跳频和扩频通信
精编扩频通信的基本原理(直接序列扩频、跳频等)资料

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。
通信系统的有效性,是指通信系统传输信息效率的高低。
这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。
在模拟通信系统中,多路复用技术可提高系统的有效性。
显然,信道复用程度越高,系统传输信息的有效性就越好。
在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。
通信系统的可靠性,是指通信系统可靠地传输信息。
由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。
可靠性就是用来衡量收到信息与发出信息的符合程度。
因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。
在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。
在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。
扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。
近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。
扩频通信是扩展频谱通信的简称。
我们知道,频谱是电信号的频域描述。
承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。
信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。
频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。
扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。
跳频及其自适应技术

基本过程
主要特点
1、抗干扰能力强,特别是抗窄带干扰能力强。宽带干扰可为阻塞干扰。
干 扰 由 于 不 知 道 扩 频 伪 随 机 码
主要特点
2、可检性低(LPI---Low Probability of Intercept),不容易被侦破,对 各种窄带通信系统的干扰很小 。
8、以后在卫星通信,数据传输,定位,授时系统中都有使用。今后, 在卫星通信,移动通信系统,定位系统等领域将会得到进一步广泛使用。
SC-CDMA、MC-CDMA,单天线系统,多天线系统。
历史总结
产生与发展基于两方面: •信息战-信息对抗-电子对抗-通信对抗 •提高频带利用率
信息战的内容及特点
信息战的内容
支撑; ▪ 为进入军事通信领域提供一些入门知识。
通信抗干扰性能
信号隐蔽性
信号鲁棒性
➢ 无线信号的隐蔽性
➢ 用干扰容限
单位面积天线,在单位带宽 ➢ 三个层次的条件,即:
中所能截获的信号功率
a、设备性能。如:比特差错率、语
➢ 信号方式的隐蔽性
音质量、同步及信令性能、网络性能
双工方式、调制方式、多路 方式、编码方式、同步方式
有线资源的带宽是无限的 无线资源的带宽是有限的
窄带系统 (1)拓展高频段 (2)压缩信息带宽 (3)高性能的编码与调制技术
宽带系统 扩频技术或CDMA技术
复用与多址 单载波与多载波 单天线与多天线
基本概念(扩频、扩谱、展频、展谱)
扩展频谱技术是用比信号带宽宽得多的频带宽度来传输 信息的技术。扩频通信是将待传送的信息数据用伪随机编 码(扩频序列:Spread Sequence)调制,实现频谱扩展后 再传输;接收端则采用相同的编码进行解调及相关处理, 恢复原始信息数据。是一种宽带的编码传输系统。 扩频通信方式与常规的窄带通信方式的区别:
直扩与跳频比较

1.问题提出:直接序列扩频与跳频特性比较2.相关资料查询:直接序列扩频系统:直接序列扩频系统(DS)又称为伪噪声系统(PN),是将要发送的信息用伪随机序列扩展到一个很宽的频带上去,在接收端,用与发送端扩展用的相同的伪随机序列对接收到的扩频信号进行相关处理,恢复出原来的信号。
图2 -1 直接序列扩频原理图跳频:跳频系统(FH)的载频受一伪随机码的控制,不断地、随机地跳变,可看成载频按照一定规律变化的多频频移键控。
