割圆术——刘徽《九章算术注》
刘徽割圆术精品PPT课件

第五,刘徽指出:“割之弥细,所失 弥少。割之又割,以至于不可割,则与 圆周合体而无所失矣。”(《九章算术》 方田章圆田术刘徽注)这就是说,圆内 接正多边形的边数无限增加的时候,它 的周长的极限是圆周长,它的面积的极 限是圆面积。
发,求得正十二边形的边长。根据勾股 定理,从圆内接正n边形每边的长,可以 求出圆内接正2n边形每边的长。
第三,从圆内接正n边形每边的长, 可以直接求出圆内接正2n边形面积。如 图所示,四边形OADB的面积等于半径 OD和正n边形边长AB乘积的一半。
第四,圆面积S满足不等式 S2n<S<S2n+(S2n-Sn)。
因为《缀术》失传了,祖冲之究竟是用什么方法将π算 到小数点后第七位,又是怎样找到既精确又方便的密 率的呢?这至今仍是困惑数学家的一个谜。
祖冲之曾写过一本数学著作《缀术》,记录了他 对圆周率的研究和成果。但当时“学官莫能究其 深奥,是故废而不理”,以致后来失传。
很多人都知道用密率355/113表示π的近似值,是 一项了不起的贡献。密率355/113传到了日本后, 1913年日本数学史家三上一夫建议将祖冲之圆周 率的密率数值命名为“祖率”,得到一致赞同。 祖冲之对圆周率的求索,超过了世界水平整整 1000年!直到16世纪德国人V·奥托和荷兰人A·安 托尼斯才发现了圆周率的密率355/113。 但是 “祖率”的妙处,和给今人留下的困惑,不少人 却说不出来。
(二)圆周率的定义
指平面上圆的周长与直径之比。早 在一千四百多年以前,我国古代著名 的数学家祖冲之,就精密地计算出圆 的周长是它直径的3.1415926--3.1415927倍之间。这是当时世界上 算得最精确的数值----圆周率。
刘徽与割圆术

▪ 刘徽由正六邊形開始,不斷倍增正多邊形的邊數。
正6邊形
正12邊形
正24邊形
邊數愈多,正多邊形愈接近圓形。 最後,劉徽求得π≈ 3.1416。 BG
正48邊形
7
谢谢观看
BG
8
BGΒιβλιοθήκη 4②刘徽原理在《九章算术•阳马术》注中,他在用无限分割的方法解决锥体体积时, 提出了关于多面体体积计算的刘徽原理。
③“牟合方盖”说 在《九章算术•开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径) 的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是 指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
▪ 成就
▪ 刘徽的成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算
术注》中。它实已形成为一个比较完整的理论体系: ①在数系理论方面 用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的
运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根 的存在,并引进了新数,创造了用十B进G 分数无限逼近无理根的方法。 3
④方程新术 在《九章算术•方程术》注中,他提出了解线性方程组的新方法,运用了 比率算法的思想。 ⑤重差术 在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等 测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展 为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次 测望的问题。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的
创见: ①割圆术与圆周率 他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并
刘徽割圆术

(四)建议将3月14日定为祖冲之纪念日 建议将 月 日定为祖冲之纪念日
美国麻省理工学院首先倡议将3日 日 寓意3﹒ ) 美国麻省理工学院首先倡议将 日14日(寓意 ﹒14)定为国际 圆周率日(National p Day)。1736年,瑞士数学家歐拉 (Euler, 圆周率日 。 年 , 1707 – 1783) 提倡以希腊字母 p (音:pi) 来表示圓周率,p是圓周 来表示圓周率, 是圓周 音 的字頭。直到現在, 的希腊文 perijereia (英文为 periphery) 的字頭。直到現在,p 已 英文为 成为圓周率的专用符號。在这一天,学生们会彼此祝福“ 成为圓周率的专用符號。在这一天,学生们会彼此祝福“圆周率日 快乐! 快乐!”用大家熟悉的生日歌旋律唱起 happy pi day to you!学 ! 院众多对圆周率有兴趣的人聚在一起讨论圆周率问题,吃馅饼(英 院众多对圆周率有兴趣的人聚在一起讨论圆周率问题,吃馅饼 英 同音)以及其他各种以圆周率为主题的食物 文pie,与圆周率英文 同音 以及其他各种以圆周率为主题的食物, ,与圆周率英文pi同音 以及其他各种以圆周率为主题的食物, 举行圆周率背诵比赛。 举行圆周率背诵比赛。 全球各地的一些著名大学的数学系,也在3月 日举行 日举行Party庆 全球各地的一些著名大学的数学系,也在 月14日举行 庆 在圓周率日當天, 祝。在圓周率日當天,加拿大滑铁庐大学还会以供應免費的餡餅来 庆祝。而3月14日恰好又是著名的物理学家爱因斯坦 (Albert 庆祝。 月 日恰好又是著名的物理学家爱因斯坦 Einstein,1879 – 1955) 的生日。所以他们还会「择时辰」以庆祝 的生日。所以他们还会「择时辰」 , 圆周率日:选择在下午1時 分开始庆祝 分开始庆祝, 圆周率日:选择在下午 時59分开始庆祝,它代表 3.14159 (准确至 准确至 六位小数) 的圓周率近似值。 六位小数 的圓周率近似值。
刘徽和割圆术

