计算机图形学中的基本算法
广工数媒计算机图形学之5基本图形生成算法-多边形扫描转换及区域填充

计算机图形学基础:基本图形生成算法——多边形扫描转换及区域填充 多边形扫描转换——x-扫描线算法 x-扫描线算法填充多边形基本思路:
扫描线与x轴平行。按照扫描顺序,计算每一条扫描线与多边 形的相交区间,用指定颜色显示区间内的像素。区间的端点 可以通过计算扫描线与多边形边界线的交点获得。 x-扫描线算法可以填充凸、凹多边形,也可填充中间有空的 多边形。
广东工业大学机电学院图学与数字媒体工程系
计算机图形学基础:基本图形生成算法——多边形扫描转换及区域填充
多边形扫描转换——x-扫描线算法
x-扫描线算法涉及的问题: 一、扫描线与多边形边界交点的 有效性判别; 扫描线y=5与AB边有无效交点k, 在做求交运算之前,判断该扫 描线的y坐标不在点A和点B的y 坐标之间,不做求交运算。
广东工业大学机电学院图学与数字媒体工程系
计算机图形学基础:基本图形生成算法——多边形扫描转换及区域填充
区域填充——边界填充算法
栈结构实现4-连通边界填充算法步骤: (1)种子像素入栈; (2)栈顶象素出栈; (3)将出栈象素置成填充色; (4)检查出栈象素的4-邻接点,若其中某个象素点不是边 界色且未置成多边形色,则把该象素入栈。 (5)检查栈是否为空,若非空,则执行步骤(2),若为 空,则结束。 4-连通边界填充.SWF
广东工业大学机电学院图学与数字媒体工程系
计算机图形学基础:基本图形生成算法——多边形扫描转换及区域填充 填充算法——边缘填充算法
“边缘填充算法的过程.SWF”演示了边缘填充算法的实现过 程。 该算法的优点是简单,缺点是对于复杂图形,每一像素可 能要访问多次,效率降低。
广东工业大学机电学院图学与数字媒体工程系
计算机图形学第3章 基本图形生成算法

例题:有点P0(4,3);P1(6,5);P2(10,
6 );P3(12,4),用以上4点构造2次B样条曲线。
2.1.7 非均匀有理B样条
非均匀有理B样条NURBS(Non Uniform Rational BSpline);
3.2.2
Bresenham画圆法
该算法是最有效的算法之一。
不失一般性,假设圆心(xc,yc) ,圆上的点(x′,y′),则:
x' x xc
y ' y yc
圆心为原点,半径为R的位于第一象限1/8圆弧的画法,即(0, R)~( R , R )。
2 2
yi ), 思想:每一步都选择一个距离理想圆周最近的点P( xi , 使其误差项最小。
画其他曲线。
3.3
自由曲线的生成
正弦函数曲线
指数函数曲线
多项式函数曲线
自 由 曲 线
概率分布曲线及样条函数曲线
3.3.1 曲线的基本理论
基本概念
2.1.4
规则曲线:可用数学方程式表示出来的,如抛物 线等。
自由曲线:很难用一个数学方程式描述的,如高
速公路等。可通过曲线拟合(插值、逼近)的方法来
例题: 利用Bresenham算法生成P (0,0)到Q(6,5)的直 线所经过的像素点。要求先 列出计算式算出各点的坐标 值,然后在方格中标出各点。
(1,1)
3.1.5 双步画线法 原理
模式1:当右像素位于右下角时,中间像素位于底线 模式4:当右边像素位右上角时,中间像素位于中线 模式2和模式3:当右像素位于中线时,中间像素可能位于底线 上,也可能位于中线上,分别对应于模式2和模式3,需进一步 判断。 当0≤k≤1/2时,模式4不可能出现,当1/2≤k≤1时,模式1不 可能出现。
计算机图形学——圆的扫描转换(基本光栅图形算法)

