振动波动练习题
大学物理 振动与波、波动光学练习题

06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。
当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。
7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。
设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。
振动波动光学与近代习题(YTH)

北京印刷学院《大学物理I-2》练习题一.选择题(每题3分) 1.3030两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位(A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ ] 1. 5181一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]2. 5183一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ ]4. 3562图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]5. 3147一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ ]- A/ -6. 5513频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距 (A) 2.86 m . (B) 2.19 m . (C) 0.5 m . (D) 0.25 m . [ ]7. 5203图A 表示t = 0时的余弦波的波形图,波沿x 轴正向传播;图B 为一余弦振动曲线. 则图A 中所表示的x = 0处振动的初相位与图B 所表示的振动的初相位 (A) 均为零. (B) 均为π21(C) 均为π-21(D) 依次分别为π21与π-21. (E) 依次分别为π-21与π21. [ ]8. 3090一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [ ]9. 3434两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是: (A) 0. (B)π21. (C) π. (D) π23. [ ]10. 3433如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12.(B) π=-k 212φφ.(C)π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.[ ]11. 3312y ty 0图BS 1S 2Pλ/4S若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:(A)]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π++π=x t y (SI).(B) ]50.0)10(2cos[10.01π--π=x t y]75.0)10(2cos[10.02π++π=x t y (SI).(C) ]21)10(2cos[10.01π+-π=x t y]21)10(2cos[10.02π-+π=x t y (SI).(D) ]75.0)10(2cos[10.01π+-π=x t y]75.0)10(2cos[10.02π++π=x t y (SI). [ ]12. 3311在弦线上有一简谐波,其表达式为 ]34)20(100cos[100.221π-+π⨯=-x t y (SI) 为了在此弦线上形成驻波,并且在x = 0处为一波腹,此弦线上还应有一简谐波,其表达式为:(A) ]3)20(100cos[100.222π+-π⨯=-x t y (SI). (B) ]34)20(100cos[100.222π+-π⨯=-x t y (SI). (C) ]3)20(100cos[100.222π--π⨯=-x t y (SI). (D) ]34)20(100cos[100.222π--π⨯=-x t y (SI). [ ]13. 3664如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为 (A) 2πn 2e / ( n 1 λ1). (B)[4πn 1e / ( n 2 λ1)] + π.(C) [4πn 2e / ( n 1 λ1) ]+ π. (D) 4πn 2e / ( n 1λ1). [ ]14. 3215若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm .(C) 1.0×10-2 mm . (D) 1.0×10-3mm . [ ]n 1 3λ115. 3542如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]16. 