微积分函数的连续性

合集下载

函数的连续性与间断点分析

函数的连续性与间断点分析

函数的连续性与间断点分析函数的连续性是数学中的重要概念,它描述了函数在某个区间上的平滑性和无间断性。

本文将探讨函数的连续性以及间断点的分类与分析。

一、函数的连续性函数的连续性是指函数在其定义域上的无间断性。

具体而言,对于定义域内的任意两个数a和b,如果函数f在区间[a, b]上的值无论多么接近于f(a),都能使函数在该区间上连续,那么函数f就被称为在该区间上连续。

函数的连续性可以用极限的概念进行描述。

如果对于函数f的每一个定义域内的点x0,都有lim(x→x₀) f(x) = f(x₀),那么函数f在点x₀处连续。

换句话说,函数在某一点的函数值等于该点的极限值,这就是函数在该点的连续性。

函数的连续性在实际问题中具有广泛的应用。

例如,在物理学中,我们可以通过函数的连续性分析质体的运动轨迹;在经济学中,连续函数被用于分析经济增长模型等。

函数的连续性是数学建模中常见的假设之一。

二、间断点的分类与分析间断点是指函数在某些点处不满足连续性的现象。

根据函数在间断点的性质,可以将间断点分为三类,即可去除间断点、跳跃间断点和无穷间断点。

1. 可去除间断点可去除间断点是指函数在某点x₀处的极限存在,但函数在x₀处的函数值与该极限值不相等。

通常情况下,通过修正函数在间断点的定义,可以消除可去除间断点。

例如,考虑函数f(x) = (x - 1)/(x - 1),在x=1处有可去除间断点,但若将f(1)的定义修改为1,则可将间断点去除。

2. 跳跃间断点跳跃间断点是指函数在某点x₀处的左右极限存在且有限,但两侧极限值不相等。

这种间断点的存在导致函数在该点处存在一个突变或跳跃。

例如,考虑函数f(x) = 1/x,在x=0处有跳跃间断点,因为lim(x→0⁺) f(x) = +∞,而lim(x→0⁻) f(x) = -∞。

3. 无穷间断点无穷间断点是指函数在某点x₀处的一侧或两侧的极限为无穷大。

例如,考虑函数f(x) = 1/x,在x=0处有无穷间断点,因为lim(x→0⁺) f(x) = +∞,而lim(x→0⁻) f(x) = -∞。

微积分第1章函数、极限与连续之连续函数的概念和性质

微积分第1章函数、极限与连续之连续函数的概念和性质
若函数limlimlim处连续既左连续又右连续即因为所以sin定义5若函数yb内每一点都连续且在左端点a处右连续在右端点b处左连续则称函数162函数的间断点及其分类连续则一定满足以下条件存在如果fx在点不能满足以上任何一个条件则点是函数的间断点
第1章 函数极限与连续
1.1 函数 1.2 极限的概念 1.3 极限的运算 1.4 函数的连续性
x 1
x 1
左右极限存在不相等
所以 x =1为跳跃间断点
前页 后页 结束
3.无穷间断点
f(x)在点 x的0 左、右极限至少有一个是无穷
大,则称 x 为0 f(x)的无穷间断点
例4y
1 x
x=0为无穷间断点
4.振荡间断点
当 x时x,0 函数值不断地在两点之间跳
动,左右极限均不存在
续函数。 因此,基本初等函数在其定义域内连续.
定理3设函数y = f(u)在点 处u 0连续,u= f (x)在点 处连x 0 续,
且 u0 ,则复(x合0)函数
在点yf处[连(x续)]. x 0
即: lx ix0m f[(x) ]f[(x0)]
因此,一切初等函数在其定义区间内连续. 前页 后页 结束
解 函数在x= -1 , x = 0 , x = 1处没有定义
所以x= -1 , x = 0 , x = 1是函数的间断点
(Ⅰ)
x2 x
lim
x1
x (x2 1)
所以x = -1是函数的无穷间Fra bibliotek点(Ⅱ)
x li m 0 f(x)x li m 0 xx (2 x 2 x1) x li m 0 (x11) 1 x li m 0 f(x)x li m 0 xx (2 x 2 x1) x li m 0 (x1 1) 1