计算机图形学——圆的扫描转换(基本光栅图形算法)与直线的⽣成类似,圆弧⽣成算法的好坏直接影响到绘图的效率。
本篇博客将讨论圆弧⽣成的3个主要算法,正负法、Bresenham 法和圆的多边形迫近法,在介绍算法时,只考虑圆⼼在原点,半径为R的情况。
⼀、正负法1、基本原理假设已选取Pi-1为第i-1个像素,则如果Pi-1在圆内,就要向圆外⽅向⾛⼀步;若已在圆外就要向圆内⾛⼀步。
总之,尽量贴近圆的轮廓线。
2、正负法的具体实现1)圆的表⽰:设圆的圆⼼为(0,0),半径为R,则圆的⽅程为:F(x,y)=x2+y2–R2=0当点(x,y)在圆内时,F(x,y)<0。
当点(x,y)在圆外时,F(x,y)>0。
2)实现步骤第1步:x0=0,y0=R第2步:求得Pi(x i,y i)后找点P i+1的原则为:当P i在圆内时(F(xi,yi)≤0),要向右⾛⼀步得P i+1,这是向圆外⽅向⾛去。
取x i+1= x i+1, y i+1= y i当P i在圆外时(F(xi,yi)>0),要向下⾛⼀步得P i+1,这是向圆内⽅向⾛去,取x i+1= x i, y i+1= y i-1⽤来表⽰圆弧的点均在圆弧附近且 F(xi, yi)时正时负假设已经得到点(x i, y i),则容易算出F(x i, y i),即确定了下⼀个点(x i+1, y i+1),则如何计算F(x i+1, y i+1),以确定下下个点(x i+2, y i+2)?分为两种情况:右⾛⼀步后:x i+1=x i+1,y i+1=y i,此时:F(x i+1, y i+1)=x i+12+y i2-R2=x i2+y i2-R2+2x i+1 = F(x i, y i)+2x i+1下⾛⼀步后:x i+1=x i,y i+1=y i-1, 此时:F(x i+1, y i+1)=x i2+(y i-1)2-R2= F(x i, y i)-2y i+1由此可得:确定了F(xi+1, yi+1)之后,即可决定下⼀个点(xi+2, yi+2),选择道理同上。
计算机图形学的基本概念与算法

计算机图形学的基本概念与算法计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。
它在许多领域中都有广泛应用,例如电影制作、游戏开发、医学成像等。
本文将介绍计算机图形学的基本概念和算法,并分步详细列出相关内容。
一、基本概念1. 图像表示:计算机图形学中,图像通常使用像素(Pixel)来表示。
每个像素包含了图像上一个特定位置的颜色或灰度值。
2. 坐标系统:计算机图形学使用不同的坐标系统来表示图像的位置。
常见的坐标系统有笛卡尔坐标系、屏幕坐标系等。
3. 颜色模型:计算机图形学中常用的颜色模型有RGB模型(红、绿、蓝)和CMYK模型(青、品红、黄、黑)等。
RGB模型将颜色表示为三个分量的组合,而CMYK模型用于打印颜色。
4. 变换:变换是计算机图形学中常用的操作,包括平移、旋转、缩放和剪切等。
通过变换,可以改变图像的位置、大小和方向。
5. 插值:在计算机图形学中,插值是指通过已知的数据点来推测未知位置的值。
常见的插值方法有双线性插值和双三次插值等。
二、基本算法1. 线段生成算法:线段生成是图形学中最基本的操作之一。
常见的线段生成算法有DDA算法(Digital Differential Analyzer)和Bresenham算法。
DDA算法通过计算线段的斜率来生成线段上的像素,而Bresenham算法通过绘制画板上的一个像素来逐渐描绘出整条直线。
2. 多边形填充算法:多边形填充是将一个多边形内的区域用颜色填充的过程。
常见的多边形填充算法有扫描线算法和边界填充算法。
扫描线算法通过扫描多边形的每一条水平线,不断更新当前扫描线下方的活动边并进行填充。
边界填充算法从某点开始,向四个方向延伸,逐渐填充整个多边形。
3. 圆弧生成算法:生成圆弧是计算机图形学中常见的操作之一,常用于绘制圆形和曲线。
常见的圆弧生成算法有中点圆生成算法和Bresenham圆弧生成算法。
中点圆生成算法通过计算圆弧中的每个点与圆心的关系来生成圆弧上的像素,而Bresenham圆弧生成算法通过在八个特定的扫描区域内绘制圆弧上的像素。
C语言之图形学算法