图2-2 跳频原理图3.特性比较:扩频方式优点缺点DS 1.通信隐蔽性好2.信号易产生,易实现数字加密3.抗多径干扰1.同步要求严格2.“远-近”特性不好FH 1.频谱利用率高2.有良好的“远-近”特性3.快跳可避免瞄准干扰1.信号隐蔽性差2.快跳频率合成器难做4.详细分析:直接序列扩频与跳频是通信中用得最多的扩频方式,由于这两种系统抗干扰机理不同,它们有各自不同的长处与不足,现就两种系统进行详细的分析:直接序列扩频的优点:1.通信隐蔽性好:由于信号经过扩频调制后频谱被大大扩展,使信号的功率谱密度大大降低,接收端接收到的信号谱密度比接收机噪声低,即信号完全淹没在噪声中,这样对其他同频段电台的接收不会形成干扰,信号也就不容易被发现,进一步检测出信号就更难,所以有非常高的隐蔽性。
2.信号易产生,易实现数字加密:直接序列扩频是对PN码的处理,PN码是一种周期码,可以预先确定并可重复地产生和复制,具有类似白噪声随机特性的二进制码序列,PN码序列中0,1出现的概率各为1\2,且在码长达到一定程度时会从其第一位开始循环,具有一定的规律性,所以实现起来比较容易。
3.抗多径干扰:直接序列扩频系统要用伪随机码的相关接收,只要多径时延大于一个伪随机码的切普宽度,这种多径不会对直扩系统形成干扰,甚至还可以用这些多径能量来提高系统性能。
直接序列扩频的缺点:1.同步要求严格:由于直接扩频的伪随机码速率比跳频伪随机码速率要高很多,而且码也长得多,因此,直扩对同步精度要求高。
扩频通信第二章

10
工程上常以分贝(dB)表示, Gp=10 lg(W/ΔF)
除了系统信噪比改善程度之外, 扩频系统的其他一 些性能也大都与Gp有关。因此, 处理增益是扩频系统的 一个重要性能指标。 一般来讲, 处理增益值越大, 系统 性能越好。
11
扩频通信的性能指标
2. 抗干扰容限 抗干扰容限是指扩频通信系统在正常工作条件下 可以接收的最小信噪比, 即它反映的是系统对于噪声的 容忍情况,
35
2.4 频率跳变(FH, Frequency Hopping)技术
1) 所谓跳频, 简单来讲, 就是用一定的码序列进行选择的 多频率频移键控。具体来讲, 跳频就是给载波分配一个固定 的宽频段并且把这个宽频段分成若干个频率间隙(称为频道 或频隙), 然后用扩频码序列去进行频移键控调制, 使载波频 率在这个固定的频段中不断地发生跳变。由于这个跳变的 频段范围远大于要传送信息所占的频谱宽度, 故跳频技术也 属于扩频。
18
CDMA扩频通信的实现方法
按照频谱扩展的方式不同, CDMA扩频通信系统可以 分为基本CDMA和复合CDMA两种。 其中, 基本CDMA主 要包括直接序列扩频(DS)、跳频扩频(FH)和跳时扩频(TH) 三种方式。复合CDMA包括DS/FH、 DS/TH、 FH/TH等, 如图所示。
19
CDMA扩频调制方式 1) 信号的频谱被展宽了 2) 采用扩频码序列调制的方式来展宽信号频
谱 3)
6
实现条件 由上述定义可知, 扩频技术必须满足两个基本要求: (1) 所传信号的带宽必须远大于原有信息所需的最小带宽; (2) 所产生的射频信号的带宽与原有信息无关。
7
扩频通信的理论基础
扩展频谱以换取对信噪比要求的降低, 正是扩频通信的 重要特点, 并由此为扩频通信的应用奠定了基础。
跳频扩频原理

跳频扩频原理跳频扩频技术(FHSS/DS)是一种广泛应用于近几十年来的人工无线通信中的数字信号传输技术。
它通过将信号转化为更宽带的带宽,并采用无线电频率跳跃技术来分散信号,从而达到抵御干扰和窃听攻击的目的。
跳频扩频技术被广泛应用于军事、民用、移动通信、工业自动化等领域,成为许多数字通信系统中最常见的技术之一。
跳频扩频技术有两种基本形式:扩频和跳频,其中扩频是将数据信息转换成一个更宽的频带,通过码序列进行编码分配的方式进行传输,达到了抗干扰和保密的目的。
而跳频技术则是将数据信息按照规定的频率顺序按照一定的规律进行跳变传输,从而使得频率难以被干扰和窃听攻击所感知。
由此可见,跳频扩频技术不仅具有高质量的信号传输能力,而且还具有防干扰和保密性的重要特点。
跳频扩频技术在数字通信系统中的原理,并不复杂,实现起来也相对简单。
跳频扩频技术的基本原理是,通过将数据信号在较短的时间内传输到较大的频带上,将其扩展成一个更宽的频带,在信号发送过程中将其随机和跳跃的变化频率进行传输,以达到正常通信数据传输的目的。
