2011年普通高等学校招生全国统一考试数学卷(全国Ⅰ.理)含详解

合集下载

2011年普通高等学校招生全国统一考试北京文科数学和理科数学整编卷详细解析(精品回顾)

2011年普通高等学校招生全国统一考试北京文科数学和理科数学整编卷详细解析(精品回顾)

绝密★使用完毕前2011年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时间长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞) (2)复数212i i-=+(A )i(B )-i(C )(D )4355i--4355i -+(3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是(A)(B) (C) (1,0)(1,)2π(1,2π-(D)(1,)π(4)执行如图所示的程序框图,输出的s 值为(A )-3 (B )-12(C )13(D )2(5)如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G 。

给出下列三个结论:AD+AE=AB+BC+CA ;○1回归往日精品,再现今日辉煌AF·AG=AD·AE○2③△AFB ~△ADG 其中正确结论的序号是(A )①② (B )②③ (C )①③ (D )①②③(6)根据统计,一名工作组装第4件某产品所用的时间(单位:分钟)为(A ,C 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是(A )75,25 (B )75,16 (C )60,25 (D )60,16 (7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) (C)10 (D) (8)设,,,.记为平行四边形()0,0A ()4,0B ()4,4C t +()(),4D t t R ∈()N t ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数的值域为()N t(A ) (B ) {}9,10,11{}9,10,12(C ) (D ) {}9,11,12{}10,11,12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2011年普通高等学校招生全国统一考试(山东卷)数学试题 (理科)(解析版)

2011年普通高等学校招生全国统一考试(山东卷)数学试题 (理科)(解析版)

2011年普通高等学校全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的的四个选项中,只有一个项是符合题目要求的。

(1)设集合2{60}M x x x =+-<,{13}N x x =≤≤,则M N =I ( )A.[1,2)B. [1,2]C. (2,3]D. [2,3] 解析:{32}M x x =-<<,[1,2)M N =I ,答案应选A 。

(2)复数2(2iz i i-=+为虚数单位)在复平面内对应的点所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:22(2)34255i i i z i ---===+对应的点为34(,)55-在第四象限,答案应选D.(3)若点(,9)a 在函数3xy =的图象上,则tan6a π的值为( )A.0B.C. 1D.解析:2393a ==,2a =,tan tan 63a ππ== D.(4)不等式5310x x -++≥的解集是( )A.[5,7]-B. [4,6]C. (,5][7,)-∞-+∞UD. (,4][6,)-∞-+∞U解析:当5x >时,原不等式可化为2210x -≥,解得6x ≥;当35x -≤≤时,原不等式可化为810≥,不成立;当3x <-时,原不等式可化为2210x -+≥,解得4x -≤.综上可知6x ≥,或4x -≤,答案应选D 。

另解1:可以作出函数53y x x =-++的图象,令5310x x -++=可得4x -=或6x =,观察图像可得6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D 。

另解2:利用绝对值的几何意义,53x x -++表示实数轴上的点x 到点3x =-与5x =的距离之和,要使点x 到点3x =-与5x =的距离之和等于10,只需4x -=或6x =,于是当6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D 。

2011年高考全国数学试卷(新课标)-理科(含详解答案)

2011年高考全国数学试卷(新课标)-理科(含详解答案)

2011年普通高等学校招生全国统一考试理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i解析:212i i+-=(2)(12),5i i i ++=共轭复数为C (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 解析:由图像知选B(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040解析:框图表示1n n a n a -=⋅,且11a =所求6a =720 选B(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A (5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。

故选D(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B )3 (C )2 (D )3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B (8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40解析 1.令x=1得a=1.故原式=511()(2)x x x x +-。

2011年普通高等学校招生全国统一考试(江西卷)解析版--数学理

2011年普通高等学校招生全国统一考试(江西卷)解析版--数学理

绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学试题解析本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。

参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())(( 其中nx x x x n+++= (21)ny y y y n +++= (21)锥体的体积公式13V Sh =其中S 为底面积,h 为高第Ⅰ卷(1)选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若iiz 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2答案:C 解析: i i i i i i i z -=--=+=+=21222122 (2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( ) A.}01|{<≤-x x B.}10|{≤<x x C.}20|{≤≤x x D.}10|{≤≤x x答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0) B. (21-,0] C. (21-,∞+) D. (0,∞+) 答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若xx x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0)答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f (5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析:11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12rr = 答案:C 解析: ()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121第一组变量正相关,第二组变量负相关。

2011年高考数学真题(全国卷)理科(详细解析)

2011年高考数学真题(全国卷)理科(详细解析)

1. 复数1z i =+,z 为z 的共轭复数,则1z z z --=【精讲精析】选B .1,1(1)(1)(1)1z i z z z i i i i =---=+----=- 2. 函数2(0)y x x =≥的反函数为【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。

【精讲精析】选B .在函数2(0)y x x =≥中,0y ≥且反解x 得24yx =,所以2(0)y x x =≥的反函数为2(0)4xy x =≥.3. 下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a b >,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。

4. 解:设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。

思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。

【精讲精析】2k k S S +-= 21k k a a +++= 11(21)(11)a k d a k d ++-+++-=12(21)a k d ++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。

