鸡兔同笼应用题63787
鸡兔同笼问题的应用题30道

鸡兔同笼问题的应用题30道鸡兔同笼问题是数学中的一个有趣的问题,它提出来的问题是:如果有一笼子里共有鸡和兔,把这些动物计算出来,我们可以得到多少只鸡和兔子。
在数学课上,老师通常会给孩子们出一些鸡兔同笼问题的应用题,让他们练习解决这样的问题,其中的30道题如下:1、一笼子里共有28只动物,其中有鸡18只,问兔子有几只?2、一笼子里共有45只动物,其中有鸡12只,问兔子有几只?3、一笼子里共有77只动物,其中有鸡49只,问兔子有几只?4、一笼子里共有64只动物,其中有鸡36只,问兔子有几只?5、一笼子里共有51只动物,其中有鸡27只,问兔子有几只?6、一笼子里共有35只动物,其中有鸡21只,问兔子有几只?7、一笼子里共有41只动物,其中有鸡13只,问兔子有几只?有几只?9、一笼子里共有83只动物,其中有鸡29只,问兔子有几只?10、一笼子里共有33只动物,其中有鸡19只,问兔子有几只?11、一笼子里共有66只动物,其中有鸡31只,问兔子有几只?12、一笼子里共有79只动物,其中有鸡47只,问兔子有几只?13、一笼子里共有72只动物,其中有鸡48只,问兔子有几只?14、一笼子里共有50只动物,其中有鸡22只,问兔子有几只?15、一笼子里共有37只动物,其中有鸡15只,问兔子有几只?16、一笼子里共有52只动物,其中有鸡36只,问兔子有几只?17、一笼子里共有90只动物,其中有鸡50只,问兔子有几只?18、一笼子里共有58只动物,其中有鸡26只,问兔子有几只?子有几只?20、一笼子里共有62只动物,其中有鸡34只,问兔子有几只?21、一笼子里共有39只动物,其中有鸡25只,问兔子有几只?22、一笼子里共有60只动物,其中有鸡42只,问兔子有几只?23、一笼子里共有81只动物,其中有鸡43只,问兔子有几只?24、一笼子里共有48只动物,其中有鸡30只,问兔子有几只?25、一笼子里共有54只动物,其中有鸡32只,问兔子有几只?26、一笼子里共有36只动物,其中有鸡23只,问兔子有几只?27、一笼子里共有71只动物,其中有鸡45只,问兔子有几只?28、一笼子里共有84只动物,其中有鸡55只,问兔子有几只?29、一笼子里共有46只动物,其中有鸡17只,问兔子有几只?子有几只?以上就是30道鸡兔同笼问题的应用题,这些题目都是要求学生根据给出的信息,按照鸡兔同笼的思路,计算出兔子的数量。
四年级下册鸡兔同笼问题练习题(附答案及解析)

四年级下册鸡兔同笼问题练习题(附答案及解析)嘿,大家好!今天我要给大家分享的是四年级下册的鸡兔同笼问题练习题,附上答案和解析。
这可是数学中的经典问题,不仅能锻炼我们的思维能力,还能让我们在解题过程中感受到数学的乐趣。
首先,我们先来回顾一下鸡兔同笼问题的基本概念。
鸡兔同笼问题是指在一个笼子里关着一些鸡和兔子,已知笼子里动物的总数和脚的总数,要求我们计算出鸡和兔子各有多少只。
举个例子,假设笼子里有10只动物,脚的总数是28只。
那么,我们要如何计算出鸡和兔子各有多少只呢?下面,我就给大家展示一个具体的解题过程。
【例题】一个笼子里有10只动物,脚的总数是28只。
请问笼子里有多少只鸡和多少只兔子?首先,我们设鸡的数量为x,兔子的数量为y。
那么,我们可以根据题目条件列出以下方程组:x + y = 10 (动物总数)2x + 4y = 28 (脚的总数)接下来,我们来解这个方程组。
从第一个方程中,我们可以得到 x = 10 y。
将x的表达式代入第二个方程中,得到:2(10 y) + 4y = 2820 2y + 4y = 282y = 8y = 4现在我们知道了兔子的数量是4只。
再将y的值代入x的表达式中,得到:x = 10 4x = 6所以,笼子里有6只鸡和4只兔子。
怎么样,这个解题过程是不是很简单呢?其实,只要我们掌握了鸡兔同笼问题的解题思路,类似的题目都可以迎刃而解。
下面,我给大家准备了几个类似的练习题,大家一起来试试吧!【练习题1】一个笼子里有8只动物,脚的总数是32只。
请问笼子里有多少只鸡和多少只兔子?【练习题2】一个笼子里有12只动物,脚的总数是48只。
请问笼子里有多少只鸡和多少只兔子?【练习题3】一个笼子里有15只动物,脚的总数是60只。
请问笼子里有多少只鸡和多少只兔子?好了,今天的分享就到这里。
希望大家通过这些练习题,能够更好地掌握鸡兔同笼问题的解题方法。
加油哦!。
鸡兔同笼的练习题及答案