函数的极限及连续性

函数的极限及连续性

函数的极限及连续性函数的极限和连续性是微积分学中非常重要的概念,它们在数学和科学的各个领域中都有广泛的应用。

本文将介绍函数的极限和连续性的定义、性质以及它们在实际问题中的应用。

一、函数的极限函数的极限是用来描述函数在某一点上的变化趋势的概念。

在数学中,我们通常用极限来研究函数的性质和行为。

1.1 定义设函数 f(x) 在某一点 a 的某一个邻域内有定义,如果存在一个常数L,对于任意给定的正数ε,都存在另一个正数δ,使得当 0 < |x - a| < δ 时,有 |f(x) - L| < ε成立,那么我们就称函数 f(x) 在点 a 处的极限为 L,记作lim┬(x→a)⁡〖f(x)=L〗。

1.2 性质函数的极限具有一些特性,如唯一性、局部有界性、保号性等。

这些性质使得我们可以通过极限来推导函数的一些重要性质。

1.3 应用函数的极限在微积分、物理学、工程学等领域有着广泛的应用。

例如,在物理学中,我们可以通过函数的极限来描述在某一瞬间的速度、加速度等物理量的变化情况。

二、函数的连续性连续性是函数在某一点上无间断变化的特性。

一个函数若在其定义域上的任意一点都满足连续性,则称该函数为连续函数。

2.1 定义设函数 f(x) 在点 a 处有定义,如果满足以下三个条件:1) f(a) 存在;2) lim┬(x→a)⁡〖f(x) exists〗;3) lim┬(x→a)⁡〖f(x) = f(a)〗;那么我们就称函数 f(x) 在点 a 处连续。

2.2 性质连续函数具有一些重要的性质,如连续函数的局部保号性、介值性等。

这些性质使得我们可以通过连续函数来解决一些实际问题。

2.3 应用函数的连续性在经济学、物理学、统计学等领域中有着广泛的应用。

例如,在经济学中,我们可以通过连续函数来描述市场价格的变化情况。

三、函数的极限与连续性的关系函数的极限和连续性是紧密相关的。

在微积分学中,我们通常使用函数的极限来研究函数的连续性。

数学分析高等数学微积分基本定理及公式

数学分析高等数学微积分基本定理及公式

数学分析高等数学微积分基本定理及公式微积分的基本定理是微积分学中最基础、最重要的定理之一,可以说是微积分的核心。

该定理由牛顿、莱布尼茨以及斯托克斯等人独立发现,奠定了微积分学的基础。

微积分的基本定理可以分为两个部分:微积分基本定理第一部分,也称为牛顿—莱布尼茨公式,描述了积分和导数之间的关系;微积分基本定理第二部分,也称为斯托克斯公式,描述了曲线积分和曲面积分之间的关系。

下面将对这两个部分进行详细介绍。

微积分基本定理第一部分,牛顿—莱布尼茨公式,可以简洁地表示为:∫[a,b] f(x)dx = F(b) - F(a)其中,f(x)为连续函数,F(x)为其原函数,[a,b]代表积分区间。

该公式说明了连续函数的不定积分可以通过求原函数在积分区间端点处取值之差来计算。

这个公式也可以用来计算定积分,即通过求被积函数的原函数在积分区间端点处的值之差来计算定积分的值。

微积分基本定理第二部分,斯托克斯公式,可以简洁地表示为:∫∫(S) ∇ × F · ds = ∫(C) F · dr其中,∇ × F为矢量场F的旋度,S为曲面,C为曲线,ds为曲面元素,dr为曲线元素。