5223某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是(A) 35.3°.(B) 40.9°. (C) 45°. (D) 54.7°.(E) 57.3°. [ ]17. 4182用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则(A) ν1 >ν2. (B) ν1 <ν2.(C) ν1 =ν2. (D) ν1与ν2的关系还不能确定. [ ]18. 4385设用频率为ν1和ν2的两种单色光,先后照射同一种金属均能产生光电效应.已知金属的红限频率为ν0,测得两次照射时的遏止电压|U a 2| = 2|U a 1|,则这两种单色光的频率有如下关系: (A) ν2 = ν1 - ν0. (B) ν2 = ν1 + ν0.(C) ν2 = 2ν1 - ν0. (D) ν2 = ν1 - 2ν0. [ ]二.填空题 1. 3398(5分)一质点作简谐振动.其振动曲线如图所示.根据此 图,它的周期T =___________,用余弦函数描述时初相 φ =_________________.2. 3397 (3分)已知一个简谐振动的振幅A = 2 cm ,角频率ω = 4π s -1 , 以余弦函数表达运动规律时的初相π21=φ.试画出位移和时间的关系曲线(振动曲线).3. 3561 (3分)质量为m 物体和一个轻弹簧组成弹簧振子,其固有振动周期为T. 当它作振幅为A 自由简谐振动时,其振动能量E = ____________.4.3133 (5分)一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________. 5. 5524 (3分)已知 T t 21=时刻(T 为周期)的波形曲线如图,波速为u .试在下图作出原点O 的振动曲线.6. 3294 (3分)在截面积为S 的圆管中,有一列平面简谐波在传播,其波的表达式为 )]/(2cos[λωx t A y π-=,管中波的平均能量密度是w ,则通过截面积S 的平均能流是____________________________________.7. 3620 (3分)用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.8. 3175 (4分)用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.9. 3711 (3分)已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离d 的过程中,干涉条纹将移动________________条.10. 3713 (3分)在迈克耳孙干涉仪的可动反射镜移动了距离d 的过程中,若观察到干涉条纹移动了N 条,则所用光波的波长λ =______________.x O P 1P 2L 1L 2y (cm)t (s)0.5TT11. 3203 (3分)用迈克耳孙干涉仪测微小的位移.若入射光波波长λ=628.9 nm ,当动臂反射镜移动时,干涉条纹移动了2048条,反射镜移动的距离d =________.12. 3524 (3分)平行单色光垂直入射在缝宽为a =0.15 mm 的单缝上.缝后有焦距为f =400mm 的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm ,则入射光的波长为λ=_______________.13. 3208 (3分)平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P 点处将是______________级__________________纹.14. 3740 (3分)如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的 相位差为______________.15. 5656 (3分)用波长为λ的单色平行光垂直入射在一块多缝光栅上,其光栅常数d =3 μm ,缝宽a =1 μm ,则在单缝衍射的中央明条纹中共有________条谱线(主极大).16. 3548 (3分)一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为________________.17.3233 (3分)一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃板的折射率等于____________.18. 3640 (3分)自然光以布儒斯特角i 0从第一种介质(折射率为n 1)入射到第二种介质(折射率为n 2)内,则tg i 0=______________. 三.a λ1. 3828 (10分)一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1. (1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.2. 3043 (10分)一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.3. 