跳频扩频技术的系统中,数据经过多级编码和解码,最终被解码为原始数据信息。
在随机跳频频段的过程中,信号的转换和跳跃也对抗了干扰和窃听攻击。
1.在发送端,数据信号按照一定的规律通过加扰和功率控制经过扩频同步器,将原来窄带的信号转化为宽带信号。
2.在跳频序列生成器中,随机生成一个跳频序列,然后将其与数据信号进行按位异或运算,得到加密的数据信号。
3.通过根据规律时钟定时跳频,将加密后的信号发送出去。
4.当接收方收到加密的信号时,通过解密器进行解密,将加密的数据信号转化为原始数据信号。
跳频扩频技术是一种数字通信系统中重要的信号传输技术,具有高质量、高速率、防干扰和保密性等特点。
通过随机跳跃频率和扩频码的组合,可以实现防窃听、反干扰和无线电频率资源共享的目的。
在军用、民用和通信领域中,跳频扩频技术已成为基本的数字信号传输技术,发挥着越来越重要的作用,将随着科技的发展和技术的进步不断完善和逐步广泛应用。
跳频扩频通信系统设计方案及simulink仿真

个人收集整理仅供参考学习通信仿真技术实验报告一、实验项目名称:跳频扩频通信系统地设计及simulink仿真二、有关扩频系统地背景介绍扩展频谱(Spread Spectrum,SS)通信系统广泛应用于军事通信、移动通信、雷达、导航、测距、定位等领域.它利用频谱扩展技术将需要发送地信息信号扩展到一个很宽地频带上,使射频带宽比信息带宽宽得多,然后再发送出去.在接收端则通常通过相干解扩将信号重构出来.这种通信系统以占用比原始信号带宽宽得多地射频带宽为代价,来获得更强地抗干扰能力和更高地频谱利用率.b5E2RGbCAP 在通信系统中采用扩频技术有许多优点:比如具有较强地抗干扰能力;具有较强地隐蔽性和抗测向、抗侦察能力;具有优良地多址接入能力,是码分多址地关键技术;具有很强地抗频率选择性衰落地能力;抗多径干扰;可进行高分辨率地测向、定位等等.p1EanqFDPw按照扩频方式地不同,扩频通信系统主要可分为:直接序列扩展频谱系统(Direct Sequence Spread Spectrum,DSSS)跳频系统(Frequency Hopping,FH)跳时系统(Time Hopping,TH).DXDiTa9E3d跳频是扩频地另外一种方式.在跳频系统中,调制载波频率受伪随机码地控制,不断地以伪随机规律跳变,以躲避点干扰和窄频干扰.跳频系统可以看成是载波频率按照指定地伪随机规则跳变地多元频移键控(M-FSK)系统.根据跳频RRbps)与传输信息速率(速率()之间地关系,可以将跳频系统分为慢跳/s ah R?R),则为快跳频,反之为慢跳频.跳频系统和快跳频系统:若(RTCrpUDGiTah三、实验目地:本实验地目地是通过搭建跳频扩频系统地模型,了解跳频扩频通信系统地原理,并掌握simulink地操作使用方法.5PCzVD7HxA1 / 8个人收集整理仅供参考学习四、实验内容跳频系统是一种瞬时窄带系统.在接收机端,本地恢复载波也受伪随机码地控制,并保持与发送地跳频变化规律一致,这样,以频率跳变地本地恢复载波对接收信号进行变频(相乘)后,就能得到解扩(解跳频)信号,然后对解扩后地信号再进行相应地解调即可恢复数据.由于跳频系统中载频不断改变,在接收机中跟踪载波相位较为困难,所以跳频系统中一般不采用需要相干方式解调地调制方式,如PSK等,而是采用一些可非相干解调地调制方式,最常用地是FSK调制.jLBHrnAILg 设数据流波形为a(t),数据速率为,其取值为双极性地(1),进行FSKR?a调制(频偏设为)后输出信号地等效低通信号为b(t),有f?xHAQX74J0X?a(t2)?fj e?)b(t设伪随机序列控制下地瞬时频率取值为f(t),随着时间改变,f(t)取值在频率点,i=1,.......N上改变.跳频载波信号地等效低通信号为c(t)设为:f LDAYtRyKfEe)?c(ti?f(tj2)跳频就是以跳频载波对数据调制信号地频率搬移过程,跳频输出地等效低通d(t)是:信号?(a(t)?f?f(j2t))e?)t?c(t)d(t)?b(在接收端,以同步PN码控制地频率伪随机变化地载波(其等效低通信号为*)和接收信号混频(相乘)进行解跳频,得到解扩地共轭信号发送载波c(t))t(c^)tb(为输出信号Zzz6ZB2Ltk*)(tt))?c()?nt)?J(?b(t)(d(t**)ct(J)?(t))?(?dt)?c)(t?