该公式说明了矢量场的曲面积分可以通过计算该矢量场的旋度沿曲线的环路积分来求得。

这个公式还可以推广到高维空间中的曲面和曲线。

值得注意的是,微积分基本定理的条件之一是函数的连续性。

如果函数在积分区间内存在间断点,那么微积分基本定理并不成立,必须通过其他方法来计算积分值。

总之,微积分基本定理是微积分学中的核心定理,它将微分学和积分学相统一,为计算和应用微积分提供了有力的工具。

通过这个定理,我们可以方便地计算积分,并且利用其在各种实际问题中解决数学和物理问题。

函数极限连续重要概念公式定理

函数极限连续重要概念公式定理

函数极限连续重要概念公式定理函数的极限、连续是微积分中非常重要的概念。

它们是帮助我们研究函数性质、计算导数和积分的基础。

下面我们将详细介绍函数极限和连续的概念、常用公式和定理。

一、函数极限函数的极限是指当自变量趋向一些特定值时,函数的取值是否趋于确定的结果。

极限表示函数在其中一点的趋势和变化情况。

函数极限的概念可以分为以下几个层次:1.无穷极限当自变量趋向无穷大或无穷小时,函数的极限称为无穷极限。

常见的无穷极限有以下几种形式:- 当$x\rightarrow+\infty$时,$\lim_{x\rightarrow+\infty}f(x)=L$,表示当$x$趋向正无穷时,函数$f(x)$的极限为$L$。

- 当$x\rightarrow-\infty$时,$\lim_{x\rightarrow-\infty}f(x)=L$,表示当$x$趋向负无穷时,函数$f(x)$的极限为$L$。

- 当$x\rightarrow+\infty$时,$\lim_{x\rightarrow+\infty}f(x)=+\infty$,表示当$x$趋向正无穷时,函数$f(x)$的极限为正无穷。

- 当$x\rightarrow-\infty$时,$\lim_{x\rightarrow-\infty}f(x)=-\infty$,表示当$x$趋向负无穷时,函数$f(x)$的极限为负无穷。

2.有限极限当自变量趋向一些有限值时,函数的极限称为有限极限。

常见的有限极限有以下形式:- 当$x\rightarrow a$时,$\lim_{x\rightarrow a}f(x)=L$,表示当$x$趋向$a$时,函数$f(x)$的极限为$L$。

3.间断点函数在一些点上不具有有限的极限时,称该点为函数的间断点。

常见的间断点有以下几种类型:- 第一类间断点:当$x\rightarrow a$时,函数极限不存在且左右极限存在,即$\lim_{x\rightarrow a^-}f(x)$和$\lim_{x\rightarrowa^+}f(x)$存在,但不相等。

清华微积分高等数学第四讲连续函数的性质

清华微积分高等数学第四讲连续函数的性质
下列命题等价
(1) x l ix0m f(x)f(x0)
(2 ) f(x )f(x 0 )(x )
(其l中 im (x)0)
x x0
2020/5/3
3
(3) f 在 点x0既 左 连 续 又右 连 续
x l ix 0 m f(x )x l ix 0 m f(x )f(x 0)
(4) lx i0m f(x0)0 xxx0, f(x0)f(x)f(x0)
o
x b
18
介值定理的证明
[证] 构造辅助函数
令g(x)f(x)
则 g (x ) C [ a ,b ]g ,( a )g ( b ) 0
运用零 ,知 点 存 定 (在 a,b 理 )使 , 满
g()0 f()
2020/5/3
19
[例 ]设f(x)C[0,1],且 满0足 f(x)1,
试 证 : 存 (0,1在 ), 使f(得 ),
(二)连续函数的有界性: 若函 f在 数x点 0连,则 续 f在 x0的
某 邻 域 (简 上f称 在 有x点 界 0有)界
2020/5/3
4
(三)连续函数的保号性:
若 函 数 f 在 点x0连 续 ,且f(x0)0, 则f 在 点x0的 某 邻 域 上.即 保 号
0, 使 在(x0 , x0 ) 上
当x 0时, f (x) e1x 也是初等函,在 数定义区间上连 . 续
1x1 1
lim f(x)lim f(0)
x 0
x x 0
2
lim f(x)lim e1 x
x 0
x 0
综 上 所 , f(述 x)在x0处 都 是 连, 续
在 点 x0处 不 连 . 点 续x0是f(x)的

1-8 函数的连续性与间断点 (高等数学)

1-8 函数的连续性与间断点 (高等数学)