鸡兔同笼问题的练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里各有几只鸡和兔?2. 鸡和兔共40只,脚共有112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚共有94只,鸡和兔各有多少只?4. 笼子里有鸡和兔共18只,脚共有52只,求鸡和兔的数量。
5. 有一个笼子里鸡和兔共有26只,脚共有70只,问鸡和兔各有多少只?二、提高题6. 有两个笼子,第一个笼子里有鸡和兔共20只,脚共有60只;第二个笼子里有鸡和兔共25只,脚共有70只。
请问两个笼子中鸡和兔各有多少只?7. 有三个笼子,分别装有鸡和兔,第一个笼子共15只,第二个笼子共20只,第三个笼子共25只,三个笼子的脚总数为96只。
求每个笼子中鸡和兔的数量。
8. 笼子里有鸡和兔共30只,如果增加5只鸡,脚的总数将增加20只,求原来笼子里鸡和兔各有多少只?9. 笼子里有鸡和兔共50只,脚共有140只,如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。
求原来鸡和兔各有多少只?10. 有两个笼子,第一个笼子里鸡和兔共15只,第二个笼子里鸡和兔共25只,两个笼子的脚总数为100只。
求两个笼子中鸡和兔各有多少只?三、拓展题11. 有三个笼子,分别装有鸡和兔,第一个笼子共10只,第二个笼子共15只,第三个笼子共20只,三个笼子的脚总数为68只。
求每个笼子中鸡和兔的数量。
12. 笼子里有鸡和兔共40只,脚共有110只。
如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将减少30只。
求原来鸡和兔各有多少只?13. 有四个笼子,分别装有鸡和兔,第一个笼子共8只,第二个笼子共12只,第三个笼子共16只,第四个笼子共20只,四个笼子的脚总数为只。
求每个笼子中鸡和兔的数量。
14. 笼子里有鸡和兔共60只,脚共有160只。
如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。
求原来鸡和兔各有多少只?15. 有五个笼子,分别装有鸡和兔,每个笼子的鸡和兔总数分别为10、15、20、25、30只,五个笼子的脚总数为140只。
鸡兔同笼应用题

鸡兔同笼应用题1.题目:鸡兔同笼应用题从题目中我们可以得知,有若干只鸡和兔,总头数为10,总脚数为28.我们需要求出鸡和兔各有多少只。
解答:设鸡有x只,兔有y只。
由题可得:x+y=10(总头数为10)XXX(总脚数为28,鸡有2只脚,兔有4只脚)解方程可得:x=6,y=4.所以,笼子里有6只鸡和4只兔。
2.题目:鸡和兔的数量从题目中我们可以得知,鸡和兔的总数量为32,总脚数为98.我们需要求出鸡和兔各有多少只。
解答:设鸡有x只,兔有y只。
由题可得:x+y=32(总数量为32)2x+4y=98(总脚数为98,鸡有2只脚,兔有4只脚)解方程可得:x=18,y=14.所以,笼子里有18只鸡和14只兔。
3.题目:购买薯条和薯片XXX从题目中我们可以得知,XXX花了124元购买了8元/包的薯条和12元/包的薯片共13包。
我们需要求出薯条和薯片各买了多少包。
解答:设薯条有x包,薯片有y包。
由题可得:x+y=13(总共购买了13包)8x+12y=124(总共花费了124元)解方程可得:x=7,y=6.所以,XXX买了7包薯条和6包薯片。
4.题目:购买纪念邮票从题目中我们可以得知,XXX购买了2元和5元的纪念邮票共34张,总共花费了98元。
我们需要求出XXX购买了2元和5元的纪念邮票各多少张。
解答:设XXX购买了x张2元邮票,y张5元邮票。
由题可得:x+y=34(总共购买了34张)XXX(总共花费了98元)解方程可得:x=22,y=12.所以,XXX购买了22张2元邮票和12张5元邮票。
5.题目:租船XXX从题目中我们可以得知,全班54人租了11条船,每条船都坐满了人。
大船坐6人,小船坐4人。
我们需要求出大船和小船各坐多少人。
解答:设大船坐x人,小船坐y人。
由题可得:x+y=11(总共租了11条船)6x+4y=54(总共租了54人,大船坐6人,小船坐4人)解方程可得:x=5,y=6.所以,大船坐5人,小船坐6人。
鸡兔同笼应用题及答案