3860 (10分)一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.4. 3476 (10分)一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.5.3211 (10分)(1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=460 nm ,λ2=760 nm (1nm=10-9 m).已知单缝宽度a =2.0×10-2cm ,透镜焦距f =40 cm .求两种光第二级衍射明纹中心之间的距离.(2) 若用光栅常数d=1.0×10-3 cm 替换单缝,其他条件和上一问相同,求两种光第二级主极大之间的距离。
振动与波动(学生版)--2024年高考物理大题突破

大题 振动与波动振动与波动时高中力学的拓展内容,在历年高考中都有体现,多以选择题的形式出现偶尔也会以计算题的形式出现。
其中以波动形成与传播,振动方程、波动方程,波的叠加与干涉等为命题载体,当然也会与动力学相结合,借助经典圆周模型考察单摆等。
简谐运动的证明及方程1(2024·江苏泰州·一模)如图所示,一根粗细均匀的木筷下端绕有几圈铁丝,竖直浮在一个较大的盛水容器中,以木筷静止时下端所在位置为坐标原点O 建立直线坐标系,把木筷往下压一段距离x =10cm 后放手,木筷就在水中上下振动。
已知水的密度为ρ,重力加速度为g ,不计水的阻力。
(1)试证明木筷的振动是简谐运动;(2)观测发现筷子每10秒上下振动20次,从释放筷子开始计时,写出筷子振动过程位移随时间变化的关系式。
1.简谐运动的两种运动学描述(1)简谐运动图像即x -t 图像是描述质点振动情况的一种手段,直观反映了质点的位移x 随时间t 变化的规律。
(2)x =A sin 2πTt +φ是用函数表达式的形式表示质点的振动情况。
2.简谐运动的动力学描述:如果物体在运动方向上所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
1(2024·重庆·一模)如图,光滑圆槽的半径L远大于小球运动的弧长。
甲、乙、丙三小球(均可视为质点)同时由静止释放,开始时乙球的位置B低于甲球位置A,甲球与圆偿圆心连线和竖直方向夹角为θ,丙球释放位置C为圆槽的圆心,Q为圆槽最低点;重力加速度为g。
若甲、乙、丙三球不相碰,求:(1)求甲球运动到O点速度大小;(2)通过计算分析,甲乙丙三球谁先第一次到达O点;(3)若单独释放甲球从降放到第15次经过O点所经历的时间。
波形图的综合应用1(2024高三·全国·专题练习)如图所示,一列水平向右传播的简谐横波,波速大小为v=0.6m/s,P质点的平衡位置坐标为x=0.96m。
大学物理振动波动例题习题

振动波动一、例题(一)振动1。
证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3。
已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。
07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4。
沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。
25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。
1振动波练习题

一、选择题1、一物体作简谐振动,振动方程为)4/cos(πω+=t A x 。
在t=T/4(T 为周期)时刻,物体的加速度为 (A) 2221ωA -(B) 2221ωA (C) 2321ωA - (D) 2321ωA [ ] 2、对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体位于平衡位置且向负方向运动时,速度和加速度为零。
(B) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零。
(C) 物体处在运动负方向的端点时,速度和加速度都达到最大值。
(D) 物体处在正方向的端点时,速度最大,加速度为零。
[ ]3、弹簧振子在光滑水平面上作谐振动时,振动频率为v 。
今将弹簧分割为等长的两半,原物体挂在分割后的一支弹簧上,这一系统作谐振动时,振动频率为(A) v (B) v 2(C) 2v (D) 0.5v [ ] 4、一质点沿x 轴作简谐振动,振动方程为))(316cos(1042SI t x ππ+⨯=-。
从t=0时刻起,到质点位置在x =-2cm 处,且向x 轴正方向运动的最短时间间隔为(A) 1/8s (B) 1/4s (C) 1/2s(D) 1/3s (E) 1/6s [ ]5、一质点作简谐振动,周期为T 。