(n(t???f(2t)?jt))?2jf(t)?tj2(a()?ff(e?et())?)(?n?e(t?J??f(t2?)t(a()?fj)j2e)((? nte???t(J))2 / 8个人收集整理仅供参考学习*,以同步t)分别表示噪声和干扰信号,并且t)和J(其中,n(1)?(tc(t)c跳变地本地恢复载波对接收信号混频后,就得到了解调后地窄带信号b(t)和宽带地噪声以及干扰信号.同样,以窄带滤波器即可滤除大部分噪声和干扰,达到抗干扰地目地.dvzfvkwMI1五、实验记录以及结果分析设数据速率为100bps,数据调制采用2FSK方式,频率间隔为100Hz.跳频频点为32个,调频频率间隔为50Hz,调频速率为50跳/S.设以伪随机整数控制跳频地载频,接收机中解跳所用地本地恢复载波理想地跟踪了发送载波频率变化.新到设为AWGN信道.rqyn14ZNXI该系统属于一个慢跳频扩频系统.跳频输出信号带宽约为Hz,1600?50?32其等效低通信号频率变化范围为-800——800Hz.为了使仿真观测范围达到-2000——2000Hz,信号采样率应设置为4000次/s,所以每一个传输数据码元地仿真采样点数为40点.跳频速率为50跳/s,故每跳持续时间为0.02s,对应地采样点数为80点.伪随机码采用m序列,也可采用Gold序列.将伪随机码中每5bit转换为一个0——31地随机整数,以控制跳频载波地输出频率.由于假设接收机伪随机码是理想同步地,且信道没有时延,因此在模型中可直接用发送方地伪随机码作为接收机恢复地伪随机序列.EmxvxOtOco3 / 8个人收集整理仅供参考学习跳频扩频传输系统地仿真模型图1图2 PN序列发生子系统Bernoulli Binary .二进制信源数据采用根据以上分析建立传输测试模型M-FSK Modulator Baseband0.01s.然后用Generator产生,模块中采样时间设为,每个100Hz2模块完成2FSK调制,其参数设置为:调制元数为,频率间隔为序PN地信号.由次符号地采样点数为40,这样调制输出地将是采样率为4000/s产生,子系统中,0-31列转换得到地随机整数由子系统Subsystem PN Sequence(即5个样值并设置按帧输出,PN序列模块地采样时间间隔设置为1/250s,每帧5将每将帧格式转换为基于取样地信号后,个码片),用Bit to Integer Converter5输出随机整数.码片转换为一个随机整数输出,作为跳频载波频率点地控制信号M-FSK Modulator Baseband1.跳频器采用,等于跳频速率地速率是250/5=50个/s,每50完成,其设置参数是:调制元数32,输入数据类型为整型,频率间隔为地503280符号地采样点数为,这样该模块将输出在个频点上跳频速率为次/s4 / 8个人收集整理仅供参考学习伪随机跳频载波信号.它是复信号,采样率与2FSK信息调制地输出信号相同,为4000次/s.信息调制输出和跳频载波进行相乘以实现跳频扩频.SixE2yXPq5扩频输出经过AWGN信道并加入一个150Hz地单频正弦波作为干扰源.在接收端,本地跳频载波是发送跳频载波信号地共轭信号,以相乘完成解跳后,用M-FSK Demodulator Baseband完成2FSK信息解跳,其设置与信息调制器对应.与发送数据相比,解调输出数据将会延迟一个码元间隔时间(0.01s).系统中可对比观察收发数据波形,测试误码率,并用频谱仪观测跳频,信道传输以及解跳,解调前后地信号频谱,如图3-5.6ewMyirQFL图3跳频前信号频谱5 / 8个人收集整理仅供参考学习图4 跳频后信号频谱图5调制波形和解调波形设置AWGN信道地噪声方差为1,单频正弦波幅度为1,执行仿真后则可得到各关键传输点地信号频谱.可以看到,2FSK信息调制输出地频谱频率间隔为100Hz,跳频扩频后地信号频谱中存在32个调频频点,间隔50Hz扩频带宽为1600Hz.kavU42VRUs六、参考文献[1]王玉德,王金新.基于MATLAB地跳频扩频通信系统地仿真研究[J],通信技术,2012年第06期(43):21-23y6v3ALoS89[2]李德鑫,高宪军.基于simulink地GMSK跳频通信系统设计[J],吉林大学学报,2007年第2期(25):391-397M2ub6vSTnP[3]佘明辉,佘轮.基于扩频技术地跳频扩频分析[J],电子技术,2012.4:16-18[4]吴丹,王得成.