地下结构工程第三章-深基坑工程.

合集下载

深基坑工程

深基坑工程
19
绪论
第三节
基坑工程的发展
基坑支护发展过程分类
20
绪论 基坑工程是综合技术的系统工程 1.基坑工程尚属新兴学科领域 . 2.不确定性因素对基坑工程的影响 .
①由于地基土的非均匀性,设计计算时对土的力学性能参数 由于地基土的非均匀性, 取值可能与实际值存在较大的误差,造成受力分析不准确而误 取值可能与实际值存在较大的误差, 导设计。 导设计。 ②作用外力的不确定性使得结构设计对支扩体系的参数取值具 有不真实性,造成设计受力与现实情况产生误差。 有不真实性,造成设计受力与现实情况产生误差。 变形的不确定性更难以准确确定支护体系在施工中的变形量, ③变形的不确定性更难以准确确定支护体系在施工中的变形量, 增加丁不安全因素。 增加丁不安全因素。 周围环境的突变对基坑的冲击在施工中难以预料和控制。 ④周围环境的突变对基坑的冲击在施工中难以预料和控制。
16
绪论 基坑工程设计 4. 设计时应考虑的荷载: 设计时应考虑的荷载: 土压力、水压力; ①土压力、水压力; 地面超载; ②地面超载; ③影响范围内建(构)筑物产生的侧向荷载; 影响范围内建 构 筑物产生的侧向荷载; 筑物产生的侧向荷载 施工荷载及邻近基础工程施工(如打桩 如打桩、 ④施工荷载及邻近基础工程施工 如打桩、基坑 开挖、降水等)的影响 的影响; 开挖、降水等 的影响; 需要时, ⑤需要时,宜结合工程经验考虑温度影响和混 凝土收缩、 凝土收缩、徐变引起的作用及挖土和支撑施 工的时空效应。 工的时空效应。
3
第一章 绪 论
第一节 基坑工程的分类和特点 基坑工程的几个基本概念? 基坑工程的几个基本概念? 基坑工程的分类? 基坑工程的分类? 基坑工程的特点? 基坑工程的特点?
4
绪论 基本概念 • 建筑基坑: 建筑基坑: 为进行建筑物(包括构筑物 包括构筑物)基础 为进行建筑物 包括构筑物 基础 与地下室的施工所开挖的地面 以下的空间。 以下的空间。 • 基坑侧壁: 基坑侧壁: 构成建筑物基坑围体的某一侧 面。