5. 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。

2011年普通高等学校招生全国统一考试高考数学教师精校版含详解全国新课标理

2011年普通高等学校招生全国统一考试高考数学教师精校版含详解全国新课标理

2011年全国新课标理一、选择题(共12小题;共60分)1. 复数2+i1−2i的共轭复数是 A. −35i B. 35i C. −i D. i2. 下列函数中,既是偶函数,又在0,+∞单调递增的函数是 A. y=x3B. y=∣x∣+1C. y=−x2+1D. y=2−∣x∣3. 执行如图的程序框图,如果输入的N是6,那么输出的p是 A. 120B. 720C. 1440D. 50404. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A. 13B. 12C. 23D. 345. 已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ= A. −45B. −35C. 35D. 456. 在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为 A. B.C. D.7. 设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,∣AB∣为C的实轴长的2倍,则C的离心率为 A. B. C. 2 D. 38. x+ax 2x−1x5的展开式中各项系数的和为2,则该展开式中常数项为 A. −40B. −20C. 20D. 409. 由曲线y=x,直线y=x−2及y轴所围成的图形的面积为 A. 103B. 4 C. 163D. 610. 已知a与b均为单位向量,其夹角为θ,有下列四个命题:p1:∣∣a+b∣∣>1⇔θ∈0,2π3p2:∣∣a+b∣∣>1⇔θ∈2π3,πp3:∣∣a−b∣∣>1⇔θ∈0,π3p4:∣∣a−b∣∣>1⇔θ∈π3,π其中的真命题是 A. p1,p4B. p1,p3C. p2,p3D. p2,p411. 设函数f x=sinωx+φ+cosωx+φ ω>0,∣φ∣<π2的最小正周期为π,且f−x=f x,则 A. f x在0,π2单调递减 B. f x在π4,3π4单调递减C. f x在0,π2单调递增 D. f x在π4,3π4单调递增12. 函数y=11−x的图象与函数y=2sinπx−2≤x≤4的图象所有交点的横坐标之和等于 A. 2B. 4C. 6D. 8二、填空题(共4小题;共20分)13. 若变量x,y满足约束条件3≤2x+y≤96≤x−y≤9,则z=x+2y的最小值为.14. 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1、F2在x轴上,离心率为22,过F1的直线l 交C于A、B两点,且△ABF2的周长为16,那么C的方程为.15. 已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O−ABCD的体积为.16. 在△ABC中,B=60∘,AC=3,则AB+2BC的最大值为.三、解答题(共8小题;共104分)17. 等比数列a n的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列a n的通项公式;(2)设b n=log3a1+log3a2+⋯+log3a n,求数列1b n的前n项和.18. 如图,四棱锥P−ABCD中,底面ABCD为平行四边形,∠DAB=60∘,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A−PB−C的余弦值.19. 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到了下面试验结果:A配方的频数分布表指标值分组90,9494,9898,102102,106106,110频数82042228B配方的频数分布表指标值分组90,9494,9898,102102,106106,110频数412423210(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产一件产品的利润y(单位:元)与其质量指标值t的关系式为y=−2,t<94,2,94≤t<102,4,t≥102.从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20. 在平面直角坐标系xOy中,已知点A0,−1,B点在直线y=−3上,M点满足MB∥OA,MA⋅AB=MB⋅BA,M点的轨迹为曲线C.(1)求C的方程;(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.21. 已知函数f x=a ln xx+1+bx,曲线y=f x在点1,f1处的切线方程为x+2y−3=0.(1)求a,b的值;(2)如果当x>0,且x≠1时,f x>ln xx−1+kx,求k的取值范围.22. 如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2−14x+mn=0的两个根.(1)证明:C,B,D,E四点共圆;(2)若∠A=90∘,且m=4,n=6,求C,B,D,E所在圆的半径.23. 在直角坐标系xOy中,曲线C1的参数方程为x=2cosα,y=2+2sinα,(α为参数),M是C1上的动点,P点满足OP=2OM,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=π3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求∣AB∣.24. 设函数f x=∣x−a∣+3x,其中a>0.(1)当a=1时,求不等式f x≥3x+2的解集;(2)若不等式f x≤0的解集为x∣x≤−1,求a的值.答案第一部分 1. C 【解析】2+i 1−2i= 2+i 1+2i1−2i 1+2i=5i 5=i2. B3. B【解析】写出每一次循环后的k 和p 的值,第六次循环后k =6和p =720,此时不满足k <N ,退出循环.4. A 【解析】记3个兴趣小组分别为1,2,3,甲参加1组记为"甲1 ",则基本事件为 " 甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3 ",共9个.记事件A 为 " 甲、乙两位同学参加同一个兴趣小组 ",其中事件A 有 "甲1,乙1;甲2,乙2;甲3,乙3 ",共3个.因此P A =39=13. 5. B6. D 【解析】此几何体为组合体,由半个圆锥和一个三棱锥组合而成.7. B8. D【解析】因为 x +ax 2x −1x 5的展开式中各项的系数和为2,所以令x =1,得a +1=2,从而a =1.2x −1x 5的展开式中的第r +1项为T r +1=C 5r 2x 5−r −1x r=C 5r 25−r −1 r x 5−2r . 当r =2时,为含x 的项;r =3时,为含x −1的项,所以展开式中的常数项为C 52⋅23−C 53⋅22=40.9. C【解析】因为直线y =x −2与y = x 的交点坐标为 4,2 ,所以所求面积为x−x +2 d x 40= 23x 32−12x 2+2x ∣∣∣04=163.10. A【解析】用p 1举例,若∣a +b∣>1,则两边平方可得2cos θ+2>1,解得0≤θ<2π3,反之也能推得成立,所以充分性和必要性都成立,p 1是真命题;同理可以证明p 4正确. 11. A 【解析】f x = 2sin ωx +φ+π4 ,所以ω=2. 又因为f x 为偶函数,所以φ+π4=π2+kπ,k ∈Z ,又∣φ∣<π2,所以φ=π4, 所以f x = 2sin 2x +π2 = 2cos2x . 12. D 【解析】如图,两个函数的图象有8个交点,且两个函数的图象都关于点 1,0 对称,故横坐标之和为8. 第二部分13. −614. x216+y28=115. 8316. 2【解析】由正弦定理AB sin C =ACsin B=BCsin A,得AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin C+4sin120∘−C=4sin C+23cos C=27sin C+φ.所以AB+2BC的最大值为27.第三部分17. (1)设数列a n的公比为q,由a32=9a2a6,得a32=9a42,所以q2=19.由条件可知q>0,故q=13.由2a1+3a2=1,得2a1+3a1q=1,所以a1=13.故数列a n的通项公式为a n=13n.(2)结合(1)可得b n=log3a1+log3a2+⋯+log3a n=−1+2+⋯+n=−n n+12.故1 n =−2=−21−1.所以1 1+12+⋯+1n=−21−12+12−13+⋯+1n−1n+1=−2n n+1.所以数列1b n 的前n项和为−2nn+1.18. (1)因为∠DAB=60∘,AB=2AD,由余弦定理得BD=3AD,从而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD.所以BD⊥平面PAD.故PA⊥BD.(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D−xyz,则A1,0,0,B 0,0,C −1,0,P0,0,1,故AB= −1,3,0,PB=0,3,−1,BC=−1,0,0.设平面PAB的法向量为n=x,y,z,则n⋅AB=0,n⋅PB=0.即−x+3y=0,3y−z=0.因此可取n=3,1,3.设平面PBC的法向量为m,则m⋅PB=0,m⋅BC=0.可取m=0,−1,− 3,所以cos m,n=−427=−27.故二面角A−PB−C的余弦值为−277.19. (1)由试验结果知,用A配方生产的产品中优质品的频率为22+8=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为32+10=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)用B配方生产的100件产品中,其质量指标值落入区间90,94,94,102,102,110的频率分别为0.04、0.54、0.42,因此P X=−2=0.04,P X=2=0.54,P X=4=0.42,即X的分布列为X−224P0.040.540.42X的数学期望值EX=−2×0.04+2×0.54+4×0.42=2.68.20. (1)设M x,y,由已知得B x,−3,A0,−1.所以MA=−x,−1−y,MB=0,−3−y,AB=x,−2.再由题意可知 MA+MB⋅AB=0,即−x,−4−2y⋅x,−2=0.所以曲线C的方程式为y=14x2−2.(2)设P x0,y0为曲线C:y=14x2−2上一点,因为yʹ=12x,所以l的斜率为12x0.因此直线l的方程为y−y0=12x0x−x0,即x0x−2y+2y0−x02=0.则O点到l的距离d=∣002∣x0+4.又y0=14x02−2,所以d=12x2+42=12x02+4+2≥2,当x02=0时取等号,所以O点到l距离的最小值为2.21. (1)fʹx=a x+1x−ln xx+12−bx2,由于直线x+2y−3=0的斜率为−12,且过点1,1,故f1=1,fʹ1=−1 ,即b=1,a−b=−1 ,解得a=1,b=1.(2)由(1)知f x=ln x+1,所以f x−ln xx−1+kx=11−x22ln x+k−1x2−1x.考虑函数ℎx=2ln x+k−1x2−1xx>0,则ℎʹx=k−1x2+1+2xx2.(i)设k≤0,由ℎʹx=k x2+1−x−12x2知,当x≠1时,ℎʹx<0.而ℎ1=0,故当x∈0,1时,ℎx>0,可得12ℎx>0;当x∈1,+∞时,ℎx<0,可得11−x2ℎx>0.从而当x>0,且x≠1时,f x−ln x+k>0,即f x>ln xx−1+kx.(ii)设0<k<1.由于当x∈1,11−k时,k−1x2+1+2x>0,故ℎʹx>0,而ℎ1=0,故当x∈1,11−k 时,ℎx>0,可得11−xℎx<0,与题设矛盾.(iii)设k≥1.此时ℎʹx>0,而ℎ1=0,故当x∈1,+∞时,ℎx>0,可得11−x2ℎx<0,与题设矛盾.综合得,k的取值范围为−∞,0.22. (1)连接DE,根据题意在△ADE 和△ACB 中,AD ×AB =mn =AE ×AC ,即AD =AE. 又∠DAE =∠CAB ,从而△ADE ∽△ACB ,因此∠ADE =∠ACB ,所以C ,B ,D ,E 四点共圆.(2)m =4,n =6时,方程x 2−14x +mn =0的两根为x 1=2,x 2=12.故AD =2,AB =12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH . 由于∠A =90∘,故GH ∥AB ,HF ∥AC .HF=AG =5,DF =112−2 =5,DH=5 2.故C ,B ,D ,E 四点所在圆的半径为5 23. (1)设P x ,y ,则由条件知M x 2,y2 . 由于M 点在C 1上,所以x2=2cos α,y2=2+2sin α, 即x =4cos α,y =4+4sin α,从而C 2的参数方程为x =4cos α,y =4+4sin α,α为参数 .(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.普通高等学校招生全国统一考试高考数学教师精校版含详解完美版 射线θ=π3与C 1的交点A 的极径为 ρ1=4sin π, 射线θ=π3与C 2的交点B 的极径为 ρ2=8sin π. 所以∣AB∣=∣ρ2−ρ1∣=2 3.24. (1)当a =1时,f x ≥3x +2可化为∣x −1∣≥2.由此可得x ≥3 或 x ≤−1.故不等式f x ≥3x +2的解集为x ∣x ≥3 或 x ≤−1 .(2)由f x ≤0得∣x −a∣+3x ≤0,此不等式可化为不等式组x ≥a x −a +3x ≤0 或 x ≤a a −x +3x ≤0即x ≥a x ≤a 4 或 x ≤a x ≤−a 2因为a >0,所以不等式组的解集为x ∣x ≤−a . 由题设可得−a 2=−1,故a =2.。