跳频扩频数字通信系统地建模与仿真[J],煤炭技术,2012年4期(31):239-2400YujCfmUCw[5]王靖琰.跳频扩频通信系统地Matlab仿真和分析[J],中南大学信息与通信工程系410008[6]樊昌信.通信原理[M].北京:国防工业出版社,20046 / 8仅供参考学习个人收集整理版权申明.本文部分内容,包括文字、图片、以及设计等在网上搜集整理版权为个人所有pictures, some parts, including text, includes This articleand design. Copyright is personal ownership.eUts8ZQVRd以及其用户可将本文地内容或服务用于个人学习、研究或欣赏,但同时应遵守著作权法及其他相关法律他非商业性或非盈利性用途,除此以外,将本地规定,不得侵犯本网站及相关权利人地合法权利.须征得本人及相关权利人地书面文任何内容或服务用于其他用途时,.许可,并支付报酬sQsAEJkW5TUsers may use the contents or services of this articlefor personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate addition, obligees. In relevant and this rights of website its when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.GMsIasNXkA转载或引用本文内容必须是以新闻性或资料性公共免费信息为7 / 8个人收集整理仅供参考学习使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,.并自负版权等法律责任TIrRGchYzgReproduction or quotation of the content of this article news of use for good-faith reasonable must be and citation the or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.7EqZcWLZNX8 / 8。
扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。
通信系统的有效性,是指通信系统传输信息效率的高低。
这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。
在模拟通信系统中,多路复用技术可提高系统的有效性。
显然,信道复用程度越高,系统传输信息的有效性就越好。
在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。
通信系统的可靠性,是指通信系统可靠地传输信息。
由于信息在传输过程中受到干扰,收到的信息和发出的信息并不完全相同。
可靠性就是用来衡量收到信息和发出信息的符合程度。
因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。
在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。
在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。
扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了使用。
近年来,扩展频谱通信技术的理论和使用发展非常迅速,在民用通信系统中也得到了广泛的使用。
扩频通信是扩展频谱通信的简称。
我们知道,频谱是电信号的频域描述。
承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。
信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。
频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。
扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(和待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。
扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。
通信系统的有效性,是指通信系统传输信息效率的高低。
这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。
在模拟通信系统中,多路复用技术可提高系统的有效性。
显然,信道复用程度越高,系统传输信息的有效性就越好。
在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。
通信系统的可靠性,是指通信系统可靠地传输信息。
由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。
可靠性就是用来衡量收到信息与发出信息的符合程度。
因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。
在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。
在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。
扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。
近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。
扩频通信是扩展频谱通信的简称。
我们知道,频谱是电信号的频域描述。
承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。
信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。
频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。
扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跳频通信和扩频通信跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。
当70年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。
到了80年代,世界各国军队普遍装备跳频电台。
这十年是跳频电台发展速度最快的十年。
广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。
90年代,跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。
业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。
跳频通信是如此的神奇,以致于自其问世至今的短短30年间,倍受世界各国,特别是几大军事强国的青睐。
2 跳频通信的基本概念2.1 定义我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。
这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。
只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。
我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。
因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。
2.2 同步条件(通信条件)与定频通信相比,跳频通信的载波频率一直在跳变。
工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。
也就是说,跳频通信时,收发双方必须采用同一种跳频图案。
跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。
三个条件缺一不可,否则无法实现跳频通信。
3 跳频通信的主要特点3.1 抗干扰性强跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。