深基坑工程专项方案内容

深基坑工程专项方案内容

深基坑工程专项方案内容一、项目概述本项目位于城市中心商业区,规划建设一座高大的商业综合楼。

由于地价昂贵,为充分利用土地资源,设计部分地下商业空间,因此需要深基坑工程支持。

基坑深度27m,面积5000平方米。

为确保工程施工安全、质量和进度,需要编制深基坑工程专项方案。

二、工程地质情况项目区域地质条件为石灰岩地层,地下水位较高,地下土壤为含水软黏土,具有一定的可塑性。

局部地质构造较复杂,存在断裂带和隐伏的地下空洞,地基承载力相对较低。

因此,需要充分考虑地质条件和地下水的影响,制定相应的防护措施。

三、现场勘察和检测工程前期进行了充分的现场勘察和地质探测,获取了相关的岩土工程资料和地质勘探报告。

通过对深基坑周边建筑物和地下管线等进行调查,确保在施工过程中不对周边建筑物和地下设施造成破坏和影响。

四、深基坑工程设计由于地质条件较为复杂,需要精确的深基坑设计方案。

设计包括基坑开挖、支护、排水及施工等方面。

为确保工程质量和施工进度,需要对支护结构进行合理的优化设计,采用合适的支护方式,确保支护结构稳定可靠。

同时,结合地质条件和施工实际情况,制定详细的开挖、支护计划。

五、深基坑施工方案深基坑开挖施工需要采取合理的挖土方法,控制挖土速度和深度,避免因挖土过快引起坑壁失稳。

同时,需要合理利用现代化机械设备,提高施工效率并减少对周边环境的影响。

对于基坑支护施工,根据实际情况选择合适的支护结构,进行支护材料和支护工艺的选择。

六、安全措施进行深基坑工程施工时,需要严格遵守相关安全规定,保证安全施工。

施工过程中应加强对异物、漏电、坑壁失稳等安全隐患的排查和整治,提高工程安全系数。

并且对施工人员进行安全教育培训,提高其安全意识和自我保护能力。

七、环境保护在深基坑工程施工过程中,需要采取各项措施保护环境,避免对周边环境和地下水质造成影响。

施工过程中,需要加强现场扬尘、废水处理等环境治理工作,确保施工不对周边环境产生负面影响。

八、质量控制实施深基坑工程施工过程中,需进行严格的质量把控。

基坑施工方案(深基坑)

基坑施工方案(深基坑)

