柯布道格拉斯生产函数
技术柯布道格拉斯生产函数经济学解析

Y=产出
y = f(x)=生产函数
①单投入,单产出
生产集
X=投入
技术的例子(生产函数的各种形式)
里昂惕夫生产函数:
令a>0,b>0,那么,f(x1,x2)=min(ax1,bx2) 为里昂惕夫技 术。如下图
柯布-道格拉斯生产函数:
f(x1,x2)=
AX
a 1
X
b 2
,
被称为柯布—道格拉斯生产函数.其
dx1 dx1
x2
a b
1 x12
dx2 dx1
x1
x2
0
a, b,
x1,
x2
0,
dx2 dx1
0
上式表明:C-D生产函数等产量线斜率的变化率为正, 故等产量线凸向原点。
三、边际产品
假设生产函数为:y f (x1, , xn )
边际产品是一种比率,它是在其他的
投入量固定不变的情况下,增加1单位 要素1的投入量而获得的额外产量。即:MPi
2
2
x
'' 2
x1'
B(x1'' , x2'' ) y f (x1, x2 )
x1''
x1
柯布道格拉斯的生产函数的凸性
对 f ( x1,x2 ) Ax1a x2b 进行微分
df
f x1
dx1
f x2
dx2
( Aax1a1x2b )dx1
(
Abx a 1
x2b
1
)dx2
由于 df 0 ,故
Aax1a1x2bdx1 Abxa1x2b1dx2
y '''
柯布道格拉斯的应用原理

柯布道格拉斯的应用原理1. 什么是柯布道格拉斯法柯布道格拉斯法(Cobb-Douglas function)是一种经济学中常用的生产函数形式,用于描述生产过程中产出与投入之间的关系。
该函数最早由美国经济学家柯布(Charles W. Cobb)和道格拉斯(Paul H. Douglas)在1928年提出。
2. 柯布道格拉斯函数的数学表达式柯布道格拉斯函数可以用以下的数学表达式表示:Q = A * (L^a) * (K^b)其中,Q表示产出,A表示全要素生产率(Total Factor Productivity),L表示劳动力投入,K表示资本投入,a和b为可调参数,表示生产函数中各种投入要素的弹性。
3. 柯布道格拉斯函数的应用领域柯布道格拉斯函数广泛应用于经济学研究中,特别在生产函数的分析和经济增长模型中有重要应用。
下面列举几个柯布道格拉斯函数的应用领域:•生产力分析:柯布道格拉斯函数可以用来分析不同投入要素对产出的影响。
通过调整参数a和b的大小,可以评估不同要素对产出增长的贡献程度。
•资源配置优化:柯布道格拉斯函数可以帮助决策者优化资源的分配方式。
通过对不同要素的弹性进行比较,可以确定投入要素的最佳组合,以实现最大的产出。
•经济增长模型:柯布道格拉斯函数是许多经济增长模型的基础。
通过引入技术进步和全要素生产率的概念,可以建立经济增长模型,用来解释不同要素对经济增长的影响。
4. 柯布道格拉斯函数的优缺点柯布道格拉斯函数作为一种常用的生产函数形式,具有以下的优点和缺点:4.1 优点•简单易用:柯布道格拉斯函数的数学表达式简单明了,易于计算和分析。
•灵活性:通过调整参数a和b的值,可以适应不同的实际情况和要求。
•可解释性:柯布道格拉斯函数的参数a和b可以用来解释不同投入要素对产出的影响。
4.2 缺点•缺乏微观基础:柯布道格拉斯函数并没有明确的微观基础,只是一种经验性的数学模型。
•不考虑替代性:柯布道格拉斯函数假设劳动力和资本是不可替代的,但实际上在一些行业中,劳动力和资本是可以相互替代的。
柯布道格拉斯函数历史