一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。
另一方面,跳变的频率可以达到成千上万个。
因此,敌方若在某一频率上或某几个频率上施放长时间的干扰也无济于事。
另外,跳频频率受伪随机码控制而不断跳变,在每一个频率的驻留时间内,所占信道的带宽是很窄的。
由于频率跳变的速率非常快,因而从宏观上看,跳频系统又是个宽带系统,即扩展了频谱。
事实上,跳频的带宽就是频率的数目与每个频率所占信道带宽的乘积。
由扩频通信理论可知,扩展频谱的好处可以换取更好的信噪比。
也就是说,如果扩展了频带,就可以在较低的信噪比的情况下,照样可用相同的信息速率、任意小的差错概率来传递信息,甚至在信号被噪声完全湮没的情况下,也能保持可靠的通信。
由此可见,抗干扰性强是跳频通信最突出的优点。
3.2 频谱利用率高人们早已认识到频谱资源十分宝贵,因此,提高频谱利用率也是现代通信的基本要求之一。
跳频通信可以利用不同的跳频图案或时钟,在一定带宽内容纳多个跳频通信系统同时工作,达到频谱资源共享的目的,从而大大提高频谱利用率。
3.3 易于实现码分多址多址通信是指许多用户组成一个通信网,网内任何两个用户都可达成通信,并且多对用户同时通信时又互不干扰。
应用跳频通信可很容易地组成这样一个多址通信网。
网内各用户都被赋于一个互不相同的地址码,这个地址码恰似电话号码。
每个用户只能收到其他用户按其地址码发来的信号才可判别出是有用信号,对其他用户发来的信号,则不会被解调出来。
3.4 兼容性对于跳频通信而言,兼容的含义是指一个跳频通信系统可以与一个不跳频的窄带通信系统在定频上建立通信。
显而易见,兼容的好处在于,先进的跳频电台可与常规的定频电台互通。
这在跳频电台的研制上比较容易实现——只要将常规电台加装跳频模块即可变成跳频电台。
显然,跳频模块是整个跳频电台的关键部件。
4 跳频电台的组网4.1组网过程组网前,网内所有跳频电台均处于搜索扫描状态,当主台(中心台)按下收发转换开关(PPT键)时,主台首先发出同步信号,该同步信号被网内其他属台正确接收后,各属台先自动校正本台的时钟,再将自己的跳速自动跟踪到主台的跳速上,尔后建立通信联络。
通信完毕,网内所有电台再次回到搜索扫描状态,以等待下一次同步组网。
为了使网内电台仅在本网中搜索扫描,网内各台需在组网前设置呼叫参数。
这样,网内电台只有当监听到对本网或本台的呼叫时才进入跳频建立状态,也就是说,属台只与呼叫本网网号的主台同步。
4.2 组网方法4.2.1 组网方法分类跳频电台的组网方法,根据跳频图案分为正交和非正交两种。
如果多个网所用的跳频图案在时域上不重叠(形成正交),则组成的网络称为正交跳频网。
如果多个网所用的跳频图案在时域上发生重叠,则称为非正交跳频网。
此外,根据跳频网的同步方式,跳频电台的组网方法又有同步网和异步网之分。
正交跳频网为了使跳频图案不发生重叠,要求全网做到严格定时,故一般采用同步网方式组网。
从严格意义上讲,正交跳频网是同步正交跳频网,一般简称为同步网。
非正交跳频网的跳频图案可能会发生重叠,即网与网之间在某一时刻跳频频率可能会发生碰撞(重合),因而可能会产生网间干扰。
不过,这种网间干扰通过精心选择跳频图案和采用异步组网方式,是完全可以减少到最低限度的。
因此,非正交跳频网常采用异步组网方式。
异步非正交跳频网一般简称为异步网。
显然,跳频电台的组网比定频电台的组网复杂得多。
4.2.2 同步组网①同步组网方法所有的网都使用同一张频率表,但每个网的频率秩序不同;各网在统一的时钟下实施同步跳频。
例如,某跳频电台的跳频频率表为f1、f2、f3、f4 四个频率,若要组织四个跳频网,则组织方法为:1#网按f1、f2、f3、f4的秩序跳频;2#网按f2、f3、f4 、f1的秩序跳频;3#网按f3、f4 、f1、f2的秩序跳频;4#网按f4、f1、f2、f3的秩序跳频。
此外,为了使某一瞬间不发生频率碰撞,四个网还必须在统一的时钟下实施跳频通信。
这样,在某一瞬间,仅仅存在着不同秩序但又不重复的四个频率集。
②同步组网的优缺点同步组网的优点显而易见:一是频率利用率高。
各网都使用同一张频率表(但频率秩序不同)。
理论上讲,有多少个跳频频率就可组成多少个正交跳频通信网。
二是不存在网间干扰。
某一时刻,网间不会发生频率重叠,因而不会发生网与网之间的干扰。
