(完整版)传热第二章
第二章 传热 傅里叶定律

圆筒壁传导传热时传热面积 A = 2πrl
dt
傅立叶定律写为:Φ = –λ2πrl
dr
L
积分:
r2 drl2l t2dt
r r1
t1
单层圆筒壁传 导传热公式:
Φ=
2l t1 t2 2l t1 t2
1 ln r2
1 ln d 2
l r1
l d1
因圆筒壁厚度δ = r2 – r1
l1lnrn1
n rn
2lt
1 ln dn1
ln dn
2.3 对流传热
一. 对流传热机理
热量从流体的主 体传递给器壁, 或由器壁传递给 流体主体
热流体
冷流体 间 壁
对 导对 流 热流
对比第一章流动边界层概念,边界层存在速度梯度
δ
T
热流体 壁面 冷流体
热流体 Φ
T
冷流体
w
Φ
tw
A1 A2
t
流体通过间壁的热交换经过 “对流—传导—对流”三个串联步骤。
气体的导热系数低,适用于保温隔热。 气体的导热系数,随温度升高而增大。 在相当大的压强范围内,气体的导热系数随压 强的变化甚微,可以忽略不计。只有在过高或 过低的压强(>2 105kPa或<3kPa)下,才考虑 压强的影响,此时随压强增高导热系数增大。
二. 传导传热计算
L
傅立叶定律
dt Φ = -l A
负号表示热流方向总是和温度梯度的方向相反。
3. 热导率,又称导热系数
-Φ l = dt
A dδ
1.物理意义:表征物质的导热能力,物质的热物性参数。 导热系数越大,物体的导热性能越好,即在相同的温度 梯度下传热速率越大。
《传热学》第二章热传导

第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
6.稳态导热:物体中各点温度不随时间而改变的导热过程。
7.非稳态导热:物体中各点温度随时间而改变的导热过程。
8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
10.肋效率:肋片实际散热量与肋片最大可能散热量之比。
11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。
二、填空题1.导热基本定律是_____定律,可表述为。
(傅立叶,)2.非稳态导热时,物体内的_____场和热流量随_____而变化。
(温度,时间)3.导温系数的表达式为_____,单位是_____,其物理意义为_____。
(a=λ/cρ,m2/s,材料传播温度变化能力的指标)4.肋效率的定义为_______。
(肋片实际散热量与肋片最大可能散热量之比。
)5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。
(气)6.一般,材料的导热系数与_____和_____有关。
(种类,温度)7.保温材料是指_____的材料.(λ≤0.12 W/(m·K)(平均温度不高于350℃时))8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。
传热学 第2章 稳态导热

t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d
《传热学讲义—第二章》

第二章稳态导热本章重点:具备利用导热微分方程式建立不同边界条件下稳态导热问题的数学模型的能力第一节 通过平壁的导热1-1第一类边界条件研究的问题:(D 几何条件:设有一单层平■壁,厚度为a,其宽度、高度远大丁其厚度(宽度、高度 是厚度的10倍以上)。
这时可认为沿高度与宽度两个方向的温度变化率很小,温度只沿厚度 方向发生变化。
(届一维导热问题)(2) 物理条件:无内热源,材料的导热系数入为常数。
(3) 边界条件:假设平壁两侧表面分别保持均匀稳定的温度t wi 和t w2 , t wi t w2。
(为第一类边界条件,同时说明过程是稳态的)求:平■壁的温度分布及通过平■壁的热流密度值。
方法1导热微分方程:采用直角坐标系,这是一个常物性、无内热源、一维稳态导热 问题(温度只在x 方向变化)。
导热微分方程式为: 史 0 (2-1) dx 2边界条件为:t x0 t w 1 , t x t w 2(2-2)对式(2-1)连续积分两次,得其通解:t c 1x c 2t w 2 t w 1这里C 1、C 2为常数,由边界条件确定,解得:C1C 2 t w 1最后得单层平壁内的温度分布为:t t w 1 %」曳x由丁 a 、t w 1、t w 2均为定值。
所以温度分布成线性关系,即温度分布曲线的斜率是常数(温度梯度),虫―宜const(2-6)dx0—1I~Dfl ——单屋平惬(2-3)(2-4)(2-5)热流密度为:q 史—(t W l t w2) W /m2(2-7)dx若表面积为A,在此条件下,通过平壁的导热热流量则为:qA A— t W考虑导热系数随温度变化的情况:通过平壁的导热热流密度为:dt dtq 0(1 bt) —dx dx竺一1 ]bt t 0 1 2 b t W1 t W21式中,0 1 2bt W1 t W21 22 m则q —(t W1 t W2)从上式可以看出,如果以平壁的平均温度t m虹上来计算导热系数,则平壁的热流密2度仍可用导热系数为常数时的热流密度计算式:(2-8)对丁导热系数随温度线形变化,即0(1 bt),此时导热微分方程为: d dt °0 dx dx解这个方程,最后得:t2bt2bt 2 Wi W2t W2)t W1(t W it、W 一t W2说明:壁内温度不再是直线规律, 而是按曲线变化。
第二章 传热