#2011年高考试题(新课标卷)数学(理)解析版

2011 年一般高等学校招生全国一致考试( 新课标 ) 理科数学分析第 I 卷一、选择题:本大题共12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

(1)复数2 i的共轭复数是1 2i3i(B)3i( C)i( D)i( A)55分析:2i = (2i )(1 2i )i , 共轭复数为 C 12i5(2)以下函数中,既是偶函数又在(0,+)单一递加的函数是( A)y x 3(B)y x 1()x21(D)xC y y 2分析 : 由图像知选 B(3)履行右边的程序框图,假如输入的N 是,那么输出的 p 是6(A)120(B)720(C)1440(D)5040分析:框图表示 a n n a n 1,且 a1 1 所求 a6720选 B(4)有 3 个兴趣小组,甲、乙两位同学各自参加此中一个小组,每位同学参加各个小组的可能性同样,则这两位同学参加同一个兴趣小组的概率为(A)1(B)1(C)2(D)3 3234分析 ; 每个同学参加的情况都有 3 种,故两个同学参加一组的情况有9种,而参加同一组的情况只有3种,所求的概率为p= 31选 A 93()已知角的极点与原点重合,始边与x 轴的正半轴重合,终边在直线y 2x 上,则cos2= 5分析:由题知 tan2, cos2cos2sin 21tan23选 B 22125cos sin tan(A)4()3( C)3(D)4 5B555(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图能够为分析:条件对应的几何体是由底面棱长为 r 的正四棱锥沿底面对角线截出的部分与底面为半径为 r 的圆锥沿对称轴截出的部分组成的。

