多重回归分析

合集下载

计量经济学课程第4章(多元回归分析)

计量经济学课程第4章(多元回归分析)
Page 2
§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS

N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1

2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2


2,
0
HA :

2


2 0

多元统计分析回归分析

多元统计分析回归分析

03
多元线性回归分析
多元线性回归模型的建立
确定自变量和因变量
01
在建立多元线性回归模型时,首先需要明确哪些变量是自变量
(解释变量),哪些是因变量(响应变量)。
确定模型形式
02
根据研究目的和数据特征,选择合适的多元线性回归模型形式,
如线性、多项式、逻辑回归等。
确定模型参数
03
根据选择的模型形式,确定模型中的参数,如回归系数、截距
04
多元非线性回归分析
多元非线性回归模型的建立
确定因变量和自变量
首先需要确定回归分析中的因变量和自变量, 并收集相关数据。
确定模型形式
根据理论或经验,选择合适的非线性函数形式 来表示自变量与因变量之间的关系。
确定模型参数
根据数据,使用适当的方法确定模型中的参数。
多元非线性回归模型的参数估计
01
详细描述
在社会调查中,回归分析可以帮助研究者了解不同因素对人类行为的影响,例如 教育程度、收入、性别等因素对个人幸福感的影响。通过回归分析,可以揭示变 量之间的关联和因果关系,为政策制定和社会干预提供科学依据。
生物医学数据的回归分析
总结词
生物医学数据的回归分析是多元统计分析在生命科学领域的应用,用于研究生物标志物和疾病之间的 关系。
详细描述
在经济领域,回归分析被广泛应用于股票价格、通货膨胀率 、GDP等经济指标的分析和预测。通过建立回归模型,可以 分析不同经济变量之间的因果关系,为政策制定者和投资者 提供决策依据。
社会调查数据的回归分析
总结词
社会调查数据的回归分析是多元统计分析在社会科学领域的应用,用于研究社会 现象和人类行为。
特点
多元统计分析具有多维性、复杂性和实用性。它可以处理多个变量之间的交互 作用和综合效应,广泛应用于各个领域,如经济学、社会学、生物学等。

多元回归分析

多元回归分析

多元回归分析多元回归分析是一种用于建立预测模型的统计方法。

在多元回归分析中,我们可以探究多个自变量对于一个或多个因变量的影响程度。

因此,多元回归模型可以帮助我们预测未来的趋势和结果。

多元回归模型一个多元回归模型可以被定义为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y代表因变量,X1, X2, ..., Xk代表自变量,β1, β2, ..., βk 代表自变量对于Y的影响力,β0为截距,ε为随机误差。

使用多元回归分析,我们可以通过对观察数据进行拟合,来估计坑深度(k)和每个自变量的系数(β)。

这些系数告诉了我们每个自变量的影响程度,从而可以预测因变量(Y)的值。

多元回归应用多元回归分析被广泛地应用于不同领域,如经济学、医学、心理学等。

下面将介绍多元回归分析在金融领域中的应用。

在金融领域,多元回归分析可以帮助我们预测一些关键的金融变量,如股票价格、货币汇率、利率等。

接下来,我们将以预测股票价格为例来说明多元回归分析的应用。

1. 收盘价预测模型使用多元回归分析,我们可以建立一个收盘价预测模型,以帮助我们预测未来股票的价格。

为了建立该模型,我们需要收集一些历史的股票价格数据和其他相关数据。

这些数据可以包括公司业绩、行业前景、国家经济发展等。

下面是一个简单的股票价格预测模型:Price = β0 + β1Earnings per Share + β2GDP + β3Unemployment Rate + ε在这个模型中,价格是因变量(Y),Earnings per Share、GDP、Unemployment Rate是自变量(X)。

通过对这些数据进行多元回归分析,可以得到每个自变量的系数。

接下来,我们可以使用这个模型来预测股票价格。

一般来说,我们需要将每个自变量的数值代入模型中,从而获得股票价格的预测值。

2. 基金回报预测模型除了股票价格的预测,多元回归分析还可以帮助我们预测基金回报。

多元回归分析方法

多元回归分析方法

多元回归分析方法一、简介多元回归分析是一种经济学和统计学中常用的分析方法,它可以用来研究多个自变量对一个因变量的影响关系。

在实际问题中,我们往往需要考虑多个因素对某个现象的影响,多元回归分析可以帮助我们揭示这种复杂关系。

二、回归模型回归分析基于回归模型,常见的多元回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε,其中Y是因变量,Xi是自变量,βi是对应的回归系数,ε是随机误差项。