1、柯布——道格拉斯生产函数原是创始人—数学家柯布和经济学家道格拉斯想借助它们用经济计量学方法得到的生产函数来分析国民收入在工人和资本家之间的分配,并通过它来证实边际生产率原理的正确性。
因此他们是为了洞察收入分配而考察生产关系的。
后来他们的生产函数的收入分配方面失去了重要意义,现在它已被广泛地用于研究生产的投入产出关系。
随着增长理论的发展,应用的范围得到了进一步的扩大。
柯布一道格拉斯生产函数是使用最为广泛的生产函数。
它是由柯布和道格拉斯根据1899——1922年间美国制造业部门的有关数据构造出来的。
其形式如下:1Q AK Lαα-=该函数形式是由维克塞尔(wicksell)首先使用的。
维克塞尔在《国民经济学讲义》的附注中指出这一函数形式(维克塞尔,1983):αβ=a b rP c一般化:=Q AK Lαβ其中Q是增加值,K是资本存量,L是雇用的劳动。
A为效率参数,表示那些影响产量,但既不能单独归属于资本也不能单独属于劳动的因素。
αβ和为分配参数或投入强度参数(同时也满足生产弹性,αβ(+)是规模弹性参数,反映该函数的齐次的次数。
2、CES函数1961年,由Arrow、chenery,Mihas,Solow四位学者提出了两要素CES生产函数,该函数在数学上相当简化,在统计上容易处理,而且还有固定的替代弹性的特性。
其基本形式为:1[(1)]Q A K L ρρρδδ---=+- 其中A 为效率参数[efficiency Parameter],表示资本和劳动的联合效率,δ为分配参数, ρ为替代参数,A>0,0<δ<1,1ρ-<<-∞,根据不同的ρ参数值,CES 生产函数包含着好几个著名的生产函数作为它的特例。
(l)当ρ=-1,CES 生产函数即为线性生产函数,形式如[(1)]Q A K L δδ=+-(2)当ρ=0,CES 生产函数即柯布道格拉斯函数生产函数,形式如下1Q AK L δδ--= (3)当ρ=+∞,CES 生产函数即为列昂惕夫人技术的生产函数[Leotief production Function](也被称之为投入一产出生产函数),形式如卜:Q=min 【欲,(l 一占)L 」(21)。
柯布--道格拉斯生产函数

柯布--道格拉斯生产函数柯布-道格拉斯生产函数是一种用来描述产出与产出要素输入之间关系的经济学模型。
该模型是由美国经济学家柯布和道格拉斯在20世纪20年代提出的,被广泛应用于宏观经济学中的生产函数分析。
Y = A L^α K^β其中,Y表示产出, L表示劳动力输入量, K表示资本输入量, A表示全要素生产率, α和β是生产函数中劳动力因素和资本因素的弹性系数,而α+β的总和表示生产函数的规模收益。
所谓规模收益是指生产要素的总量增加一倍,能使产出增加的比例。
即α+β大于1时,存在递增规模收益;等于1时,存在恒等规模收益;小于1时,存在递减规模收益。
该生产函数的基本思想是,产出量可以用输入的各种生产要素数量来解释,而生产效率的提升可以通过升级技术和管理方法等手段来实现。
这一经济学模型通过科学地评估生产要素的投入和产出之间的关系,从而有效地指导产品生产的决策,同时也为企业实现成本最小化和效益最大化提供了理论基础。
优点:1.全要素生产率是该模型的核心概念,所包含的生产要素非常广泛,可以更全面地反映产出与产出要素之间的关系。
2.该模型能够帮助企业优化生产要素的投入,提高生产效率和效益。
3.对于某些复杂的生产运营系统,利用柯布-道格拉斯生产函数可以更加精细地建立生产模型,以便于深入分析和研究。
1.柯布-道格拉斯生产函数基于某一市场的生产数据,不适用于所有市场,无法复刻到所有不同形式的生产环境中。
2.该模型忽略了信息、技能和组织等非生产要素对企业产出的影响,对于这些影响因素的分析不够完备。
3.由于该模型只考虑单一生产函数,可能无法很好地解释某些特殊的产出情况。
计量经济学柯布道格拉斯

经济含义:
柯布-道格拉斯生产函数通常被人们称为性状良好的生产函数,因为 利用它可以较好地研究生产过程中的投入和产出问题。 当α+β=1时,α和β分别表示劳动和资本在生产过程中的相对重要性, 或者说是表示劳动所得和资本所得在总产量中所占的份额;A通常用来 表示技术进步因素(包括经营管理水平、劳动力素质、引进先进技术 等)。根据α和β的组合情况,往往可以用柯布-道格拉斯生产函数来判断 企业的规模报酬状况: ①α+β>1, 称为递增报酬型,表明按现有技术用扩大生产规模来增加产 出是有利的。规模报酬递增是指产量增加的比例大于各种生产要素增加 的比例。造成规模报酬递增的原因在于由于规模扩大带来生产效率的提 高。
根据柯布和道格拉斯对美国1899年到1922年期间有关经济资料的分 析和估算,A值为1.01,α值为0.75,β值为0.25 Q=1.01 L0.75·K0.25 这说明,在技术水平不变的情况下,每增加1%的劳动所引起的产量增加 将3倍于每增加1%的资本所引起的产量增加。这一结论与美国工资收入 与资本收益之比(3:1)大体相符。
②α+β<1,称为递减报酬型,表明按现有技术用扩大生产规模来增加产 出是得不偿失的。如果产量增加的比例小于各种生产要素增加的比例, 则为规模报酬递减。造成规模报酬递减的原因在于,由于规模过大使得 生产的各个方面难以协调,从而降低生产效率。 ③α+β=1,称为不变报酬型,表明生产效率并不会随着生产规模的扩大 而提高,只有提高技术水平,才会提高经济效益。规模报酬不变是指产 量增加的比例等于各种生产要素增加的比例。造成规模报酬不变的原因 是,在规模报酬递增阶段的后期,大规模生产的优越性已得到充分发挥, 厂商逐渐用完了种种规模优势,从而导致厂商规模增加的幅度与报酬增 加幅度相等。
柯布-道格拉斯生产函数

柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
柯布--道格拉斯生产函数

dQ d[cL(t) y (t)] cL(t)y 1 dy c dL(t) y 0
dt
d (t)
dt d (t)
整理得:
dQ dt
0
1
K0 K0
e(1 )t
1
1
因为 0 ,1所以上式右端恒大于1,因而当左端中 (0即
)e (1
) t
1 ]
知:
dy dt
0 1
K0 K0
e(1 ) t
0
显然,此式成立的条件为
K0 K0
1
K0 K0
此式含义为:劳动力相对增长率小于初始投资增长率
······数理学派在这时运用数学方法, 只对资本主义关系做数量上的说明,而抛开 对资本主义经济制度本质的研究,这样就更 有利于掩盖资本主义的剥削和矛盾。同时, 她运用数学方法,也企图用数学的精确性和 科学性,使资产阶级政治经济学具有一种高 度科学性的假象和外观。
/UploadFile
0
s/2009327144012527.swf
五、模型的改进与推广
1,探讨资金和劳动力的最佳分配(静态)
➢何为最佳分配? ➢成本包括哪些?
资金来自贷款,利率 r
劳动力付工资 w
资金和劳动力创造的效益 S Q rK wL
问题转化为K/L满足什么条件使得S最大
S K
0 QK
r
0
S L 0 QL W 0
QK QL
CK L 1 1 C(1)K L
r w
K w
L 1 r
由该式可知:当,w变大、r变小时,分配
柯布-道格拉斯生产函数.docx

柯布 - 道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布 (C.W.Cobb) 和经济学家保罗·道格拉斯(PaulH.Douglas) 共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布 - 道格拉斯生产函数- 简介保罗·道格拉斯柯布和道格拉斯研究的是 1899 年至 1922 年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899 年至 1922 年间,产出量 P、资本 C 和劳动 L 的相对变化的数据(以 1899 年为基准)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柯布道格拉斯生产函数
柯布道格拉斯生产函数是经济学家柯布道格拉斯提出的一种描述
生产关系的数学模型。
它是一种生产函数,描述了生产过程中输入要
素和产出之间的关系。
柯布道格拉斯生产函数被广泛应用于经济学研
究中,可以帮助我们理解和分析不同要素对产出的影响。
柯布道格拉斯生产函数的基本形式为:
Y = A * (K^α) * (L^β) * (M^γ)
其中,Y表示产出,K表示资本输入,L表示劳动输入,M表示其
他要素输入,A表示全要素生产率,α、β、γ表示要素的弹性系数。
柯布道格拉斯生产函数的核心思想是,通过将输入要素(如资本
和劳动)与全要素生产率相结合,可以预测产出的变化。
这个模型假
设生产过程中的技术水平是固定的,并且每个要素对产出的贡献程度
是固定的。
柯布道格拉斯生产函数的形式化表述可能有些晦涩难懂,但是我
们可以通过一个简单的例子来理解它的应用。
假设一个农场使用了一
定数量的土地和劳动力来种植农作物。
我们可以将土地和劳动力作为
输入要素,农作物的产量作为输出。
通过柯布道格拉斯生产函数,我
们可以分析不同的土地和劳动力对农作物产量的影响,并找出最佳的
要素组合方式。
在柯布道格拉斯生产函数中,弹性系数α、β和γ表示了不同
要素对产出的敏感性。
当α大于1时,资本输入对产出的增长影响更大;当α小于1时,劳动输入对产出的增长影响更大;当α等于1时,资本和劳动的影响是等价的。
柯布道格拉斯生产函数还可以用来分析全要素生产率的增长。
通
过对全要素生产率的改进,可以提高产出水平而不需要增加输入要素。
这对于发展中国家和企业来说具有重要意义,因为他们可以通过提高
技术水平来实现经济增长,而不仅仅依靠增加资本和劳动力的投入。
然而,柯布道格拉斯生产函数也存在一些限制。
它假设了技术水
平是固定的,这在现实生产过程中并不成立。
现代经济往往面临着科技进步和创新的快速变化,传统的柯布道格拉斯生产函数无法很好地解释这种变化。
此外,柯布道格拉斯生产函数忽略了其他可能影响产出的因素,如市场需求、政府政策等。
在实际情况中,这些因素对产出的影响往往不能被简单地归因于输入要素的变化。
总的来说,柯布道格拉斯生产函数是一个有用的工具,可以帮助经济学家分析生产过程中输入要素和产出之间的关系。
通过对不同要素的敏感性和全要素生产率的改进,我们可以提出有效的政策建议,促进经济的增长和发展。
然而,我们也需要意识到柯布道格拉斯生产函数的局限性,需要结合其他因素来全面评估生产过程中的各种影响因素。