然而,同步组网方法的缺点也是十分突出的。
首先,各网必须“步调一致”,否则,只要有一个网不同步,将会造成全网失步而瘫痪。
其次,同步组网方式实际上是将各网组成一个大的群网,建网时需要所有的子网(上例中的1#至4#网)内的电台都响应同步信号,才能将各电台的跳频图案完全同步起来,因而建网速度比较慢。
再者,同步时间比较长,因为,同步组网方法必须使用统一的密钥,一旦泄密,整个群网的跳频图案都会被暴露无遗。
最后,同步组网时,频率表的选择难度比较大,一旦某个频率受到干扰或效果不佳,则换频必须是全局性的。
有鉴于此,目前使用的跳频电台很少采用同步组网方法。
4.2.3异步组网①异步组网方法非正交网虽然可能会发生网间干扰,但通过精心选择跳频图案和采用异步方式组网,是可以减少网间频率重叠的概率。
常见的组网方法是:*不同的网络应采用不同的跳速或不同的频段。
*若网络和电台的数量不多,则可考虑采用同一频率集组网;反之应考虑采用不同的频率集。
*在同一频率集内若要求每两部或三部电台组成—个网,并且网数不多时,可以通过以下两种手段来组成不同的跳频网:一是通过设置不同的密钥号;二是通过不同的时钟来组网。
②异步组网的优点由于异步组网不需要全网的定时同步,因而可以降低对定时精度的要求,而且在技术上容易实施。
此外,它还有容易建立系统的同步、用户入网方便以及组网灵活等优点,因而得到广泛的应用。
③异步组网的关键采用异步组网的方法,各网按各自的时间和跳频序列工作。
由于各跳频网之间没有统一的时间标准,因而异步组网时,如果多网采用同一频率表,频率序列虽不同,但也有可能发生频率碰撞。
显然,这种频率碰撞的机会是随着网络数量的增加而增多的。
毋庸置疑,异步组网工作时,为了实现多网之间互不干扰,频率表的选择以及频率序列(即密钥)的选择就成了异步组网的关键——这正是跳频通信在应用上的主要研究方向。
5 跳频通信的应用与发展跳频通信的发展历程可概括为:40年代末理论先导,60年代研制攻关,70年代末产品问世,80年代逐步推广,90年代广泛应用,21世纪飞速发展。
诚然,跳频通信是由电子对抗而首先应用于军事领域的。
但是,它在民用通信的应用也越来越受到人们的密切关注。
目前,跳频通信的理论和技术已很成熟。
5.1 跳频通信在军事通信中的应用与发展跳频通信自问世以来之所以如此迅猛发展,这主要得益于跳频通信本身所具备的突出优点。
这些优点又能符合现代信息战条件下电子对抗的要求。
海湾战争表明,跳频电台在通信中发挥了突出的作用。
目前,跳频系统的跳速维持在如下水平:短波电台——100跳/秒,超短波电台——500跳/秒。
但每秒千跳以上的跳频电台也已问世。
可以乐观地预测,到了21世纪,跳频电台的跳速可发展到每秒几万跳,甚至每秒百万跳。
跳频带宽一般可工作到全频段。
跳频频率集虽然目前已达到300个的水平,但上万个频率集的跳频系统也已研制出来。
跳频系统的同步时间目前已达到几百毫秒的数量级,今后必定越来越短。
因为,同步建立时间越短,信息被敌方发现、截获和测向的概率就越低,通信的隐蔽性越好.当然,通信干扰与反干扰是一对矛盾,它们互相制约,但又互相促进发展。
跳频通信并不惧怕单频干扰和多频干扰,但跟踪式干扰是跳频通信的“天敌”。
跟踪式干扰的步骤是:侦听、处理、施放干扰。
当本方截获到敌方的跳频图案后,迅速地以同样的跳频图案施放干扰,由于两个跳频图案的矢量迭加必然带来接收方的一片盲然,致使敌方无法达成正常的跳频通信。
据报载,国外已有能同时监视80个相邻信道,扫描搜索速度为80,000信道/秒的侦察接收机问世,这种侦察接收机的截获跳频图案的概率几乎达到100%。
这是迄今为止对付跳频通信最理想的反干扰手段。
为了对付跟踪式干扰,人们总是希望尽可能缩短跳频信号的驻留时间,使侦察接收机无可乘之机。
这就要求跳频系统的跳速尽可能快。
基于这方面考虑,目前世界各国竞先研制快速跳频通信装备。
另外,跳频系统的技术发展又受到元器件、编解码技术等因素的制约。
目前,跳频速率尚未达到每秒5000跳。
若达到这个水平,则目前的跟踪式干扰机便无能为力了。
为此,跳频通信将向以下两个方面发展:一个是跳频与直接序列扩频混合使用方式,另一个是跳频与直接序列扩频、跳时三者混合使用方式。
这样可以优势互补,共同发展。
5.2 跳频通信在民用通信中的应用与发展90年代以来,跳频通信在军事通信领域的应用中取得巨大成就的基础上,又开始向民用通信领域进军。