C语言之图形学算法图形学算法是计算机图形学领域中的重要内容,它涉及到图形的创建、显示和处理等方面。
在C语言中,有一些常用的图形学算法可以帮助我们实现各种各样的图形效果。
本文将介绍一些常见的C语言图形学算法,包括直线绘制算法、圆绘制算法和多边形填充算法等。
一、直线绘制算法直线是图形学中最基础的图形之一,其绘制算法也是最简单的。
在C语言中,常用的直线绘制算法有DDA算法和Bresenham算法。
1. DDA算法DDA(Digital Differential Analyzer)算法是一种直线绘制算法,其基本思想是通过计算直线的斜率和每个像素点之间的差值来实现直线的绘制。
下面是DDA算法的伪代码:```dx = x2 - x1dy = y2 - y1step = max(abs(dx), abs(dy))x_increment = dx / stepy_increment = dy / stepx = x1y = y1plot(x, y)for i in range(step):x = x + x_incrementy = y + y_incrementplot(round(x), round(y))```2. Bresenham算法Bresenham算法是一种更加高效的直线绘制算法,它通过利用整数运算和误差累积的方式来实现直线的绘制。
下面是Bresenham算法的伪代码:```dx = abs(x2 - x1)dy = abs(y2 - y1)if dx > dy:step = dxelse:step = dyx_increment = dx / stepy_increment = dy / stepy = y1plot(x, y)for i in range(step):if dx > dy:x = x + x_incrementelse:y = y + y_incrementplot(round(x), round(y))```二、圆绘制算法圆是一种常见的图形,在计算机图形学中,圆的绘制算法也是一个重要的问题。
计算机图形学---多边形填充算法课件

使用更有效的数据结构
使用更有效的数据结构可以减少算法在内存中的访问次数,从而提高算法的性能。例如,可以使用边 界盒(bounding box)来加速多边形的遍历。
还可以使用索引数据结构来加速多边形的遍历,例如使用四叉树(quadtree)或八叉树(octree)。
并行化填充算法以提高性能
并行化填充算法可以将计算任务分配 给多个处理器核心,从而提高算法的 性能。例如,可以使用多线程技术来 并行化填充算法。
CHAPTER 04
填充算法的应用
在游戏开发中的应用
角色和场景渲染
多边形填充算法用于在游戏中创 建逼真的角色和场景,通过填充 多边形来模拟物体的形状和纹理
。
碰撞检测
游戏中的物体需要进行碰撞检测 ,以确保游戏的真实性和玩家的 交互体验。多边形填充算法可以 用于检测多边形之间的重叠,从
而实现碰撞检测。
地表现自然和人造物体的细节,从而丰富图形表现形式。
拓展应用领域
03
随着多边形填充算法的发展,计算机图形学将在虚拟现实、增
强现实、游戏设计、影视制作等领域得到更广泛的应用。
区域增长填充算法
区域增长填充算法是一种基于区域的填 充算法,通过将多边形内部的像素连接 起来形成一个区域,然后对该区域进行
填充。
该算法首先确定多边形的所有像素,然 后从多边形内部的一个像素开始,将其 相邻的像素加入到区域中,直到整个多
边形内部都被填充。
区域增长填充算法的优点是能够处理复 杂的填充需求,如填充不规则形状或多
种子填充算法
种子填充算法是一种基于种子点的填充算法,通过从指定的种子点开始,向周围 扩散填充颜色来实现填充。
该算法适用于任意形状的多边形,具有灵活、易于实现的特点,但可能会在处理 大型多边形时效率较低。
计算机图形学_基本算法

应不同的设备。
12
返回
2
Ø曲线也可由直线段逼近生成 Ø解决的问题:给定直线两端点P0(x0,y0)
和P1(x1,y1),画出该直线。 主要步骤可以表示如下:
13
初值
偏差判别
移动绘图 偏差计算
终点 判断
N
Y 结束
图2-2 一般线段绘制过程的主要步骤示意图
• 偏差判别:根据当前绘图点位置与理想位置的偏差情况,确定
在不考虑线宽时,一维图形的扫描转 换主要是确定一维的像素序列,二维图 形的扫描转换是确定平面区域所对应的 像素集(称为区域填充)。
5
Ø 一般微机系统板上都配有图形显示缓冲区,
为了快速、及时地控制图形的输出,系统在基
本内存中开辟了从
A0000H ~ CFFFFH的256K字节
甚至到FFFFFH的512K字节
29
返回
因递推公式: Xi+1=Xi+1 yi+1 = kxi+1+b= k1xi+b+k∆x= yi+k∆x
所以:当 ∆x =1; yi+1 = yi+k。 即当x每递增1,y递增k(即直线斜率)
y
yi+1
分别解释直线生成算法dda法、中点画线法和bresenham法的基本原理