应选 D(7)设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直, L 与 C交于 A , B 两点, AB 为 C的实轴长的 2 倍,则 C 的离心率为(A)2(B)3(C)2(D)3分析:通径 |AB|= 2b22a 得b22a2a2c22a2,选 B aa51的睁开式中各项系数的和为2,则该睁开式中常数项为(8) x2xx x( A) -40(B)-20(C)20(D)40分析 1.令 x=1得 a=1. 故原式 =( x 1)(2 x1)5。

2011年安徽高考数学理科试卷(带详解)

2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数a 1+2-ii为纯虚数,则实数a 为 ( )A.2B.-2C.1-2D.12【测量目标】复数的基本概念及代数形式的四则运算.【考查方式】给出一个含未知数的复数,令其为纯虚数,运用公式求解. 【难易程度】容易 【参考答案】A 【试题解析】 法一:()()()()()a a a a 1+2+1+2-+2+1==2-2-2+5i i i ii i i 为纯虚数,所以,a a 2-=0=2; 法二:设a b 1+=2-ii i得a b b 1+=+2i i ,所以,b a =1=2; 法三:()a a -1+=2-2-i i i i i为纯虚数,所以a =2; 2.双曲线x y 222-=8的实轴长是( )A.2B.C. 4 【测量目标】双曲线的标准方程.【考查方式】给出一个双曲线方程,求出实轴长. 【难易程度】容易 【参考答案】C【试题解析】双曲线方程可变为x y 22-=148,所以,a a 2=4=2,实轴长a 2=4. 3.设()f x 是定义在R 上的奇函数,当x 0…时,()f x x x 2=2-,则()f 1=( )A.-3B.-1C.1D.3 【测量目标】函数的奇偶性的综合运用.【考查方式】给出在某一区间上一个函数方程,已知函数是奇函数,求解函数值. 【难易程度】容易 【参考答案】A【试题解析】法一:()f x 是定义在R 上的奇函数,且x 0…时, ()f x x x 2=2-()()()()2112113f f ∴=--=--+-=-,故选A.法二:设0x >,则0x -<,()f x 是定义在R 上的奇函数,且x 0…时,()f x x x 2=2-,()()()2222f x x x x x ∴-=---=+,(步骤1)又()()f x f x -=-,()22f x x x ∴=--,()212113f ∴=-⨯-=-,故选A. (步骤2) 4.设变量,x y 满足1,x y +…则2x y +的最大值和最小值分别为( )A.1,-1 B.2,-2 C.1,-2 D.2,-1 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出一个二元不等式,求目标函数的最值. 【难易程度】中等 【参考答案】B【试题解析】 法一:特值验证:当0,1x y ==时,22x y +=,故排除A ,C ;当0,1x y ==-时,22x y +=-,故排除D ,答案为B.法二:画出不等式1,x y +…表示的平面区域,平移目标函数线,易知当直线2x y u +=经过点B ,D 时分别对应u 的最大值和最小值,所以max min 2,2u u ==-.第4题图法三:已知条件是含绝对值的不等式,所以目标函数的最大值和最小值一定互为相反数,易知0,1x y ==时,22x y +=,故选B法四:绝对值不等式表示的区域是以(0,1),(1,0),(0,1),(1,0)--为顶点的正方形,线性规划一定在顶点处取得最优解,带入目标函数计算可得最大值、最小值分别为2,2-. 5.在极坐标系中,点(,)π23到圆2cos ρθ=的圆心的距离为( )A.2 【测量目标】极坐标与参数方程及点到圆心的距离.【考查方式】给出一个点坐标和参数方程,求出点到圆心之间的距离. 【难易程度】容易 【参考答案】D【试题解析】 极坐标(,)π23化为直角坐标:cos cos sin sin x y ρθρθπ⎧==2=1⎪⎪3⎨π⎪==2=⎪3⎩,即圆2cos ρθ=的方程为222x y x +=即22(1)0x y -+=,圆心到点(1故选D. 6.一个空间几何体的三视图如图所示,则该几何体的表面积( )第6题图A.48B.32+C.48+D.80 【测量目标】由三视图求几何体的表面积.【考查方式】给出三视图及其各边边长,求出其表面积. 【难易程度】中等 【参考答案】C【试题解析】几何体是以侧视图等腰梯形为底面的直四棱柱,所以该几何体的表面积为12(24)44421642S =⨯⨯+⨯+⨯+⨯+⨯487=+故选C. 7命题“所有能被2整除的数都是偶数”的否定..是 ( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数都是偶数D.存在一个能被2整除的数不是偶数 【测量目标】含有一个量词的命题的否定.【考查方式】给出含有一个量词的命题,求出其特称命题. 【难易程度】容易 【参考答案】D【试题解析】全称命题的否定是特称命题,“所有”对于“存在一个”,同时否定结论,答案为D. 8.设集合{}1,2,3,4,5,6,A ={}4,5,6,7,8,B =则满足S A ⊆且S B ≠∅ 的集合S 的个数为( ) A.57 B.56 C.49 D.8 【测量目标】集合间的关系及基本运算.【考查方式】给出两个集合与他们之间的集合关系,求出其中一个集合的个数. 【难易程度】容易 【参考答案】B【试题解析】 法一:集合A 的子集有6264=个,满足S B =∅ 的子集就是集合{1,2,3}的所有子集,一共有328=个,所以集合S 的个数为632264856-=-=.法二:集合S 是集合A 的子集且至少含有集合{4,5,6}的一个元素,所以将S 看作集合{4,5,6}的非空子集与集合{1,2,3}的子集的并集,因此一共有33(21)256-⨯=个.9.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若π()()6f x f …对x ∈R 恒成立,且π()(π)2f f >,则()f x 的单调递增区间是( )A.ππ[π,π]()36k k k -+∈Z B.π[π,π]()2k k k +∈Z C.π2π[π,π]()63k k k ++∈Z D.π[π,π]()2k k k -∈Z 【测量目标】三角函数的单调性、最值.【考查方式】给出一个三角函数及其最值,求出其单调递增区间. 【难易程度】较难 【参考答案】C【试题解析】对x ∈R 时,π()()6f x f …恒成立,所以ππ()sin()163f ϕ=+=±, 可得π5π2π2π66k k ϕϕ=+=-或,(步骤1) 因为π()sin(π)sin (π)sin(2π)sin 2f f ϕϕϕϕ=+=->=+=,故sin 0ϕ<, 所以5π2π6k ϕ=-,所以5π()sin 26f x x ⎛⎫=- ⎪⎝⎭,(步骤2) 函数单调递增区间为π5ππ2π22π262k x k -+-+剟, 所以π2π[π,π]()63x k k k ∈++∈Z ,答案为C. (步骤3) 10.函数()(1)mnf x ax x =-在区间[0,1]上的图象如图所示,则,m n 的值可能是 ( ) A.1,1m n == B.1,2m n == C.2,1m n == D.3,1m n ==第10题图【测量目标】函数图象的应用.【考查方式】给出一个含未知量的复合函数在某一区间的图象,求出未知量. 