1-2 稳定传热与不稳定传热
换热器中,传热面各点的温度仅随位 置而变并不随时间而改变的传热过程 叫定态传热
换热器中,传热面各点的温度既随位 置而变又随时间而改变的传热过程叫 非定态传热
1-3热量传递的三种方式
热传导, 对流, 热辐射
1.3.1. 热传导: 物体内部或两个紧密接触 的物体之间存在温度差时,能量会由高 温区向低温区转移。 固体:原子运动,晶格波动 导体:自由电子迁移 特点:物体各部分不发生宏观的相对位 移。
2L (T1 T2 ) 2L(T1 T2 ) r2 1 r2 In In r1 r1
这种情况下,热阻
3-9
In(r2 / r1 ) R 2L
通过圆筒壁的导热量取决于内、外径之比而 与圆筒壁厚度的绝对值无关。
式3-9可写成与平面壁热传导速率方程类 似的形式,即:
2.4多层圆筒壁的热传导
由
2L (T1 T2 ) 2L(T1 T2 ) r2 1 r2 In In r1 r1
推导出:
2L(T1 T4 ) r3 1 r4 1 r2 1 In In In 1 r1 2 r2 3 r3
每米管长热损失为:
L,1 L,2
4.1.2有相变时热负荷的计算
热负荷:流体温度的变化而吸收或放出的热 量。以ΦL表示。 若忽略热损失 Φ放= Φ吸 热量恒算式 根据工艺特点,热负荷的计算分两种情况: 无相变时热负荷的计算 有相变时热负荷的计算
4.1.1无相变时热负荷的计算
L ,1 qmCpT qmCp( T2 T1 )
L, 2 qmCpT qmCp(T2 ' T1' )
3-1对流传热分析
传热学课件第二章导热基础理论

也称导温系数,
单位为m2/s。
其大小反映物体被瞬态加热或冷却时温度变化的快慢。
导热微分方程式的简化
(1) 物体无内热源:V = 0 t a2t
(2) 稳态导热: t 0 a2t V 0 c
(3)稳态导热、无内热源:
2t 2t 2t 2t = 0,即 x2 y2 z2 0
(4)热流密度
q d
dA
nt dA
热流密度的大小和方向可 以用热流密度矢量q 表示
q
d
q d n
dA
热流密度矢量的方向指向温度降低的方向。
在直角坐标系中,热流密度矢量可表示为
q qxi qy j qzk
qx、qy、qz分别表示q在三个坐标方向的分量的大小。
2. 2 导热的基本定律—傅里叶定律
第二章 导热基础理论
例内重基 题容点本 赏精难要 析粹点求
基本要求
1. 理解温度场、等温面(线)、温度梯 度、热流密度等概念。
2. 掌握傅立叶定律及其应用。 3. 掌握热导率和热扩散率的定义、意
义、影响因素和确定方法。 4. 能写出典型简单几何形状物体导热问
题的数学描述表达式。
重点与难点
重点: 1. 傅里叶定律与热导率。 2. 导热微分方程及单值性条件。 难点: 1. 傅里叶定律的矢量表达式。 2. 导热微分方程及单值性条件。
标量形式的付里叶定律表达式为
q t
n
对于各向同性材料, 各方向上的导热系数相等,
q qxi qy j qzk
gradt t i t j t k x y z
q
t x
传热学第二章