§1.8 函数的连续性与间断点教学内容:一.函数连续的概念定义 增量:设变量u 从它的一个初值1u 变到终值2u ,终值与初值的差21-u u 称为变量u 的增量,记为∆u ,即21∆=-u u u .定义 在某一点处的连续性:(1)设函数()y f x =在点0x 的某邻域内有定义,如果当自变量x 有增量x ∆时,函数相应的有增量y ∆, 若0lim 0x y ∆→∆=,则称函数()y f x =在点0x 处连续,0x 为()f x 的连续点.(2)设函数()y f x =在点0x 的某邻域内有定义,若00lim ()()x x f x f x →=,则称()y f x =在点0x 处连续.(3)设函数()y f x =在点0x 的某邻域有定义,如果对于任意正数ε,总存在正数δ,使得当x 满足不等式0x x δ-<时,有0()()f x f x ε-<,则称函数()y f x =在点0x 处连续.定义 函数在区间上的连续性:如果函数()f x 在开区间(,)a b 内每一点都连续,则称()f x 在(,)a b 内连续;如果函数()f x 在开区间(,)a b 内每一点都连续,且在左端点x a =处右连续,在右端点x b =处左连续,则称()f x 在闭区间a b [,]上连续,并称a b [,]是()f x 的连续区间.注 (1) ()f x 在左端点x a =右连续是指满足lim ()();x a f x f a +→=(2) ()f x 在右端点x b =左连续是指满足lim ()()x b f x f b -→=.定理:函数()f x 在点0x 处连续的充分必要条件是函数()f x 在点0x 处既左连续又右连续.二.函数的间断点定义函数间断点:如果函数()f x 在点0x 处不连续,则称函数()f x 在点0x 处间断,点0x 称为()f x 的间断点.第一类间断点 ()f x 在点0x 的左右极限00()f x -和00()f x +都存在的间断点为第一类间断点. 它包含两种类型:可去间断点与跳跃间断点.第二类间断点 称00()f x -和00()f x +中至少有一个不存在的间断点为第二类间断点.。

最新微积分第1章函数、极限与连续2

最新微积分第1章函数、极限与连续2
前页 后页 结束
1 (1) 数列 {xn } { },即 n 1 1 1 1, , , , , . 2 3 n
(2) 数列 {x } { n 1} n
n
2 3 n1 即 , , , , 1 2 n
(3) 数列 {x } {(1) n 1},即 n
1, 1,1, , (1)n 1 , .
x|
于某个确定的常数A,则称常数A为函数f (x)当x→+∞
时的极限,记为 lim f ( x) A
x

f ( x) A
(x→∞)
定理3
lim f ( x ) A 的充要条件是 lim f (x) lim f (x) A
x
x x
前页 后页 结束
HomeWork
函数的极限与左、右极限有如下关系:
定理2
x x0
lim f ( x ) A
xlim x
0
f ( x ) lim f ( x ) A
x x0
注: 定理2常用来判断分段函数在分段点的极限是否存在
f ( x) 1 cos x , 例2 判断函数 sin x ,
在 x 0 点处是否有极限.
前页
后页
结束
1.2.1 数列的极限
• 设木棒长度为1,则: • 第一天,木棒长度为1/2 ; • 第二天,木棒长度为1/4 ; • 第三天,木棒长度为1/8; • ……. • 第n天,木棒长度为1/2^n • …….
前页 后页 结束
木棒长度Sn与n天数有依赖关系,
• 这种依赖关系用函数表示:
Sn f (n)(n 1, 2,)
• P26

1 (1) (3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lim f ( x) lim( x 2) 2 f (0),
x0
x0
右连续但不左连续 ,
故函数 f ( x)在点x 0处不连续.
微积分
4.连续函数与连续区间
在区间上每一点都连续的函数,叫做在该区间上 的连续函数,或者说函数在该区间上连续. 如果函数在开区间(a,b)内连续, 并且在左端点 x a处右连续, 在右端点x b处左连续, 则称 函数 f ( x)在闭区间 [a,b]上连续. 连续函数的图形是一条连续而不间断的曲线.
定理 函数 f ( x)在 x0 处连续 是函数 f ( x)在 x0
处既左连续又右连续.
微积分
例2
讨论函数
f (x)
x

x

2, 2,
x 0, x 0,
在 x 0处的
连续性.
解 lim f ( x) lim( x 2) 2 f (0),
x0
x0
微积分
例3 证明函数 y sin x在区间(,)内连续.
证 任取 x (,),
y sin( x x) sin x 2 sin x cos( x x )
2
2
cos( x x) 1, 则 y 2 sin x .
2
2
对任意的, 当 0时, 有 sin ,
f (x)
f ( x0 )
那末就称函数 f ( x)在点 x 0 连续.
" "定义 :
0, 0, 使当 x x0 时, 恒有 f ( x) f ( x0 ) .
微积分
设:
x : x0 x, Vx @x x0
y : f (x0 ) f (x), Vy @f (x) f (x0 )
xx0
f
(x)