【难易程度】较难【参考答案】B【试题解析】由图得,原函数的极大值点小于0.5, 当1,1m n ==时,()21(1)(),24a f x ax x a x =-=--+在12x =处有最值,所以A 不可能;(步骤1) 当1,2m n ==时,232()(1)(2),f x ax x a x x x =-=-+()(31)(1)f x a x x '∴=--, 令()100,,3f x x x '=⇒==即函数在13x =处有最值所以B 可能;(步骤2) 当2,1m n ==时,223()(1)(),f x ax x a x x =-=-有2()(32)(23),f x a x x ax x '=-+=- 令()200,,3f x x x '=⇒==即函数在23x =处有最值,所以C 不可能;(步骤3) 当3,1m n ==时,343()(1)()f x ax x a x x =-=-+,有2()(43)f x ax x '=-+, 令()300,,4f x x x '=⇒==即函数在34x =处有最值,所以D 不可能. (步骤4) 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.如图所示,程序框图(算法流程图)的输出结果是 .第11题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图,阅读并运行程序,得出结果. 【难易程度】中等 【参考答案】15【试题解析】 第1次进入循环体有:00T =+, 第2次有:01T =+,第3次有:012T =++,……第n 次有:012(1)T n =++++- ,(步骤1) 令(1)1052n n T -=>,解得15n >(负值舍去),(步骤2) 故16,n =此时输出15k =.(步骤3) 12.设()x a a x a x a x 2122101221-1=+++L ,则a a 1011+= .【测量目标】二项式定理.【考查方式】给出一个二项式,通过公式展开二项式,求出其中两项系数的和. 【难易程度】容易 【参考答案】0【试题解析】,a a 1011分别是含x 10和x 11项的系数,所以C ,a 111021=-C a 101121=,所以a a 1011+=C C 10112121-=0.13.已知向量,a b 满足()()+2-=-6g a b a b ,且1=a ,2=b ,则a 与b 的夹角为 . 【测量目标】平面向量的夹角问题.【考查方式】给出两个向量之间的关系等式及各自的模长,求出它们之间的夹角. 【难易程度】中等 【参考答案】π3【试题解析】设a 与b 的夹角为θ,依题意有:22(2)()272cos 6θ+-=+-=-+=- a b a b a a b b ,(步骤1) 所以1cos =2θ,(步骤2)因为0πθ剟,故π=3θ.(步骤3) 14.已知ABC △的一个内角为120,并且三边长构成公差为4的等差数列,则ABC △的面积为 .【测量目标】余弦定理及三角形面积.【考查方式】给出一个三角形的内角度数及三边关系,求出三角形的面积. 【难易程度】中等【参考答案】【试题解析】不妨设角120,A c b =<,则4,4a b c b =+=-,于是222(4)(4)1cos1202(4)2b b b b b +--+==--,解得=10b ,所以1=sin1202S bc = .15.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是 .(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线【测量目标】新定义,直线的性质,命题的判定.【考查方式】给出一个新定义,根据新定义判断给出五个命题的正确性. 【难易程度】较难 【参考答案】①③⑤【试题解析】①正确,如直线12y =+,不经过任何整点(10,2x y ==;0x ≠,y 是无理数)(步骤1)②错误,直线y =k 与b 都是无理数,但直线经过整点(1,0);(步骤2) ③正确,当直线经过两个整点时,它经过无数多个整点;(步骤3) ④错误,当10,2k b ==时,直线12y =不通过任何整点;(步骤4)⑤正确,比如直线y =只经过一个整点(0,0).(步骤5)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的指定区域内.16.(本小题满分12分)设2e ()1xf x ax =+,其中a 为正实数.(Ⅰ)当34=a 时,求)(x f 的极值点; (Ⅱ)若)(x f 为R 上的单调函数,求a 的取值范围【测量目标】导数的运算,利用导数求函数的极值,利用函数的单调性求参数范围. 【考查方式】给出一个含参数函数,(Ⅰ)给出参数的值求极值点,(Ⅱ)给出其单调性,求参数的取值范围.【难易程度】中等【试题解析】对)(x f 求导得22212()e (1)xax axf x ax +-'=+①(步骤1)(Ⅰ)当34=a 时,若0)(='x f ,则03842=+-x x ,解得21,2321==x x (步骤2) 结合①,可知所以,21=x 是极小值点,22=x 是极大值点. (步骤3) (Ⅱ)若)(x f 为R 上的单调函数,则)(x f '在R 上不变号,结合①与条件0a >,知2210ax ax -+…(步骤4)在R 上恒成立,因此2444(1)0a a a a ∆=-=-…,由此并结合0a >,知01a <….(步骤5) 17.(本小题满分12分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1,2OA OD ==,,,,OAB OAC ODE ODF △△△△都是正三角形.(Ⅰ)证明直线BC EF ; (Ⅱ)求棱锥F OBED -的体积.第17题图【测量目标】线线平行的判定,棱锥的体积,空间向量及其运算.【考查方式】给出一个多面体,其中两个面互相垂直,有4个正三角形,证明两条直线平行和求解棱锥的体积.【难易程度】较难 【试题解析】(Ⅰ)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于OAB △与ODE△都是正三角形,所以1,2OB DE=2OG OD =,(步骤1) 同理,设G '是线段DA 与线段FC 延长线的交点,有2OG OD '==,又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合. (步骤2)在GED △和GFD △中,由12OB DE 和12OC DF , 12OC DF =,12OB DE =可知,B C 分别是GE 和GF 的中点,所以BC 是GEF △的中位线,故BC EF .(步骤3)(向量法)过点F 作FQ AD ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系.由条件知E ),F (,B (3,022-),C (30,,22-). (步骤1) 则有)23,0,23(-=,)3,0,3(-=EF .(步骤2) 所以2=,即得BC EF .(步骤3)第17题(Ⅰ)图(Ⅱ)由1,2,60OB OE EOB ==∠= ,知EOB S =(步骤4)而ODE △是边长为2的正三角形,故OED S =所以OBED EOB ODE S S S =+=233.(步骤5) 过点F 作FQ AD ⊥,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F OBED -的高,且FQ =,所以13.32F OBED OBED V FQ S -== (步骤6) 18.(本小题满分13分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令n n T a lg =,1n …. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan n n n b a a += ,求数列{}n b 的前n 项和n S .【测量目标】对数和指数的运算,两角差的正切公式,等比和等差数列及其前n 项和. 【考查方式】考查灵活运用基本知识解决问题的能力,创新思维能力和运算求解能力. 