当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的最短时间为(A) T/4 (B) T/12(C) T/6 (D) T/8 [ ]6、一弹簧振子在光滑水平面上作谐振动,弹簧的倔强系数为k ,物体的质量为m ,振动的角频率为ω=(k/m )1/2,振幅为A ,当振子的动能和势能相等的瞬时,物体的速度为 (A)A ω2 (B) 2/A ω (C) A ω21 (D) A ω [ ] 7、 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大。
(B) 动能为零,势能为零。
(C) 动能最大,势能最大。
振动、波动练习题及答案

振动、波动练习题及答案振动、波动练习题⼀.选择题1.⼀质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第⼀次通过x= -2cm 处,且向X 轴负⽅向运动,则质点第⼆次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.⼀圆频率为ω的简谐波沿X 轴的正⽅向传播,t=0 时刻的波形如图所⽰,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图⽰⼀简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平⾯简谐波,波线上两点振动的相位差为 3 ,则这两点相距()A 2mB 2.19mC 0.5mD 28.6m5.⼀平⾯简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最⼤位置处的过程中,()。
A 它的动能转换成势能它的势能转换成动C 它从相邻的⼀段质元获得能量其能量逐渐增⼤Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把⾃⼰的能量传给相邻的⼀段质元,其能量逐渐减⼩6.在下⾯⼏种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相滞后D 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相超前7.⼀质点作简谐振动,周期为T,当它由平衡位置向X 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐I1I 4是,则两列波的振幅之⽐是:()A A1 4 B1 2 CA1 16 DA11A2 A2 A2 A2 410.有⼆个弹簧振⼦系统,都在作振幅相同的简谐振动,⼆个轻质弹簧的劲度系数K 相同,但振⼦的质量不同。
大连工业大学大学物理学振动与波动题库
(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、 两分振动方程分别为 x1=3cos (50πt+π/4) ㎝ 和 x2=4cos (50πt+3π/4)㎝, 则它们的合振动的振幅为 ( (A) 1 ㎝ (B)3 ㎝ (C)5 ㎝ (D)7 ㎝ 6、一平面简谐波,波速为 =5 cm/s,设t= 3 s时刻的波形 如图所示,则x=0处的质点的振动方程为 ( - (A) y=2×10 2cos (πt/2-π/2) (m) - (B) y=2×10 2cos (πt + π) (m) -2 (C) y=2×10 cos(πt/2+π/2) (m) -2 (D) y=2×10 cos (πt-3π/2) (m) )
y
u
A X -A
17.一平面简谐波,沿 X 轴负方向传播,波长λ=8 m。已知 x=2 m 处质点的振动方程为 y 4 cos(10t
5 x ) ; 8 12 2 (C) y 4 cos(10 t x ); 4 3
(A)
) , 则该波的波动方程为( 6
(B)
20.在驻波中,两个相邻波节间各质点的振动(
1、一个弹簧振子和一个单摆,在地面上的固有振动周期分别为 T1 和 T2,将它们拿到月球上去,相应 的周期分别为 1 和 2 ,则它们之间的关系为 1 T1 且 2 T2 。 。
2、一弹簧振子的周期为T,现将弹簧截去一半,下面仍挂原来的物体,则其振动的周期变为 3、一平面简谐波的波动方程为 y 0.08cos 4 πt 2 πx
《大学物理》波动练习题
《大学物理》波动练习题一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u xω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波形曲线与振动曲线有什么不同行? 试说明之. 答:波形曲线代表某一时间波的形状,它是质点的位移关于其空间位置的函数;振动曲线代表某一个质点的振动过程,它是质点的位移关于时间的函数。
5、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
6. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
7. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有π的相位差。
振动和波动要点习题
振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。
物体的振动和波动练习题