小学应用题(鸡兔同笼问题)【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有¥兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则;兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本元。
鸡兔同笼练习题及答案

鸡兔同笼练习题及答案鸡兔同笼练习题及答案鸡兔同笼是一道经典的数学问题,常常用来训练逻辑思维和解决问题的能力。
这个问题的形式是这样的:在一个笼子里有鸡和兔子,总共有头和脚。
问鸡和兔子各有多少只?这个问题看似简单,但实际上需要运用代数方程的解法。
我们可以设鸡的数量为x,兔子的数量为y。
根据题目中给出的条件,我们可以得到两个方程:1. 鸡和兔子的总数量:x + y =2. 鸡和兔子的总脚数:2x + 4y =接下来,我们需要解这个方程组。
可以通过消元法或代入法来求解。
这里我们选择代入法。
首先,将第一个方程变形得到:x = - y。
然后,将x的值代入第二个方程中:2(- y) + 4y =化简得到: -2y + 4y =合并同类项得到:2y =最后,解得:y =将y的值代入第一个方程中:x + =化简得到:x + =合并同类项得到:x =所以,鸡的数量为,兔子的数量为。
这就是鸡兔同笼问题的解答。
但我们可以进一步思考这个问题。
首先,我们可以发现,鸡兔同笼问题的解并不是唯一的。
根据题目中给出的条件,我们可以得到一个不等式:0 ≤ x ≤ 。
这个不等式告诉我们,鸡的数量不能小于0,也不能大于。
换句话说,鸡的数量是一个非负整数,且不超过。
同样地,兔子的数量也有类似的限制:0 ≤ y ≤ 。
这个问题还可以引申出更多的思考。
我们可以思考以下几个问题:1. 当鸡和兔子的总数量为奇数时,是否存在解?答案是不存在。
因为鸡和兔子的总数量一定是偶数,而奇数无法被2整除。
2. 当鸡和兔子的总脚数为奇数时,是否存在解?答案也是不存在。
因为鸡和兔子的总脚数一定是4的倍数,而奇数无法被4整除。
3. 如果题目中给出的条件有误,例如给出的总脚数不正确,我们应该如何解决这个问题?在这种情况下,我们可以通过检查题目中给出的条件是否合理来解决问题。
如果条件不合理,我们可以向出题者求证或提出疑问。
总的来说,鸡兔同笼问题是一个经典的数学问题,可以锻炼我们的逻辑思维和解决问题的能力。
鸡兔同笼练习题大全

鸡兔同笼问题是中国古代数学中的一个经典问题,也称为鸡兔同笼问题或鸡兔同笼问题。
它可以用线性方程组来解决,也可以用更简单的方法来解决。
下面是一些鸡兔同笼问题的练习题和解答过程:鸡兔同笼,共有30个头,88只脚。
求笼中鸡兔各有多少只?解答过程:设鸡有x只,兔有y只。
根据题意,我们可以列出两个方程:x + y = 30,2x + 4y = 88。
解这个方程组,得到x = 16,y = 14。
所以,笼中有鸡16只,兔14只。
鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?解答过程:设鸡有x只,兔有y只。
根据题意,我们可以列出两个方程:x + y = 48,2x + 4y = 132。
解这个方程组,得到x = 30,y = 18。
所以,笼中有鸡30只,兔18只。
一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?解答过程:设鸡有x只,兔有y只。
根据题意,我们可以列出两个方程:x + y = 78,2x + 4y = 200。
解这个方程组,得到x = 40,y = 38。
所以,饲养组养了鸡40只,兔38只。
鸡兔同笼不知数,三十六头笼中露。
数清脚共五十双,各有多少鸡和兔?解答过程:设鸡有x只,兔有y只。
根据题意,我们可以列出两个方程:x + y = 36,2x + 4y = 100。
解这个方程组,得到x = 22,y = 14。
所以,笼中有鸡22只,兔14只。
5.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?解答过程:设50分邮票买了x张,80分邮票买了y张。
根据题意,我们可以列出两个方程:x+y=20,50x+80y=13.6*100(因为1元等于100分)。
解这个方程组,得到x=14,y=6。
所以,50分邮票买了14张,80分邮票买了6张。
小明有2角和5角的硬币共计34张,总值为11元1角(即111角),求两种硬币各有多少张?解答过程:设2角硬币有x张,5角硬币有y张。
鸡兔同笼典型例题10道