基坑施工方案(深基坑)引言基坑工程是土木工程中一项复杂而关键的工程,尤其是对于深基坑工程而言,更显得挑战与难度倍增。

深基坑工程所涉及的施工方案涉及到地质条件、工程技术、安全管理等多方面因素,只有制定科学合理的施工方案,才能确保基坑工程顺利进行并取得成功。

地质勘察在深基坑工程中,充分了解地质情况是制定施工方案的首要步骤。

对地质条件进行详细勘察,包括地层分布、岩土性质、水文地质等,对于确定基坑支护方式、抗渗措施等至关重要。

基坑支护方案基坑的支护方案是深基坑工程中的重中之重。

根据地质勘察结果和基坑周围环境情况,制定合理的支护方案,如钢支撑、深基槽支护、土钉墙等,保证基坑工程在施工过程中不发生地质灾害。

排水及抗渗深基坑工程通常会涉及到排水及抗渗问题。

制定完善的排水系统,确保基坑内部及周围的水不会对基坑结构造成影响。

同时,采取适当的抗渗措施,保证基坑施工过程中不会出现地下水位突然上涨导致安全事故。

基坑开挖工序基坑开挖是深基坑工程中的核心环节。

通过科学合理的工序规划,顺利地进行基坑开挖,特别要注意顶部悬挑部分的稳定性,以及基坑开挖过程中可能遇到的地质灾害,保证施工安全。

基坑支撑拆除完成基坑施工后,基坑支撑的拆除也是一个重要环节。

要根据基坑周围环境和地质情况,有序、安全地进行基坑支撑拆除,确保基坑结构的稳定性。

安全管理在深基坑工程中,安全永远是第一位的。

建立完善的安全管理制度,加强现场施工人员的安全教育和培训,严格执行安全措施,确保基坑施工过程中的安全。

结语深基坑工程具有复杂性和风险性,制定科学合理的施工方案至关重要。

只有充分了解地质情况、制定合理的支护及排水方案、严格执行安全管理,才能确保深基坑工程安全、顺利地进行。

在今后的工程实践中,我们需要不断总结经验,不断完善施工方案,为深基坑工程的发展贡献力量。

建筑工程深基坑

建筑工程深基坑

建筑工程深基坑
建筑工程深基坑是指在建筑物施工过程中所开挖的较深的地下基坑。

由于深基坑的施工需要考虑到地下水位、土壤力学性质、邻近建筑物的影响等多种因素,因此施工过程中需要采取一系列的安全措施。

首先,对于深基坑的施工要进行充分的勘察和设计,以了解地下水位和土壤的性质。

此外,还需要考虑到基坑开挖对于周边建筑物的影响,需要进行临界条件分析和结构稳定性计算。

其次,施工过程中需要采取有效的支护措施,以确保基坑的稳定性。

常见的支护措施包括钢支撑、深槽、冻结法等。

选择合适的支护方式需要考虑施工周期、地质条件和工程标准等因素。

另外,在深基坑开挖过程中,需要采取相应的排水措施,以降低地下水位对于基坑稳定性的影响。

常见的排水方式包括井点排水和周边抽水排水等。

最后,在施工过程中需要定期监测基坑的变形和应力状态,以及周围建筑物的变化情况。

若发现异常情况,需要及时采取相应的处理措施,以保证施工安全。

总结来说,建筑工程深基坑的施工需要经过充分的勘察和设计,采取合适的支护、排水和监测措施,以确保施工的安全性和稳定性。

这样可以有效预防基坑工程中可能出现的问题,保障工程的顺利进行。

深基坑工程

深基坑工程
• 大量工程实践结果表明,在基坑支护结构中,当结构发生一定位移时, 可按古典土压力理论计算主动土压力和被动土压力。所以,规范目前还 是采用古典土压力理论分布模式。即朗肯、库仑土压力理论 。
2、基坑土压力的分布模式
• 这两种古典土压力理论,已有一二百年的历史。 • 它们都是按极限平衡条件导出的。 • 库仑理论假设土的粘聚力为零,其优点是考虑了墙与土体之间的
深基坑支护的桩墙与经典土压力理论的差异
• 经典土压力理论计算的结果是极限值,而当支护结构处于正常的 工作状态时的接触压力并不是极限值。因此,在基坑工作状态正 常的条件下,实测量测到的变形、土压力、空隙水压力和支撑轴 力等变量在原则上不可能与一般的计算结果完全一致,除非基坑 已经达到极限状态。因此,经典土压力理论对基坑支护土体的塑 性发展过程没有给出解答。目前采用有限元可以进行弹塑性计算 模拟实际工作应力状态时的各种反应,但由于计算参数、边界条 件处理和接触单元的处理等尚未难以模拟实际的工作条件,在实 用化上还有许多工作要做。
• 由开挖面以上的矩形荷载产生的作用在支护结构上的水平荷载可近似 地以(h+q0)Ka表示。
2、基坑土压力的分布模式
q
(3)基坑开挖面以下的水平抗力
• 当基坑外侧水平荷载确定后,欲计算结构
• 朗肯理论假定墙背和填土间无摩擦力,实际上摩擦力是 存在的;
• 土压力理论都假定压力强度随深度呈线性分布,实际是 与墙身位移和变形有关,实验表明它是曲线分布。
深基坑支护的桩墙与挡土墙的差异
• 挡土墙是先筑墙后填土,基坑支护是做好桩墙后再开始基坑开挖, 从静止土压力后再产生主动、被动土压力;
• 挡土墙墙后填土的无黏性土或黏性土是散体,而基坑开挖的土是 天然土,它们是经过多年自然压实后的土,它们的粘聚力有很大 差别;

深基坑

深基坑

建筑基坑的定义为进行建筑物(包括构筑物)基础与地下室的施工所开挖的地面以下空间。

深基坑的概念1、开挖深度超过5m(含5m)的基坑(槽)的土方开挖、支护、降水工程。

2、开挖深度虽未超过5m,但地质条件、周围环境和地下管线复杂,或影响毗邻建筑(构筑)物安全的基坑(槽)的土方开挖、支护、降水工程。

深基坑工程的特点地域性(各地均有其特殊的地质水文条件)个体差异性(平面形状、深度、主体结构的型式等)复杂性(管理环节,周边环境)不确定性(一孔之见、时间及气候因素)基坑安全的涵义♦基坑自身的安全♦周边环境的安全♦“时效安全”深基坑安全等级基坑安全的相关环节建设、勘察、设计、施工、监理、检测、监测及对深基坑工程实施的监督等环节。

基坑支护结构选型基坑支护–为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支档、加固与保护措施。

常见的基坑支护方法1、放坡(坡率法),或辅以坡脚短桩、隔板及其它简易支护,或辅以喷锚网加固2、重力式挡土墙(水泥土墙、加筋水泥土墙)3、土钉墙、复合土钉墙4、逆作拱墙5、挡墙法:悬臂式、内撑式、拉锚式+排桩、钢板桩、地下连续墙、加筋水泥土墙6、排架支撑、重力式排架7、中心岛法8、沉井法9、各种不同方法的组合:拱式组合型等,上放坡下挡墙法等。