物体的振动和波动练习题一、选择题1. 下列哪个不属于机械振动的基本特征?A. 振幅B. 周期C. 频率D. 波长2. 以下哪种波不需要介质传播?A. 机械波B. 横波C. 纵波D. 都需要介质传播3. 以下哪个现象不属于机械波传播中的失能?A. 反射B. 折射C. 干涉D. 散射4. 把频率为30Hz的振动用电路方式表示,需要设备的最小档位是A. 10sB. 1sC. 1msD. 1us5. 振幅越大,波的能量传播速度越快,这一说法A. 对B. 错6. 当一个横波传播时,传播介质上的每一个质点的振动方向A. 垂直于波的传播方向B. 与波的传播方向相同C. 与波的传播方向相反D. 与波的振动方向相同7. 下列不属于机械波的是A. 音波B. 光波C. 水波D. 地震波8. 声音能传播的介质是A. 真空B. 水C. 铁D. 木头9. 长度为0.1m的弦上传播的频率为500Hz的波,其波长为A. 10cmB. 20cmC. 40cmD. 50cm10. 一个在弹簧中传播的波,它所具有的振动特点可以用频率 f 表示。
当频率 f 增大时,振动速度将A. 不变B. 增大C. 减小D. 变为零二、填空题1. 机械波在介质中的传播速度与_________、_________有关。
2. 波长和_________成反比。
3. 波的频率和振动的_________有关。
4. 当光束从水中垂直射入空气时,光的_________发生折射。
5. 在两根相互平行的弹簧上各拧一节,右手拇指指向电流的方向,右手四指的弯曲方向表示_________。
三、简答题1. 请简要说明机械波和电磁波的区别。
2. 请解释频率和周期的概念,并写出它们的单位。
3. 什么是衰减? 请说明衰减对波传播的影响。
4. 什么是驻波? 它是如何形成的?5. 请举例说明机械波的反射和折射现象。
四、计算题1. 一支弦上传播的横波的振动频率为100Hz,波长为0.5m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
π
2
+ 入 + π ]
OP x π y反 = A cos[ω (t ) + + 入 + π ] u 2
由于形成驻波的两波初位相相等,驻波方程 2π 为
x = A cos[ω (t + ) + 入 ] u
y = 2 A cos
λ
x cos(ωt + 入 )
代入已知条件 t = 0 时x π 入 = 可得 2 D点处
一,简谐振动方程
d2 x +ω2 x = 0 dt 2
x = Acos (ω t + )
二,简谐振动特征量
x = Acos (ω t + )
初始条件: 初始条件:
v0 = ωAsin
2 A = x0 + 2 v0
x0 = Acos
(初位移 初位移) 初位移 (初速度 初速度) 初速度
ω2
v0 tan = ω x0
2 3
1)1区入射波函数 y1; ) 区入射波函数
x S1 D S2
2)S1面上反射波 y1′, ) (设其振幅为A1′); 设其振幅为
x+d y ) 解: 1) 1 ( x , t ) = A1 cos ω ( t ) u1
y y1
ρ 1u 1
1 y1′
ρ2u2 ρ3u3
2 3
a 0 d
x y ′′ 1 l
x =λ/4 处
1 π y1 = A cos 2π (νt ) = A cos(2πνt ) 4 2 π 1 y2 = 2 A cos 2π (νt + ) = 2 A cos(2πνt + )
4 2
2 A合 = A12 + A2 + 2 A1 A2 cos( 2 1 ) = A 合振动振幅
反 = 入 无半波损失时 有半波损失时 反 = 入 + π 所以, 所以,本题反射波的波动方程为
λ 与已知条件相比, 与已知条件相比,可得 入 = ±π
所以, 所以,入射波的方程式是
y2 = A cos[2π (νt ) + 入 + π ]
x
y1 = A cos[2π (νt + ) + π ]
例(3106)如果在固定端 3106)
x = 0 处反射的
x
反射波方程是 y2 = A cos 2π (νt ) λ 设反射波无能量损失,那么, 设反射波无能量损失,那么,入射波的
ν 方程式是 y1 = Acos[2π ( t + ) +π ]
形成的驻波的方程式是: 形成的驻波的方程式是: 2π 3π y = 2Asin x cos(2πνt + ) λ 2
O
D
PxC( 源自111 )解答y入 = A cos[2π (νt ) + 入 ]
x
λ
此波在P点引起的振动方程
y入P = A cos[2π (νt
3λ / 4
λ π = A cos[2πνt + + 入 ]
2
) + 入 ]
该振动即为反射波源,由于有半波损失
反射波在P点的振动方程
y反P = A cos[2πνt +
反射波在S处相位改变 反射波在 处相位改变π. 求:反射波函数 y′(x , t ) ′ 解:全反射, A不变. 全反射, 不变 不变. x l + (l x) = 2l x, , 处反射相位改变 π ,
2l x
x
波 相位
0
反射
在 (2lx)/λ ,
= A cos[ω t +
∴ y ′( x , t ) = A cos [ω t
x