回归系数反映了自变量对因变量的影响程度,通过对样本数据进行估计,我们可以得到回归系数的估计值。

三、数据收集与准备在进行多元回归分析之前,我们需要收集和准备相关的数据。

这包括确定因变量和自变量的测量指标,选择合适的样本规模,保证数据的有效性和可靠性。

同时,对于因变量和自变量之间可能存在的非线性关系,我们需要进行适当的变量转换或添加高阶项,以确保模型的拟合程度。

四、回归模型的选择在进行多元回归分析时,我们需要选择合适的回归模型。

这可以通过观察数据的分布情况、变量之间的关系以及领域知识来进行判断。

常见的回归模型包括线性回归、多项式回归和逻辑回归等。

选择合适的模型能够提高分析的准确性和可解释性。

五、模型拟合与评估在得到回归模型的估计值后,我们需要评估模型的拟合程度和预测能力。

常见的评估指标包括均方误差(MSE)、决定系数(R-squared)和F统计量等。

通过这些指标,我们可以判断模型的拟合优度和自变量的显著性,进而确定模型是否可靠以及变量是否具有统计显著性。

六、多重共线性检验多元回归分析中存在一个重要的问题,即多重共线性。

当自变量之间存在强相关关系时,容易导致模型估计结果的不稳定和不可靠。

因此,在进行多元回归分析之前,必须对自变量进行多重共线性的检验。

常用的方法包括方差膨胀因子(VIF)和特征值分解等。

七、模型解释与应用通过对多元回归模型的估计和评估,我们可以得到自变量对因变量的影响程度和方向,并进行合理的解释。

回归分析概念相关多元回归分析

回归分析概念相关多元回归分析

回归分析概念相关多元回归分析回归分析是一种统计学方法,用于研究因变量和一个或多个自变量之间的关系。

它可以用来预测或解释因变量在自变量变化时的变化情况。

相关分析是回归分析的一种特殊情况,用于研究两个变量之间的关系。

它通过计算两个变量之间的相关系数来衡量它们的线性相关程度。

相关系数的取值范围在-1到1之间,接近1表示正相关,接近-1表示负相关,接近0表示无相关。

与相关分析相比,多元回归分析可以同时研究一个因变量和多个自变量之间的关系。

它通过拟合一个线性模型来预测或解释因变量的变化。

多元回归分析的最常见形式是多元线性回归,它可以用来研究因变量在多个自变量变化时的变化情况。

在多元回归分析中,每个自变量都有一个回归系数,代表它对因变量的影响程度。

多元回归分析需要满足一些假设,包括线性假设(因变量和自变量之间的关系是线性的)、独立性假设(观测之间是相互独立的)、等方差性假设(残差的方差是恒定的)和正态性假设(残差是正态分布的)。

如果这些假设不成立,可能需要采取一些特殊技术,如非线性回归或转换变量。

多元回归分析的步骤包括数据收集、模型建立、模型拟合和结果解释。

在数据收集阶段,需要收集因变量和自变量的数据。

在模型建立阶段,需要选择适当的自变量,并建立一个数学模型。

在模型拟合阶段,需要使用统计软件拟合模型,并计算回归系数和拟合优度。

在结果解释阶段,需要解释回归系数的含义,并进行模型的诊断和解释。

多元回归分析有很多应用领域,包括经济学、社会科学、医学等。

它可以用来预测销售额、分析市场需求、评估政策效果等。

通过多元回归分析,研究人员可以深入了解因变量与多个自变量之间的复杂关系,并得出有关预测和解释的结论。

总结起来,回归分析是一种统计学方法,用于研究变量之间的关系。

相关分析是其特殊情况,用于研究两个变量之间的关系。

多元回归分析是同时研究一个因变量和多个自变量之间的关系。

多元回归分析的步骤包括数据收集、模型建立、模型拟合和结果解释。

第4章多元线性回归分析

第4章多元线性回归分析

4.2.1回归系数估计
结论
4.2 多元线性回归模型参数估计
结论1: OLS估计的一致性 ˆj 如果回归模型误差项满足假设1和假设2,OLS估计 为一致估计,即
ˆ , j 0, 1, 2, , k p limn j j
结论2: OLS估计的无偏性 如果回归模型误差项满足假设1和假设2,OLS估计 ˆj 为无偏估计: ˆ ) , j 0, 1, , k E( j j
4.9 自变量共线性 重要概念Biblioteka 4.1 多元线性回归模型设定
模型设定:
假设1(零条件均值:zero conditonal mean)
给定解释变量,误差项条件数学期望为0,即
E(u | X1 , X 2 ,, X k ) 0
Y 0 1 X1 2 X 2 k X k u
4.8 假设条件的放松
4.8.1 假设条件的放松(一)—非正态分 布误差项 4.8.2 假设条件的放松(二)—异方差 4.8.3 假设条件的放松(三)—非随机抽 样和序列相关 4.8.4 假设条件的放松(四)—内生性
4.8 假设条件的放松
4.8.1 假设条件的放松(一)—非正态分 布误差项
• 去掉假设5不影响OLS估计的一致性、无偏性和渐 近正态性。 • 不能采用t-检验来进行参数的显著性检验,也不能 用F检验进行整体模型检验。 • 大样本情况下,t统计量往往服从标准正态分布 (在原假设下)。

xk ( X k1 , X k 2 ,, X kn )
假设2’(样本无共线性:no colinearity)
不存在不全为零的一组数 c0 , c1,, ck使得
c0 c1x1 xk 0
4.2 多元线性回归模型参数估计