3.7 基坑工程土方开挖建筑基坑支护技术规程(JGJ 120-99)3.7.1 基坑开挖应根据支护结构设计、降排水要求,确定开挖方案。

3.7.2 基坑边界周围地面应设排水沟,且应避免漏水、渗水进入坑内;放坡开挖时,应对坡顶、坡面、坡脚采取降排水措施。

3.7.3 基坑周边严禁超堆荷载。

3.7.4 软土基坑必须分层均衡开挖,层高不宜超过1m。

3.7.5 基坑开挖过程中,应采取措施防止碰撞支护结构、工程桩或扰动基底原状土。

3.7.6 发生异常情况时,应立即停止挖土,并应立即查清原因和采取措施,方能继续挖土。

3.7.7 开挖至坑底标高后坑底应及时满封闭并进行基础工程施工。

深基坑(地下三层)土方开挖方案

深基坑(地下三层)土方开挖方案
(3)在基坑开挖前,要根据施工图纸、基坑开挖放坡坡度及核准的轴线桩测放基坑开挖上下口的白灰线。
(4)对场边道路及场内的临时设施做好定位标记,以备观测。
(5)基坑开挖前应做好技术交底,使所有参加施工的人员对施工要求和步骤都心中有数,对施工人员还要进行必要的安全教育。
(6)在基坑开挖前,基坑开挖范围内的所有轴线桩和水准点都要引出施工活动区域以外,用大方木桩深打后钉上铁钉并加以保护。
(10)土方开挖质量标准:(详见下表)
土方开挖工程质量标准(mm)


项目
允许偏差或允许值
检验方法
基坑
基槽
挖方场地
平整
管沟
地(路)基面层
主控
目标
1
标高
-50
±30
-50
-50
水准仪
2
长度、宽度(由设计中心线向两边量)
+200
-50
+300
-100
+100

经纬仪和
用钢尺量
3
边坡
设计要求
观察或用
坡度尺检查
附:第一步挖土示意图
挖土工况二:开挖标高:-4.500m∽-9.700m
第二步土方开挖深为5.2m,分二层次开挖。采用接力式倒土,底下的挖掘机将土传到上面的挖掘机脚下,由上面挖掘机挖出并装车运走。
在出土口处架设混凝土栈桥(见附图),由于该工程南北向跨度达到115.2米,槽内接力倒土距离过长,不仅影响出土速度,而且增加施工成本。建议在东马路一侧增加一个出土栈桥。本步土方开挖采用W300型加长臂挖掘机作为主要出土设备,配备W200型挖掘机及100型挖掘机进行辅助施工并且人工配合,挖至-9.7米左右,直接挖至第二道环梁支撑底,挖土深度为5.2米,挖土量约70200立方米。

深基坑工程设计内容

深基坑工程设计内容

深基坑工程设计内容深基坑工程是指在建筑物、桥梁、地铁等工程建设中,为了满足建筑物或者地下结构的需要,需要控制地下水位、处理土方及周边土体的稳定等问题,而需要挖掘的较深的基坑。

深基坑工程设计内容涉及多个方面,下面将详细介绍。

1.基坑形状设计:深基坑工程设计开始需要确定基坑的形状,主要有矩形、椭圆形、圆形、不规则形状等。

基坑形状的选择与土体特性、空间需求、工程施工方法等密切相关。

2.地下水位控制设计:地下水位对于深基坑的施工和稳定性具有重要影响,需要进行地下水位的探测和分析,以确定合理的降低地下水位的方法,如应用抽水井、排水槽等工程措施。