【难易程度】较难【试题解析】(Ⅰ)设221,,,+n t t t 构成等比数列,其中100,121==+n t t ,则1212n n n T t t t t ++=①(步骤1)2121n n n T t t t t +⋅+= ②(步骤2)①×②并利用231210,(12)i n i n t t t t in +-+==+ 剟,得)2(2210+=n n T ,lg 2, 1.n n a T n n ∴==+…(步骤3) (Ⅱ)由题意和(Ⅰ)中计算结果,知tan(2)tan(3),1n b n n n =++ …(步骤4) 另一方面,利用tan(1)tan tan1tan((1))1tan(1)tan k kk k k k+-=+-=-+得tan(1)tan tan(1)tan 1tan1k kk k +-+=- (步骤5)所以22133tan(1)tan tan(3)tan 3tan(1)tan (1)tan1tan1nn n n i i i i k k n S b k k n ++===+-+-==+=-=-∑∑∑ (步骤6)19.(本小题满分12分) (Ⅰ)设1,1,x y厖证明111x y xy xy x y++++…; (Ⅱ)设1,a bc <剟证明log log log log log log a b c b c a b c a a b c ++++….【测量目标】基本不等式证明不等式.【考查方式】考查对数函数的性质和对数换底公式, 不等式的性质等基本知识,考查代数式的恒等变形和推理论证能力. 【难易程度】中等【试题解析】证明:(Ⅰ)由于1,1,x y 厖所以111x y xy xy x y++++…(步骤1) 2()1()xy x y y x xy ⇔++++…(步骤2)将上式中的右式减左式,得22(())(()1)(()1)(()())y x xy xy x y xy xy x y x y ++-++=--+-+(1)(1)()(1)(1)(1)(1)(1)(1)xy xy x y xy xy xy x y xy x y =+--+-=---+=--- 既然1,1,x y 厖所以(1)(1)(1)0xy x y ---…,从而所要证明的不等式成立. (步骤3)(Ⅱ)设y c x b b a ==log ,log ,由对数的换底公式得xy c yb x a xy a ac b c ====log ,1log ,1log ,1log (步骤4) 于是,所要证明的不等式即为111x y xy xy x y++++…(步骤5) 其中log 1,log 1a b x b y c==厖,故由(Ⅰ)立知所要证明的不等式成立. (步骤6)20.(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟.如果前一个人10分钟内不能完成任务则撤出,再派下一个人,现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为123,,P P P ,假设123,,P P P 互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先、乙次之、丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为321,,q q q ,其中321,,q q q 是123,,P P P 的一个排列,求所需派出人员数目X 的分布列和均值(数学期望)EX ;(Ⅲ)假定1231P P P >>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小.【测量目标】随机事件与概率,离散型随机变量的期望.【考查方式】考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类讨论思想,应用意识与创新意识.【难易程度】较难【试题解析】(Ⅰ)无论以怎样的顺序派出人员,任务不能被完成的概率都是123(1)(1)(1)P P P ---,(步骤1)所以任务能被完成的概率与三个人被派出的先后顺序无关,并等于1231231213231231(1)(1)(1)P P P P P P PP PP P P PP P ----=++---+(步骤2)(Ⅱ)当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是EX =1q +21)1(q q -+)1)(1(21q q --=212123q q q q +--(步骤3)(Ⅲ)(方法一)由(Ⅱ)的结论知,当甲最先、乙次之、丙最后的顺序派人时,EX =212123q q q q +--根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于123,,P P P 的任意排列321,,q q q ,都有121212123232q q q q P P PP --+--+…(*)(步骤4)事实上, 12121212(32)(32)q q q q P P PP ∆=--+---+(步骤5)112212122()()P q P q PP q q =-+--+1122112122211122112122()()()()(2)()(1)()(1)[()()]0P q P q P q P q P q P P q q P q q P P q q =-+-----=--+---+-+……即(*)成立. (步骤6)(方法二)(ⅰ)可将(Ⅱ)中所求的EX 改写为12121)(3q q q q q -++-,若交换前两人的派出顺序,则变为22121)(3q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减少均值. (步骤4)(ⅱ)也可将(Ⅱ)中所求的EX 改写为211)1(23q q q ---,若交换后两人的派出顺序,则变为111)1(23q q q ---.由此可见,若保持第一个派出的人选不变,当12q q <时,交换后两人的派出顺序也可减少均值. (步骤5)综合(ⅰ)(ⅱ)可知,当123(,,)P P P =),,(321q q q 时,EX 达到最小.即完成任务概率大的人优先派出,可减少所需派出人员数目的均值,这一结论是合乎常理的. (步骤6)21.(本小题满分13分)设0>λ,点A 的坐标为(1,1),点B 在抛物线2x y =上运动,点Q 满足λ=,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足λ=,求点P 的轨迹方程.第21题图【测量目标】直线与抛物线的位置关系,圆锥曲线中的轨迹问题.【考查方式】考查直线和抛物线的方程,平面向量的概念,性质与运算,动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力.【难易程度】较难【试题解析】由λ=知,,Q M P 三点在同一条垂直于x 轴的直线上,故可设(),,P x y ()0,,Q x y (步骤1)()2,,M x x 则)(202x y y x -=-λ,即y x y λλ-+=20)1( ①(步骤2)再设),(11y x B ,由QA BQ λ=,即)1,1(),(0101y x y y x x --=--λ,解得110(1),(1)x x y y λλλλ=+-⎧⎨=+-⎩ ②(步骤3)将①式代入②式,消去0y ,得1221(1),(1)(1)x x y x y λλλλλλ=+-⎧⎨=+-+-⎩ ③(步骤4) 又点B 在抛物线2x y =上,所以211x y =,再将③式代入211x y =,得,))1(()1()1(222λλλλλλ-+=-+-+x y x (步骤5) 整理得0)1()1()1(2=+-+-+λλλλλλy x 因0>λ,两边同除以)1(λλ+,得 012=--y x故所求点P 的轨迹方程为12-=x y .(步骤6)。