分别解释直线生成算法dda法、中点画线法和bresenham法的基本原理DDA直线生成算法、中点画线法和Bresenham法都是计算机图形学中用于生成直线的算法。
以下是这三种算法的基本原理:1.DDA直线生成算法(Digital Differential Analyzer):DDA算法是一种基于差分运算的直线生成算法。
其基本原理是,通过计算直线起点和终点之间的差值(横向差值dx 和纵向差值dy),并根据步长来决定下一个像素点的位置。
算法首先确定差值中绝对值较大的一方作为基准,步长设为1,另一方则按比例进行调整,以保持线段的斜率不变。
在实现过程中,DDA算法需要遍历每一个像素点,根据差值的正负和大小来确定新像素点的位置。
2.中点画线法:中点画线法的基本原理是,通过计算线段上当前像素点与相邻两个像素点构成的线段与理想直线的距离,来决定下一个像素点的位置。
具体实现时,设定线段的中点为M,理想直线与线段的交点为Q。
通过比较M和Q的位置关系来确定下一个像素点:若M在Q上方,则取上方的像素点为下一个点;若M在Q下方,则取下方的像素点为下一个点;若M与Q重合,则可任意选择上方或下方的像素点。
中点画线法以中点M作为判别标志,逐点生成直线。
3.Bresenham法:Bresenham算法的原理是基于直线的斜率和截距来计算每个像素点的位置。
在计算机屏幕上,每个像素点都有一个坐标值。
Bresenham算法通过计算直线上每个像素点的坐标值来绘制直线,避免了使用浮点数运算,从而提高了计算效率。
在实现过程中,Bresenham算法根据直线的斜率以及当前像素点的位置,计算出下一个像素点的位置,并逐点绘制出直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机图形学中的基本算法
计算机图形学是指利用计算机来生成、处理、显示和存储各种
图形的学科。
它与计算机科学、数学、物理等学科密切相关。
计
算机图形学中的基本算法主要包括几何变换算法、渲染算法、图
像处理算法等。
下面将对这些算法进行详细的介绍。
一、几何变换算法
几何变换是指将一个图形在平面内旋转、缩放、移动等操作,
使其达到一定的位置、大小和角度的变化过程。
计算机图形学中
的几何变换算法包括平移、旋转、缩放、错切等操作。
其中,平
移是指沿着水平和垂直方向移动一个图形;旋转是指将一个图形
绕着一个指定的点进行旋转;缩放是指按照指定的比例拉伸或缩
小一个图形;错切则是指利用斜角度数将一个图形在平面上扭曲。
在几何变换算法中,矩阵变换是应用最广泛的算法之一。
矩阵
变换的原理是将一个图形的顶点坐标与变换矩阵相乘,得到变换
后的新的顶点坐标。
二、渲染算法
渲染算法是指将数学模型变成可视的图像的过程。
计算机图形
学中的渲染算法包括光照模型、投影、纹理映射等。
其中,光照
模型主要是指计算出一个物体表面上每一个点的颜色,包括漫反射、镜面反射等各种光照情况;投影是指将一个三维模型映射成
为二维的图像;纹理映射则是指将一个图像贴到一个三维模型上,使其更加逼真。
常用的渲染算法包括光线跟踪、光栅化、体积渲染等。
光线跟
踪是指跟踪光线的路径,并计算出光线和物体的相交点,进而得
到图像的颜色、阴影等信息;光栅化则是将物体投影到屏幕上,
并对每个像素点进行操作,确定其颜色和浓度;体积渲染则是将
物体看作是一个体积,通过计算对光线的投影,得出图像的颜色
和亮度。
三、图像处理算法
图像处理算法主要是指对二维图像进行处理和优化。
计算机图
形学中的图像处理算法包括图像变换、信号处理等。
其中,图像
变换主要是指对图像进行缩放、旋转、扭曲等处理,以获得更好
的显示效果;信号处理则是指对图像的灰度、对比度、亮度等进
行调整,以使图像更加清晰、鲜明。
常用的图像处理算法包括图像过滤、边缘检测、形态学、分割等。
图像过滤是指对图像进行平滑或锐化处理,以改变其整体的
质量和效果;边缘检测则是指检测图像中所有的边界点,并加以
补充或去除,以提高图像的整体清晰度;形态学则是指利用数学
形态学的原理对图像进行处理,以增加其特性和特征;分割则是
指将图像分为多个区域,以得到更加精细的信息。
综上所述,计算机图形学中的基本算法包括几何变换、渲染和图像处理等。
这些算法在计算机图形学的各个领域中都发挥着重要的作用,为计算机图形学的发展提供了坚实的基础。
未来,随着科技的进步和人们对更加逼真的图像的需求,这些算法也将不断地得到升级和改进。