3.土体稳定性设计:土体的稳定性是深基坑工程设计中的重要考虑因素。

设计人员需要对土体进行力学参数测试,包括土体的内摩擦角、剪切强度等。

并通过数值模拟等方法来分析土体的变形和稳定性。

4.土方工程设计:深基坑工程设计要考虑土方的开挖、支护和回填等问题。

根据土壤的类型,设计人员需要选择适当的土方开挖工法,如潜孔桩法、钻孔法、爆破法等。

同时需要对基坑进行支护设计,如挖土时采用钢架支护、深挖时采用土钉墙等。

5.基坑支护结构设计:为了保证深基坑的稳定性,设计人员需要设计基坑的支护结构,包括支撑墙、水平支撑、地下连续墙等。

支护结构的选择要考虑工程施工方法、周边环境、土体特性等因素。

6.基坑排水设计:对于深基坑工程来说,地下水的排除是一个重要的问题。

设计人员需要设计排水系统,如排水管道、抽水泵等,以保持基坑干燥,保证施工工期和施工质量。

7.基坑监测设计:深基坑工程的施工过程中需要进行监测,以及时发现和解决潜在的问题。

设计人员需要设计监测装置和监测方案,监测基坑的沉降、支护结构的变形以及周边建筑物的影响等。

8.安全防护设计:深基坑工程是一项高风险的工程,设计人员需要充分考虑施工过程中的安全问题,制定合理的安全防护措施,如警示标志、安全通道、防护网等。

总之,深基坑工程设计内容非常复杂,需要设计人员综合考虑土体力学、水文地质、工程施工等多个因素,进行科学设计和合理规划,以确保深基坑工程的安全、稳定和高效建设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e pn (qn
h )tg (45 2 ) 2c tg (45 2 )
i i 2 n i 1
n
n
n
3.2.2 地面附加荷载传至n层土底 面的竖向荷载qn

(1)地面满布均布荷载q0时, 任何土层底面处:
q n qo

(2)宽度为b的条形荷载离开 挡土结构距离为a时
加固型——充分利用加固土体的强度。 加固型包括水泥搅拌桩、高压旋喷桩、注 浆和树根桩等。

止水可用止水帷幕或降低地下水位等方法。
基坑侧壁安全等级及重要性系数
安全 等级 一级
ห้องสมุดไป่ตู้
破坏后果
支护结构破坏、土体失稳或过大变形对基 坑周边环境及地下结构施工影响很严重
0
1.10
支护结构破坏、土体失稳或过大变形对基 二级 坑周边环境及地下结构施工影响一般 三级 支护结构破坏、土体失稳或过大变形对基 坑周边环境及地下结构施工影响不严重
排桩或组合 排桩加锚杆结构
地下连续墙结构
沉井结构
与地下室墙体合一,防渗性强,施工场地较小,开挖深度大
软土地区
重力式挡土墙结构
具有一定施工空间,软土地区
支护结构类型及其适用范围
表3-1
图3-1板桩
图3-2 组合挡土壁
图3-3 单排与双排桩支护结构
排桩支护结构顶部应设置连续闭合圈梁,在基坑 面积较大时还应在转角处设置斜撑,以增加支护 结构的整体性。
图3-4 地下连续墙及接头管接头的施工程序 a) 开挖槽段; b) 吊放接头管和钢筋笼; c) 浇筑砼; d) 拔出接头管; e) 形成接头
3.1.2 支撑体系


支撑体系是用来支挡围护墙体,承受墙背侧 土层及地面超载在围护墙上的侧压力。 支撑体系是由支撑、围檩、立柱三部分组成。 围檩和立柱是根据基坑具体规模、变形要求 的不同而设置的。
地下结构工程
第03章
3.深基坑工程


概述:大量的深基坑工程伴随着城市高层建筑的发 展大量出现。 国外,圆形基坑的深度已达74m(日本),直径最大的 达98m(日本),而非圆形基坑的深度已达到地下9层 (法国)。 国内,上海88层的金茂大厦,基坑平面尺寸为 170m×150m,基坑开挖深度达19.5m。上海的汇京广 场,围护结构与相邻建筑最近的距离仅40cm。而无 支撑基坑的开挖深度也已达到了9m。润扬大桥南汊 桥北锚锭开挖深度达54m。
基坑支护的两个功能:一是挡土;二是止水。 从挡土角度,基坑支护分两类: 支护型——将支护墙(排桩)作为主要受力构件; 支护型基坑支护包括板桩墙、排桩、地下连续墙等。 在基坑较浅时可不设支撑,成悬臂式结构; 当基坑较深或对周围地面变形严格限制时,应设水平 或斜向支撑,或锚定系统;形成空间力系是发展方 向。