普通高等学校招生全国统一考试数学试题(全国卷)(试做解析版)(1)

普通高等学校招生全国统一考试数学试题(全国卷)(试做解析版)(1)2011年普通高等学校招生全国统一考试理科数学(必修+选修II)一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i解:z =1i -,1zz z --=(1)i +(1)i --(1)1i +-=1+1-1-i -1=i - 故选B (2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥解:2y x =得24y x = ∴24y x =故反函数为2(0)4x y x =≥ 故选B 。

(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >解:1a b +⇒>10a b a b ->⇒-> ,1a b a b a b ∴>>->反之不能推出故选A 。

(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k =(A )8 (B )7 (C )6 (D )5解:221111(21)(11)2(21)k k k k S S a a a k d a k d a k d +++-=+=++-+++-=++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。

(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9解:()cos[()]cos 33f x x x ππωω-=-=即cos()cos 3x x ωπωω-= 22()663k k Z k ωπππω∴-=+∈⇒=--z 则1k =-时min 6ω=故选C(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23(B)33 (C)63 (D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种解:选画册2本,集邮册2本,共有赠送方法246c =,选画册1本,集邮册3本,共有赠送方法144c =,故共有赠送方法4+6=10种,故选B(8)曲线y=2xe -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为(A)13 (B)12 (C)23(D)1 解:2'2x y e -=- ,2k =-,切线方程为22y x -=-由232223x y x y x y ⎧=⎪=⎧⎪⎨⎨=-+⎩⎪=⎪⎩得 1222233s =⨯⨯= 故选C(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12解:5511()(2)()()2222f f f f -=-+=-=-1112()(1)222=-⨯-=- 故选A(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=(A)45 (B)35 (C)35- (D)45-解:222421223OM OM =-=⇒=,在030Rt ONM OMN ∠=中,213,3132ON OM Rt ONB ∴==-=2在中,NB=4 213N S NB ππ∴==圆故选D(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于 (A)2 (B)3 (c)2 (D)1二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在.试卷上作答无效.......) (13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为: 0 .2y 2解:212020(1)()(1)r rr r rr r T c x c x +=-=-,令12,91822r rr r ====得得所以x 的系数为2222020(1)c c -=,91822020x c c =18的系数为(-1)故x 的系数与9x 的系数之差为220c -220c =0 (14)已知a ∈(2π,π),sin α5tan2α=43-解: a ∈(2π,π),sin α=55 2525cos 1sin 1()55a a =--=--=-则tan α=5sin 15cos 2255a a ==--故tan2α=2212()2tan 142121tan 31()24a a ⨯--===---- (15)已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = 6 .解:延长CB 、FE 交于M ,连结AM ,过B 作BN ⊥AM 于N ,连结EN ,则∠ENB 为平面AEF 与平面ABC 所成的二面角,AM=2AB ,1223,,tan 232ABEB BN AB Rt EBN ENB BN AB ∴=∠===在中 三.解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤 (17)(本小题满分l0分)(注意:在试题卷上作答无效.........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知A —C =90°,a+c=2b ,求C. 解:由正弦定理得2sin ,2sin ,2sin a R A b R B c R C ===,由22sin 2sin 22sin a c b R A R C R B +=+=得,即sin sin 2A C B +=A+B+C=1800 ,0[180()]B A C ∴=-+,0sin sin 2()]A C A C ∴+=-+即sin sin 2)A C A C ∴+=+,由A-C=900 得A=900+C00sin(90)sin 2sin(902)c c c ∴++=+ 即00cos sin 22sin(45)cos(45)c c c c +=++00022sin(45)22sin(45)cos(45)c c c +=++ 01cos(45)2c ∴+=0456015c c ∴+=∴=(18)(本小题满分12分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l 种的概率;(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。

2011年普通高等学校招生全国统一考试(全国大纲卷)数学试题 (理科)(解析版)