f
( lim xx0
x)

f (x0 ).
微积分
例1
试证函数
f
(
x)


x
sin
1 x
,
x 0, 在x 0
0, x 0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
由定义2知
(3)
lim
x x0
f (x)
f ( x0 ).
如果上述三个条件中只要有一个不满足, 则称
函数 f ( x)在点 x0处不连续(或间断), 并称点x0为 f ( x)的不连续点(或间断点).
微积分
1.跳跃间断点 如果 f ( x)在点 x0处左, 右极限都
存在,但f ( x0 0) f ( x0 0), 则称点 x0为函数 f ( x)的跳跃间断点.
微积分
2.7 函数的连续性
微积分
函数连续性的定义
函数的连续性描述函数的渐变性态, 在通常意义下,对函数连续性有三种 描述:
当自变量有微小变化时,因变量的 变化也是微小的; 自变量的微小变化不会引起因变量的 跳变; 连续函数的图形可以一笔画成,不断开.
微积分
一、函数的连续性
1.函数的增量
设函数 f ( x)在U ( x0 )内有定义, x U ( x0 ),
但lim f ( x) A f ( x ), 或 f ( x)在点 x 处无定
x x0
0
0
义则称点x0为函数 f ( x)的可去间断点.
例6 讨论函数
2 x, 0 x 1,
f
(
x
)

1,
x1
1 x, x 1,
在x 1处的连续性 .
y y 1 x
2 y2 x
故 y 2 sin x x , 当x 0时, y 0. 2
即函数 y sin x对任意 x (,)都是连续的.
微积分
二、函数的间断点
函数 f ( x)在点 x0处连续必须满足的三个条件 : (1) f ( x)在点x0处有定义;
(2) lim f ( x)存在; x x0
函数 f ( x)在 x 0处连续.
微积分
3.单侧连续
若函数f ( x)在(a, x0 ]内有定义,且f ( x0 0) f ( x0 ),

称f
(
x
)在
点x
处左
0
连续;
若函数f ( x)在[ x0 , b)内有定义,且f ( x0 0) f ( x0 ), 则称f ( x)在点x0处右连续.
y f ( x) f ( x0 ),
x 0 就是 x x0 , y 0 就是 f ( x) f ( x0 ).
微积分
定义 2
设函数
f
(
x
)
在U
(
x 0
)
内有定义,如果
函数
f
(
x)当x

x 0
时的极限存在,且等于它在
点 x 0 处的函数值 f ( x0 ),即
lim
x x0
例5
讨论函数
f
(
x)

x, 1 x,
x 0,在x 0处的连续性. x 0,
解 f (0 0) 0, f (0 0) 1,
y
f (0 0) f (0 0),
x 0为函数的跳跃间断点.
o
x
微积分
2.可去间断点如果 f ( x)在点 x0处的极限存在 ,
在U

(
x 0
)
内有定义,如
果当自变量的增量x 趋向于零时,对应的函
数的增量y 也趋向于零,即 lim y 0 或 x 0
lim [
x 0
f
(
x0
x)
f ( x0 )] 0,那末就称函数
f ( x)在点 x 0 连续, x 0 称为 f ( x) 的连续点.
设 x x x, 0
x x x0 , 称为自变量在点 x0的增量.
y f ( x) f ( x0 ),称为函数 f ( x)相应于x的增量.
y
y
y f (x)
y f (x)
y
y
x
x
0 x0 x0 x x 0 x0 x0 x x
微积分
2.连续的定义
定义 1
设函数
f
(
x
)
定义1: limVy 0 Vx0
定义2:
lim
xx0
f
(x)
f
(x0 )
定义3 : 0, 0,当|x x0| 时,|f (x) f (x0 )|<
都称为f (x)在0处连续。
微积分
注意
f [x]在x0处连续意味着极限运算与函数运算可以交换顺序。
ie
lim
相关文档
最新文档