习题平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。
假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。
水垢的导热系数取为1W/(m.K)。
解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。
冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。
为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。
解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。
为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。
已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。
解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ 2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。
已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。
传热学第二章--稳态导热精选全文

t
无内热源,λ为常数,并已知平 t1
壁的壁厚为,两个表面温度分别 维持均匀而恒定的温度t1和t2
t2
c t ( t ) Φ x x
d 2t dx2
0
o
x 0,
x ,
t t
t1 t2
x
直接积分,得:
dt dx
c1
t c1x c2
2024/11/6
35
带入边界条件:
c1
t2
t1
c t
1 r2
r 2
r
t r
1
r 2 sin
sin
t
r2
1
sin 2
t
Φ
2024/11/6
26
6 定解条件 导热微分方程式的理论基础:傅里叶定律+能 量守恒。 它描写物体的温度随时间和空间变化的关系; 没有涉及具体、特定的导热过程。通用表达式。
完整数学描述:导热微分方程 + 单值性条件
4
2 等温面与等温线
①定义
等温面:温度场中同一瞬间同温度各点连成的 面。 等温线:在二维情况下等温面为一等温曲线。
t+Δt t
t-Δt
2024/11/6
5
②特点
t+Δt t
t-Δt
a) 温度不同的等温面或等温线彼此不能相交
b)在连续的温度场中,等温面或等温线不会中
止,它们或者是物体中完全封闭的曲面(曲
它反映了物质微观粒子传递热量的特性。
不同物质的导热性能不同:
固体 液体 气体
金属 非金属
金属 12~418 W (m C) 非金属 0.025 ~ 3W/(mC)
合金 纯金属
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章思考题1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。
答:傅立叶定律的一般形式为:nx t gradt q∂∂-=λλ=-,其中:gradt 为空间某点的温度梯度;n是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流密度矢量。
2 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何获得该点的 热密度矢量? 答:k q j q i q q z y x⋅+⋅+⋅=,其中k j i ,,分别为三个方向的单位矢量量。
3 试说明得出导热微分方程所依据的基本定律。
答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。
4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。
答:① 第一类边界条件:)(01ττf t w =>时,② 第二类边界条件:)()(02τλτf x tw =∂∂->时③ 第三类边界条件:)()(f w w t t h x t-=∂∂-λ5 试说明串联热阻叠加原则的内容及其使用条件。
答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。
使用条件是对于各个传热环节的传热面积必须相等。
7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解? 答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。
6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。
8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗?答:只要满足等截面的直肋,就可按一维问题来处理。
不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。
9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。
因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。
试分析这一观点的正确性。
答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。
通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。
10 在式(2-57)所给出的分析解中,不出现导热物体的导热系数,请你提供理论依据。
答:由于式(2-57)所描述的问题为稳态导热,且物体的导热系数沿x 方向和y 方向的数值相等并为常数。
11 有人对二维矩形物体中的稳态无内热源常物性的导热问题进行了数值计算。
矩形的一个边绝热,其余三个边均与温度为f t 的流体发生对流换热。
你能预测他所得的温度场的解吗?答:能,因为在一边绝热其余三边为相同边界条件时,矩形物体内部的温度分布应为关于绝热边的中心线对称分布。
习题 平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。
假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。
水垢的导热系数取为1W/(m.K)。
解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。
冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。
为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。
解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。
为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。
已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。
解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。
已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。
为安全起见,希望烘箱炉门的 外表面温度不得高于50℃。
设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。
环境温度=2f t 25℃,外表面总传热系数)./(5.922K m W h =。
解:热损失为()()22111f f BBA A fwf t t h t t h t t q -+-=+-=λδλδ又50=fw t ℃;B A δδ=联立得m m B A 039.0;078.0==δδ2-5 对于无限大平板内的一维导热问题,试说明在三类边界条件中,两侧边界条件的哪些组合可以使平板中的温度场获得确定的解? 解:两侧面的第一类边界条件;一侧面的第一类边界条件和第二类边界条件;一侧面的第一类边界条件和另一侧面的第三类边界条件;一侧面的第一类边界条件和另一侧面的第三类边界条件。
平壁导热2-6一火箭发动机燃烧室是直径为130mm 的圆筒体,厚2.1mm ,导热系数为23.2W/(m ·K)。
圆筒壁外用液体冷却,外壁温度为240℃。
测得圆筒体的热流密度为 4.8×106W/㎡,其材料的最高允许温度为700℃。
试判断该燃烧室壁面是否工作于安全温度范围内? 解:2-7如附图所示的不锈钢平底锅置于电器灶具上被加热,灶具的功率为1000W ,其中85%用于加热平底锅。
锅底厚δ=3㎜,平底部分直径d=200㎜,不锈刚的导热系数λ=18W/(m ·K ),锅内汤料与锅底的对流传热表面传热系数为2500W/(㎡·K ),流体平均温度t f =95℃。
试列出锅底导热的数学描写,并计算锅底两表面的温度。
解:2-8一种用比较法测定导热系数装置的原理示于附图中。
将导热系数已知的标准材料与被测材料做成相同直径的圆柱,且标准材料的两段圆柱分别压紧置于被测材料的两端。
在三段试样上分别布置三对测定相等间距两点间温差的热电偶。
试样的四周绝热良好(图中未示出)。
已知试样两端的温度分别为t h =400℃、t c =300℃、Δt r =2.49℃,Δt t,1=3.56℃、Δt t,2=3.60℃,试确定被测材料的导热系数,并讨论哪些因素会影响Δt t,1与Δt t,2不相等? 解:2-9 双层玻璃窗系由两层厚为6mm 的玻璃及其间的空气隙所组成,空气隙厚度为8mm 。
假设面向室内的玻璃表面温度与室外的玻璃表面温度各为20℃及-20℃,试确定该双层玻璃窗的热损失。
如果采用单层玻璃窗,其他条件不变,其热损失是双层玻璃的多少倍?玻璃窗的尺寸为cm cm 6060⨯。
不考虑空气间隙中的自然对流。
玻璃的导热系数为0.78)./(K m W 。
解:332211211λδλδλδ++-=t t q =116.53W/2m mw t t q /520011212=-=λδW Aq Q 95.41==∴所以 62.4453.116520012==q q2-10某些寒冷地区采用三层玻璃的窗户,如附图所示。
已知玻璃厚δg =3㎜,空气夹层宽δair =6㎜,玻璃的导热系数λg =0.8W/(m ·K )。
玻璃面向室内的表面温度t i =15℃,面向室外的表面温度t o =-10℃,试计算通过三层玻璃窗导热的热流密度。
解:2-11提高燃气进口温度是提高航空发动机效率的有效方法。
为了是发动机的叶片能承受更高的温度而不至于损坏,叶片均用耐高温的合金制成,同时还提出了在叶片与高温燃气接触的表面上涂以陶瓷材料薄层的方法,如附图所示,叶片内部通道则由从压气机来的空气予以冷却。
陶瓷层的导热系数为1.3W/(m ·K ),耐高温合金能承受的最高温度为1250K ,其导热系数为25W/(m ·K)。
在耐高温合金与陶瓷层之间有一薄层粘结材料,其造成的接触热阻为10-4㎡·K/W 。
如果燃气的平均温度为1700K ,与陶瓷层的表面传热系数为1000W/(㎡·K),冷却空气的平均温度为400K ,与内壁间的表面传热系数为500W/(㎡·K),试分析此时耐高温合金是否可以安全地工作? 解:2-12 在某一产品的制造过程中,厚为1.0mm 的基板上紧贴了一层透明的薄膜,其厚度为0.2mm 。
薄膜表面上有一股冷却气流流过,其温度为20℃,对流换热表面传热系数为40)./(2K m W 。
同时,有一股辐射能透过薄膜投射到薄膜与基板的结合面上,如附图所示。
基板的另一面维持在温度301=t ℃。
生成工艺要求薄膜与基板结合面的温度600=t ℃,试确定辐射热流密度q 应为多大?薄膜的导热系数)./(02.0K m W f =λ,基板的导热系数)./(06.0K m W s =λ。
投射到结合面上的辐射热流全部为结合面所吸收。
薄膜对60℃的热辐射是不透明的。
解:根据公式t K q ∆=得2/1800306006.0001.03060m W q =⨯=-=()23/8.114202.0102.040112060m W q =⨯+⨯-='-2/8.2942m W q q q Z ='+= 2-13 在附图所示的平板导热系数测定装置中,试件厚度δ远小于直径d 。
由于安装制造不好,试件与冷热表面之间平均存在着一层厚为mm 1.0=∆的空气隙。
设热表面温度1801=t ℃,冷表面温度302=t ℃,空气隙的导热系数可分别按21,t t 查取。
试计算空气隙的存在给导热系数测定带来的误差。
通过空气隙的辐射换热可以略而不计。
解:查附表8得1801=t ℃,);./(1072.321K m W -⨯=λ 302=t ℃,);./(1067.222K m W -⨯=λ无空气时430180221d A t t ffπλδλδ⨯-=-=Φδλλδ32.34029315.0=∴=∴f f有空气隙时At t f'++-=Φλδλδλδ221121得δλ98.43='f所以相对误差为%1.28=-'f ff λλλ圆筒体2-14 外径为100mm 的蒸气管道,覆盖密度为203/m kg 的超细玻璃棉毡保温。