鸡兔同笼典型例题10道一、基础型例题1. 鸡和兔在一个笼子里,从上面数,有8个头,从下面数,有26只脚。
问鸡和兔各有几只?- 逻辑:我们先假设笼子里全是鸡,那么8个头就应该有8×2 = 16只脚。
但实际有26只脚,多出来的脚就是兔子比鸡多的脚。
每只兔子比鸡多2只脚,多出来的26 - 16 = 10只脚,10÷2 = 5只就是兔子的数量,鸡就是8 - 5 = 3只。
2. 一个笼子里有鸡和兔共12只,它们一共有34只脚。
求鸡和兔各多少只?- 逻辑:假设全是鸡,12只鸡就有12×2 = 24只脚。
实际34只脚,多了34 - 24 = 10只脚。
因为每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是12 - 5 = 7只。
3. 鸡兔同笼,头共10个,脚共30只。
鸡兔各几只?- 逻辑:要是全是鸡,10只鸡就有20只脚。
30 - 20 = 10只脚是多出来的,这是兔子的脚多出来的部分。
每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是10 - 5 = 5只。
二、数字变化型例题4. 鸡兔同笼,共有15个头,46只脚。
问鸡和兔各有多少只?- 逻辑:先当全是鸡,15只鸡有15×2 = 30只脚。
46 - 30 = 16只脚是多的,每只兔比鸡多2只脚,兔就有16÷2 = 8只,鸡就是15 - 8 = 7只。
5. 笼子里有鸡和兔,一共20个头,56只脚。
鸡和兔分别有多少?- 逻辑:假设都是鸡,20只鸡有20×2 = 40只脚。
56 - 40 = 16只脚多出来了,这是兔子的。
每只兔比鸡多2只脚,兔有16÷2 = 8只,鸡有20 - 8 = 12只。
三、特殊条件型例题6. 鸡兔同笼,鸡比兔多2只,共有脚28只。
鸡兔各多少只?- 逻辑:设兔有x只,那鸡就有x + 2只。
兔脚有4x只,鸡脚有2(x + 2)只。
可列方程4x+2(x + 2)=28,4x+2x + 4 = 28,6x = 24,x = 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡?
解假设35只全为兔,则
鸡数=(4×35-94)÷(4-2)=23(只)
兔数=35-23=12(只)
也可以先假设35只全为鸡,则
兔数=(94-2×35)÷(4-2)=12(只)
鸡数=35-12=23(只)
答:有鸡23只,有兔12只。
例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?
解此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有
白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)
答:白菜地有10亩。
例3 李老师用69元给学校买作业本和日记本共45本,作业本每本3 .20元,日记本每本0.70元。
问作业本和日记本各买了多少本?
解此题可以变通为“鸡兔同笼”问题。
假设45本全都是日记本,则有
作业本数=(69-0.70×45)÷(3.20-0.70)=15(本)
日记本数=45-15=30(本)
答:作业本有15本,日记本有30本。
例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
解假设100只全都是鸡,则有
兔数=(2×100-80)÷(4+2)=20(只)
鸡数=100-20=80(只)
答:有鸡80只,有兔20只。
1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?
2. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?
4. 自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?
13. 今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?15. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?
17. 班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?
18. 大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?
21. 有鸡兔共20只,脚44只,鸡兔各几只?
22. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?
20. 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
29. 小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多.问小毛做对几道题?
30. 赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张.他兑换了两种面额的人民币各多少张?
32. 动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤.该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少?
35. 某电视机厂每天生产电视500台,在质量评比中,每生产一台合格电视机记5分,每生产一台不合格电视机扣18分.如果四天得了9931分,那么这四天生产了多少台合格电视机?
37. 崔文符进山打猎,平均5枪打死两只兔子,9枪打死6只野鸡.他共放了25枪,获得猎物14只,两种动物各打死了几只?
36. 六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人?
34. 鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?
31. 幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少?
23. 现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?
16. 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
12. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?
27. 蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶.现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元.该校每学期买两种墨水各多少瓶?
9. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?
5. 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?
25. 瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268.6元,求打破了几只花瓶?
11. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?28. 大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛.小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?
14. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?
33. 小张的存钱盒里有2角,5角和1元人民币20张,共12元,算一算三种面值的人民币各有多少张?。