多元线性回归分析及其应用

多元线性回归分析及其应用

多元线性回归分析及其应用一、本文概述《多元线性回归分析及其应用》这篇文章旨在深入探讨多元线性回归分析的基本原理、方法以及在实际应用中的广泛运用。

文章首先将对多元线性回归分析的基本概念进行阐述,包括其定义、特点以及与其他统计分析方法的区别。

随后,文章将详细介绍多元线性回归分析的数学模型、参数估计方法以及模型的检验与优化。

在介绍完多元线性回归分析的基本理论后,文章将重点探讨其在各个领域的应用。

通过具体案例分析,展示多元线性回归分析在解决实际问题中的强大作用,如经济预测、市场研究、医学统计等。

文章还将讨论多元线性回归分析在实际应用中可能遇到的问题,如多重共线性、异方差性等,并提出相应的解决方法。

文章将对多元线性回归分析的发展趋势进行展望,探讨其在大数据时代背景下的应用前景以及面临的挑战。

通过本文的阅读,读者可以全面了解多元线性回归分析的基本理论、方法以及实际应用,为相关领域的研究与实践提供有力支持。

二、多元线性回归分析的基本原理多元线性回归分析是一种预测性的建模技术,它研究的是因变量(一个或多个)和自变量(一个或多个)之间的关系。

这种技术通过建立一个包含多个自变量的线性方程,来预测因变量的值。

这个方程描述了因变量如何依赖于自变量,并且提供了自变量对因变量的影响的量化估计。

在多元线性回归分析中,我们假设因变量和自变量之间存在线性关系,即因变量可以表示为自变量的线性组合加上一个误差项。

这个误差项表示了模型中未能解释的部分,通常假设它服从某种概率分布,如正态分布。

多元线性回归模型的参数估计通常通过最小二乘法来实现。

最小二乘法的基本思想是通过最小化预测值与实际值之间的残差平方和来求解模型的参数。

这个过程可以通过数学上的最优化方法来完成,例如梯度下降法或者正规方程法。

除了参数估计外,多元线性回归分析还需要进行模型的诊断和验证。

这包括检查模型的拟合优度(如R方值)、检验自变量的显著性(如t检验或F检验)、评估模型的预测能力(如交叉验证)以及检查模型的假设是否成立(如残差的正态性、同方差性等)。

多元回归分析

多元回归分析

则: F Lb
b L1 F
多元回归的应用-本构方程
选择“最优”回归方程的方法
在多元线性回归研究中 , 总设想把对 y 变量影 响显著的自变量因子引入回归方程 , 引入得越多 越好 ( 反映更加全面 ); 而把对 y 变量影响不显著的
因子剔除掉 , 剩余得越少越好 ( 方程更加简单 ), 建
其残差平方和Q:
Q(b0 , b1 , b2 ) et 2
i 1 n
n
ˆt ) 2 ( yi y
i 1 n
[ yi (b0 b1 xi1 b2 xi 2 )]2
i 1
显然:
Q(b0 , b1, b2 ) 0
由极值原理:
由(1)得:
由(2)(3)得:
b0 y (b1 x1 b2 x2 )
*
L11b1 L12b2 L10 L21b1 L22b2 L20
解该方程得:
L10 L22 L20 L21 b 1 L L L L 11 22 12 21 b L20 L11 L10 L21 2 L11 L22 L12 L21
多元线性回归模型包含多个变量,多个解释变量 同时对被解释变量发生作用,若要考察其中一个 解释变量对的影响就必须假设其它解释变量保持 不变来进行分析。
因此多元线性回归模型中的回归系数为偏回归系 数,即反映了当模型中的其它变量不变时,其中 一个解释变量对因变量的均值的影响。
最简单的多元线性回归模型是二元线性回归模型。
逐步回归方程的基本思想
根据自变量对因变量的重要性,把它们逐个地选 入到回归方程。 1. 从建立值包含一个自变量的回归方程开始, 接着是建立两个自变量的回归方程。 2. 反复进行两个步骤(1)对已经进入回归方程 的自变量进行显著性检验,显著的保留,最 不显著的剔除;(2)对不在回归方程中的自 变量挑选最显著的引入回归方程。直到留在 方程中的所有自变量均对y有显著影响,方程 外的自变量对y均无显著性影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H1:各 i (i=1、2、…、m)不全为 0
α =0.05
F
SS误差 / n m 1
表 13-3 多重线性回归方差分析表
SS回归 / m
变异来源 回 归 误 差 总变异
自由度 m n-m-1 n-1
SS SS 回 SS 误 SS 总
MS
F
P
SS 回/m MS 回/MS 误 SS 误/(n-m-1)
偏回归系数的假设检验
H0: i =0 H1: i ≠0(i=1、2 、…、m) α =0.05
构造 t 统计量
t bi
bi S bi
bi 为前面所求得的偏回归系数, S bi 是 bi 的标准误。在 H0 成立的前提下, tbi 服从
自由度为υ =n-m-1 的 t 分布。如果 t bi t / 2,n m 1 ,则在α 水平上拒绝 H0,可认 为 i ≠0,Xi 与 Y 之间有线性回归关系。
多重线性回归方程为:
ˆ 2.78990 0.03736 y X 1 0.05215 X 2 0.00206 X 3 0.03181 X4