i 1
n i 1
n
hi a
qn 0
qn b b a hi
i 1 n
hi a
qo
不考虑内 摩擦角的 影响,按 45o 角 扩 散。

(3)作用在面积为 b1 b 2 (b 2 与挡土结构平行) 的地面荷载,离开挡土结构距离a时。
h
i 1
n
i
a
qn 0
图3-5 悬臂支护桩土压力分布
实测可见,土压力的分布已不再是三角形了。
图3-6 芝加哥深基坑土压力实测图 图3-7 柏林地道工程土压力实测图
支护结构承受的土侧压力根据朗肯 - 库伦理论 确定。
土的内聚力c、内摩擦角φ值可根据下列规 定适当调整: 在井点降低地下水范围内,当地面有排 水和防渗措施时,φ值可提高20%; 在井点降水土体固结的条件下,可考虑 土与支护结构间侧摩阻力影响,将土的 内聚力c提高20%。



水压力,通常情况下主要根据土质情况确定如何 考虑水压力的问题 。 对于粘性土,土壤的透水性较差,因此粘性土产 生的侧向压力可采用水土合算的方法,即侧压力 为相应深度处竖向土压力与水压力之和乘以侧压 力系数。 对于砂性土,土壤的透水性良好,采用水土分算, 即侧压力为相应深度处竖向土压力乘以侧压力系 数与该深度处水压力之和。
开挖面积大、深度小的基坑宜采用;在软弱土层中,不易控制基坑的稳 定和变形 便于土方开挖和主体结构施工,但仅适用于周边场地具有拉设锚杆的环 境和地质条件
3.2 支护结构上的作用 3.2.1 土压力
支护结构承受的土压力与土的性质、支护结构的 刚度以及施工方法等有关。 主动土压力和被动土压力的产生,前提条件是 支护结构存在位移; 当支护结构没有位移时,则土对支护结构的压 力为静止土压力。 土压力的分布与支点的设置及其数量都有关系; 悬臂支护桩土压力的实测值与按朗肯公式计算 值的对比,非挖土侧实测土压力小于朗肯主动 土压力,即计算结果偏大。
支撑体系
特 点
平面尺寸不大,且长短边长相差不多的基坑宜布置角撑。它的开挖土方 空间较大,但变形控制要求不能很高 钢支撑和钢筋混凝土支撑均可布置;支撑受力明确,安全稳定,有利于 墙体的变形控制,但开挖土方较为困难 多采用钢筋混凝土支撑;中部形成大空间,有利于开挖土方和主体结构 施工
多采用钢筋混凝土支撑;支撑体系受力条件好;开挖空间大,便于施工
1.00 0.90
3.1 结构方案及选择3.1.1
结 构 形 式 适 用 范 围
结构类型
排 稀疏排桩 桩 连续排桩 结 构 框架式排桩
组 合 排 桩 结 构 排桩加挡板 排桩加水泥 搅拌桩 排桩加水泥防 渗墙
土质较好,地下水位低或降水效果好
土质差,地下水位高或降水效果差 单排桩刚度不能满足变形要求 排桩桩距较大,利用挡板传递土压并有一定防渗作用 以水泥搅拌桩互搭组成平面拱代替挡板传递土压力,具有较 好防涌效果 地下水位较高的软土地区 开挖深度较大,排桩或组合排桩结构强度无法满足要求
经修正后,作用在支护结构上的土压力,应分层 按土的重力密度、内摩擦角、粘聚力进行计算。
土压力计算公式exit

第n层土底面对支护结构的主动土压力:
ean (qn

h )tg (45 2 ) 2c tg (45 2 )
2 i i n i 1
n
n
n
第n层土底面对支护结构的被动土压力:
qn (b1 a b1 b2
n n
h
i 1
n
i
a
h )(b
i i 1
2
2
h )
i i 1
q0
3.2.3 水压力
水压力就是土颗粒之间的孔隙水压力,它与支护 结构的刚度及支撑力大小无关,但与地下水的补 给量、土质类别、支护结构入土深度、排水处理 方法等许多因素有关。
相关文档
最新文档