在某一时刻各个不同质点的位移 某一时刻各个不同质点的位移 各个不同质点 任一位置处质点速度方向: 任一位置处质点速度方向: 沿波的传播速度方向看: 沿波的传播速度方向看: 传播速度方向看 波峰 波谷 波谷 波峰 质点运动速度为正 质点运动速度为正 质点运动速度为负 质点运动速度为负
惠更斯原理( 五 惠更斯原理(Huygens principle) ) (有关波的传播方向的规律 有关波的传播方向的规律) 有关波的传播方向的规律
y( x=0,t ) = Acos(ωt + ) X
0
向传播的简谐波 沿 x轴正向传播的简谐波 u // ox
y( x,t )
x x0 = Acos[ω(t ) +] u
x(y)
y
t = t0
t
振动曲线 振动曲线 质点在各个不同时刻的位移 质点在各个不同时刻的位移 不同时刻 质点速度方向: 质点速度方向: 曲线上行为正 曲线上行为正,下行为负 行为负 波形曲线(波形图) 波形曲线(波形图) 曲线
A1 sin 1 + A2 sin 2 合振动初位相 tan = A cos 1 + A2 cos 2 A sin( π / 2) + 2 A sin(π / 2) π = = A cos(π / 2) + 2 A cos(π / 2) 2
质点的合振动方程
y x = λ = A cos(2πνt + ) 4 2 dy 速度 V = = 2πνA cos(2πνt + π ) dt
S1 D S2
x
d +l ) π 2) y1 (l , t ) = A1′ cos ω (t ) ′ u1 d +l l x ′ y1 ( x, t ) = A1′ cos ω (t ) π u1 u1
x 2l d ′ ) π = A1 cos ω ( t + u1
λ
2π
2π ± π ]
2l
"+"
示
x
λ
λ
2π ± π ]
+
[例] 如图示, 如图示, 方向传播, 余弦波沿 x 方向传播, 点振动为 a y a = A1 cos ω t ,ρ1u1 < ρ2u2 > ρ3u3 . 求:
y y1 a 0 d x
ρ 1u 1
1 y1′ y1′′ l
ρ2u2 ρ3u3
六 波的叠加原理 (superposition principle of waves) 1 波的干涉条件
(1)振动方向相同 ) (2)频率相同 ) (3)相位差恒定 )
[例1] 如图示,已知:y0 = Acosω t ,波长为λ , ] 如图示,已知:
全 y0 = Acos t 反 S x 0 (l x) l 反 射 壁
π
一平面简谐波沿X轴正方向传 ( 3111 )一平面简谐波沿 轴正方向传 为波密媒质的反射面. 点反射, 播,BC为波密媒质的反射面.波由 点反射, 为波密媒质的反射面 波由P点反射 OP = 3λ/4, DP = λ/6.在t=0时,O处质点的 λ , . 时 处质点的 合振动是经过平衡位置向负方向运动. 合振动是经过平衡位置向负方向运动.求D点 点 处入射波与反射波的合振动方程.( .(设入射 处入射波与反射波的合振动方程.(设入射 波和反射波的振幅皆为A,频率为ν 波和反射波的振幅皆为A,频率为ν) 反射 y B
=0
y 处
=0 V <0
3λ λ 7λ x= = 4 6 12
代入驻波方程,可得D点处的合振动方程
y D = 3 A sin ωt
1
B
2
D
3
0
4
�
一,基本概念 1.波动和波源 2.振动状态传播(机械波的产生和传播) 3.波速 4.横波和纵波 5.简谐波(余弦波,正弦波) 6.波函数 7.波面,波前及波射线 8.平面波,球面波,柱面波 9.平均能量密度和波强(平均能流密度) 10. 惠更斯原理(衍射)波的叠加,干涉 11. 驻波
结论:振动是产生波动的原因 波动是某一质点的振动状态由近而远 的传播过程
x
λ
例( 3106 )解答 固定端: 固定端:波从波疏 波密 有半波损失. 有半波损失. 设入射波方程(波函数) 设入射波方程(波函数)
波疏, 波疏,反射波
y1 = A cos[2π (νt + ) + 入 ]
x
λ
此波在
x = 0 处引起的振动方程
y10 = Acos[2πνt +入]
该振动即为反射波源
同一直线上,同频率谐振动的合成 三,同一直线上,同频率谐振动的合成
A= A + A 1 2
A = A + A2 + 2A A2 cos(2 1 ) 1 1 A sin1 + A2 sin2 = arctan 1 A cos1 + A2 cos2 1
2 2
一维平面简谐波的波函数(推导方法) 四. 一维平面简谐波的波函数(推导方法) 已知平衡位置 平衡位置在 处质点振动方程(位移) ◆ 已知平衡位置在x=x0 处质点振动方程(位移)
x
λ
驻波方程
或
3π y = 2 A sin x cos(2πνt + ) λ 2 2π x + ) cos(2πνt + ) λ 2 2
2π
y = 2 A cos(
π
π
例( 3476 )一平面简谐波沿
ox 轴正方向
x
传播, 传播,波动方程为 y1 = A cos 2π (νt ) λ 轴负方向传播, 而另一平面简谐波沿ox 轴负方向传播, x 波动方程为 y2 = 2 A cos 2π (νt + ) λ 求 (1)x = λ / 4 处介质质点的合振动方程 ) (2) = λ / 4 ) x 处介质质点的速度表达式