多重线性回归方程的假设检验 总体模型的假设检验 偏回归系数的假设检验
总体模型的假设检验
H0: 1 = 2 =.…= i =…= m =0
第十三章 多因素对某数值变量 指标的影响分析 (P206)
用于分析一个应变量与多个自变 量之间的线性关系的研究方法
第一节 多重线性回归分析 (multiple linear regression )
一、多重线性回归模型
如果因变量Y与自变量X1、X2、…、Xm 间存 在有如下线性关系,则有:
Y 0 1 X 1 i X i m X m
表 13-2 30 名中学生的身体测量数据
编 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X1 148.00 160.00 159.00 153.00 151.00 140.00 158.00 137.00 149.00 160.00 151.00 157.00 157.00 144.00 139.00 X2 41.00 49.00 45.00 43.00 42.00 29.00 49.00 31.00 47.00 47.00 42.00 39.00 48.00 36.00 32.00 X3 72.00 77.00 80.00 76.00 77.00 64.00 78.00 66.00 82.00 74.00 73.00 68.00 80.00 68.00 68.00 X4 78.00 86.00 86.00 83.00 80.00 74.00 83.00 73.00 79.00 87.00 82.00 80.00 88.00 76.00 73.00 Y 3.04 3.28 3.12 2.86 2.97 1.58 2.85 1.64 2.77 2.64 2.78 3.10 2.89 2.23 1.89 编 号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 X1 139.00 149.00 142.00 150.00 139.00 161.00 140.00 152.00 145.00 156.00 147.00 147.00 151.00 141.00 148.00 X2 34.00 36.00 31.00 43.00 31.00 47.00 33.00 35.00 35.00 44.00 38.00 30.00 36.00 30.00 38.00 X3 71.00 67.00 66.00 77.00 68.00 78.00 67.00 73.00 70.00 78.00 73.00 65.00 74.00 67.00 70.00 X4 76.00 79.00 76.00 79.00 74.00 84.00 77.00 79.00 77.00 85.00 78.00 75.00 80.00 76.00 78.00 Y 1.78 1.97 1.77 2.56 1.60 2.88 1.77 2.10 2.40 2.88 2.25 1.86 2.38 2.10 2.64
满Xi、…、Xm之
间具有线性关系; 残差 ~ N (0, 2 ) ,即要求对任意一组自变量X1、 X2、…、Xi、…、Xm值所对应的应变量Y应相 互独立、服从正态分布、方差相等。

二、多重线性回归分析的一般步骤

多重线性回归方程的建立
由 n 例实际观测值用最小二乘法可求得式 (13-1) 中模型参数 0 、 …、 2 、 1 、
i 、…、 m 的估计值 b0 、 b1 、 b2 、…、 bi 、…、 bm ,从而得到 Y 的估计表达式:
ˆ b b X b X b X Y 0 1 1 i i m m
例13-1测量了30名中学生的身高X1(cm)、体重X2(kg)、胸 围X3(cm)、坐高X4(cm)与肺活量Y(L),数据见表13-2 。 试对Y与X1、X2、X3、X4做多重线性回归分析。
Y 0 1 X 1 i X i m X m
式中 0 是常数项,1 、 2 、 …、 i 、 …、 m 称为偏回归系数 (partial regression coefficient) ,是待定参数。 i (i=1、2、…、m)表示在其它自变量固定的条 件下,自变量 Xi 每改变一个单位时引起 Y 的平均改变量,即 Y 在 Xi 上的变化率。 ε 为随机误差,又称为残差(residual) ,它表示在 Y 的变化中不能用自变量 Xi (i=1、2、…、m)所解释的部分。
标准化偏回归系数的概念*

由于各自变量Xi一般具有不同的单位,不能直接通过偏回归系数
的绝对值大小来比较各自变量Xi对应变量Y的影响大小。此时可 通过对原始数据的标准化变换:
相关文档
最新文档