,设集合{}1,0A =,{}3,2=B ,则集合B ⊗A 的所有元素之和为8.已知A ={x |x 2-2x -8<0},B ={x |x -a <0},A ∩B =φ.则a 的范围是a ≤-2________9.设T ={(x ,y )|ax +y -3=0},S ={(x ,y )|x -y -b =0},若S ∩T ={(2,1)},则a =_______,b =_______.(1,1;)10.已知A ={x|x 2+(p +2)x +1=0},B ={x|x>0},若A ∩B =∅,则实数p 的取值范围为__________.p >-411、设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围 解:由|x -a |<2,得a -2<x <a +2,所以A ={x |a -2<x <a +2}.由212+-x x <1,得23+-x x <0,即-2<x <3,所以B ={x |-2<x <3}.8因为A ⊆B ,所以⎩⎨⎧≤+-≥-3222a a ,于是0≤a ≤1.12、集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=满足,A B φ≠,,A C φ=求实数a 的值。

相关文档
最新文档