2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --=( ) (A )2i - (B )i - (C )i (D )2i 【答案】B【命题意图】本题主要考查复数的运算. 【解析】1zz z --=|z|21z --=2-(1+i)-1=i -.(2)函数0)y x =≥的反函数为( )(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.(3)下面四个条件中,使a b >成立的充分而不必要的条件是( )(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( ) (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二:221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性及三角函数图像的平移变换. 【解析】由题意得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(6)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足.若2,1ABAC BD ===,则D 到平面ABC 的距离等于(A)3(B)3 (C)3【答案】C【命题意图】本题主要考查空间点到平面距离的求法. 【解析】如图,过D 作DE BC ⊥,垂足为E ,因为l αβ--是直二面角AC l ⊥,∴AC ⊥平面β,∴AC DE ⊥,BC DE ⊥,AC BC C =I ,∴DE ⊥平面ABC ,故DE 的长为点D到平面ABC 的距离.在Rt BCD∆中,由等面积法得3BD CD DE BC ⨯===.(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】分两类:一是取出1本画册,3本集邮册,此时赠送方法有144C =种;二是取出2本画册,2本集邮册,此时赠送方法有246C =种.故赠送方法共有10种.(8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B)12 (C)23(D)1 【答案】A【命题意图】本题主要考查利用导数求切线方程和三角形面积公式. 【解析】'22,xy e-=-∴曲线21x y e -=+在点(0,2)处的切线的斜率2,k =-故切线方程是22y x =-+,在直角坐标系中作出示意图得围成的三角形的三个顶点分别为(0,0)、(1,0)、(23,23),∴三角形的面积是1211233S =⨯⨯=.(9)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5(2f -=(A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()(2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-.(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=(A)45(B)35 (C)35- (D)45-【答案】D【命题意图】本题主要考查直线与抛物线的位置关系,余弦定理的应用.【解析】联立2424y x y x ⎧=⎨=-⎩消去y 得2540x x -+=,解得1,4x x ==,不妨设A 点在x 轴的上方,于是A ,B 两点的坐标分别为(4,4),(1,2-),又(1,0)F ,可求得5,2AB AF BF ===.在ABF V 中,由余弦定理2224cos 25AF BF AB AFB AF BF +-∠==-⨯⨯.(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M的距离OM =在Rt OMN ∆中,30OMN ︒∠=,∴12ON OM ==故圆N的半径r =∴圆N 的面积为213S r ππ==.(12)设向量a r ,b r ,c r 满足||||1a b ==r r ,12a b =-r r g,,60a c b c ︒<-->=r r r r ,则||c r 的最大值等于(A)21 【答案】A圆的条件及数形结合的思想.【解析】如图,设,,AB a AD b AC c ===u u u r r u u u r r u u u r r,则120,60BAD BCD ︒︒∠=∠=,180BAD BCD ︒∠+∠=,∴,,,A B C D 四点共圆,当AC 为圆的直径时,||c r最大,最大值为2.绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2011年普通高等学校招生全国统一考试
理科数学(必修+选修II )
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:
如果事件A 、B 互斥,那么 球的表面积公式
()()()P A B P A P B +=+ 24S R π=
如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式
如果事件A 在一次试验中发生的概率是p ,那么 334
V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()(1)
(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1) 复数i z +=1,z 为z 的共轭复数,则=--1z z z
(A) i 2- (B) i - (C) i (D) i 2
(2) 设函数)0(2≥=x x y 的反函数为 (A) )(42R x x y ∈= (B) )0(4
2
≥=x x y (C) )(42R x x y ∈= (D) )0(42≥=x x y
(3) 下面四个条件中,使b a >成立的充分而不必要的条件是
(A) 1+>b a (B) 1->b a (C) 22b a > (D) 33b a >
(4)设n S 为等差数列}{n a 的前n 项和,若11=a ,公差21=d ,242=-+k k S S ,则k=
(A) 8 (B) 7 (C) 6 (D) 5
(5) 设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移
3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A) 3
1 (B) 3 (C) 6 (D) 9 (6) 已知直二面角βα--l ,点α∈A ,AC ⊥l ,C 为垂足,点β∈B , BD ⊥l,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A) 3
2 (B) 3
3 (C)3
6 (D) 1 (7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不用的赠送方法共有
(A) 4种 (B) 10种 (C) 18种 (D) 20种
(8) 曲线12+=-x e y 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为 (A)
31 (B) 21 (C) 3
2 (D) 1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=则=-)2
5(f (A) 21- (B) 41- (C) 41 (D) 21 (10)已知抛物线C :x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=AFB cos (A) 54 (B) 53 (C) 53- (D) 5
4- (11)已知平面α截一球面得圆M ,过圆心M 且与α成o 60二面角的平面β截该球面得圆N ,
若该球面的半径为4,则圆M 的面积为π4,则圆N 的面积为
(A) π7 (B) π9 (C) π11 (D)π13
(12)设向量c b a ,,满足1||||==b a ,2
1-=∙b a ,o c b c a 60,>=--<则||c 的最大值等于 (A) 2 (B) 3 (C) 2 (D) 1
绝密★启用前
2010年普通高等学校招生全国统一考试
理科数学(必修+选修II )
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效.........。

3.第Ⅱ卷共l0小题,共90分。

二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........
) (13) 20)1(x -的二项展开式中,x 的系数与9x 的系数之差为
(14) 已知)2(ππ
α∈,5
5sin =α,则=α2tan (15) 已知F 1、F 2分别为双曲线127
9:2
2=-y x C 的左、右焦点,点C A ∈,点M 的坐标为 (2,0),AM 为∠F 1AF 2的平分线,则=||2AF
(16) 已知E 、F 分别在正方体ABCD-A 1B 1C 1D 1的棱BB 1、CC 1上,且B 1E=2EB ,CF=2FC 1,
则面AEF 与面ABC 所成的二面角的正切值等于
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效............
) △ABC 的内角A 、B 、C 的对边分别为c b a 、、,已知o C A 90=-,b c a 2=+ 求C;
(18)(本小题满分12分)(注意:在试题卷上作答无效.........).
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。

(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;;
(Ⅱ)求该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望。

(19)(本小题满分12分)(注意:在试题卷上作答无效.........
) 如图,四棱锥S-ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.
(Ⅰ)证明:SD ⊥平面SAB
(Ⅱ)求AB 与平面SBC 所成的角的大小。

(20)(本小题满分12分)(注意:在试题卷上作答无效.........

设数列}{n a 满足01=a 且
111111=---+n n a a , (Ⅰ) 求}{n a 的通项公式
(Ⅱ)设n a b n n 1
1+-=,记∑==n k k n b
S 1,证明:1<n S
(21)(本小题满分12分)(注意:在试题卷上作答无效.........
) 已知O 为坐标原点,F 为椭圆C :122
2
=+y x 在y 轴正半轴上的焦点,过F 且斜率为2-
的直线l 与C 交于A 、B 两点,点P 满足0=++OP OB A O
(Ⅰ)证明:点P 在C 上;
(Ⅱ)设点P 关于点O 的对称点Q ,证明:A 、P 、B 、Q 四点在同一圆上。

(22)(本小题满分12分)(注意:在试题卷上作答无效.........
) (Ⅰ)设函数2
2)1ln()(+-+=x x x x f ,证明:当0>x 时,0)(>x f ; (Ⅱ) 从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得得20个号码互不相同的概率为p ,证明:2191)109(
e p <<。

相关文档
最新文档