刘徽和割圆术中国向来以文明古国自称,谈到中国古代文明,我们一定会说起以“经世致用”为信条,以筹算为主的中国古代数学史。
在这段曲折发展的历史中,我们的古代数学跟其他古文明一样,在一定程度上获得了发展,特别是在算法的深度和广度上有着卓越的发展。
但我们不得不提及,在中国古代长达2000多年的封建制度统治下,数学研究一直停留在计算层面,理论的严谨和系统却不尽如人意,这同时也导致了一些错误的结果的出现。
在这样的数学背景下,刘徽可谓是中国数学史上的一朵奇葩,他有着“为数学而数学”的价值观,曾令中国古代数学的严谨与系统达到前所未有的高度。
下面我将主要介绍刘徽及其最耐人寻味的一段成就——割圆术。
刘徽,生于公元250年左右,是魏晋时人。
他的一生为数学刻苦探求,虽然地位低下,但人格高尚。
他所撰的《九章算术注》是中国最宝贵的数学遗产。
刘徽思想敏捷,方法灵活,既提倡推理又主张直观,是中国最早明确主张用逻辑推理的方式来论证数学命题的人。
他不是沽名钓誉的庸人,而是学而不厌的伟人。
由于篇幅有限,对刘徽卓越的成就不能一一介绍,只能介绍其最耐人寻味的割圆术。
割圆术可谓是中国古代数学的奇迹,在后面与阿基米德求圆面积方法的比较中,您将发现割圆术的精妙与美丽。
在《九章算术》中曾提到“圆田术”---半周半径相乘得积步。
这就是著名的圆面积公式:(1) 其中S 表示圆面积,C 表示周长,R 表示半径。
我们今天可以得出这个公式是正确的,但在《九章算术》中只是提到了这一结论,却未给出严谨的证明。
在刘徽之前人们以圆内接正六边形的周长代替圆周长C ,以圆内接正十二边形的面积代替圆面积S ,用出入相补原理将正十二边形拼补成一个以正六边形的周长的一半作为长,以圆半径作为宽的长方形来推证上述公式。
在今天,我们可以看出用圆内12S CR接正六边形和圆内接正十二边形来近似代替圆是相当粗糙的,但在当时很少有人能指出这一算法的不严谨性,而刘徽却说此方法“合径率一而外周率三也”,一针见血的指出了这一方法的不严格性。
关于刘徽的割圆术(终审稿)

关于刘徽的割圆术文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-关于刘徽的割圆术关键词九章算术, 刘徽, 割圆术, 圆周率1 刘徽割圆术的内容刘徽的割圆术, 是刘徽在为《九章算术》第一卷方田中的圆田术所作的注中提出来的, 包括如下内容:1) 刘徽首先解释了圆田术求圆面积的方法, 然后指出“周三径一”是不对的, 他说: 以半周乘半径而为圆幂, “此以周径谓至然之数, 非周三径一之率也. 周三者, 从其六觚之环耳, 以推圆规多少之较, 乃弓之与弦也. ”2) 刘徽提出用割圆内接正六边形为正十二边形等步骤, 使圆内接正多边形的面积逐次逼近圆的面积. 进而又指出: “割之弥细, 所失弥少. 割之又割, 以至于不可割, 则与圆周合体而无失矣. 觚面之外, 又有余径. 以面乘余径则幂出弧表. 若夫觚之细者, 与圆合体, 则表无余径. 表无余径, 则幂不外出矣. ”3) 刘徽详述了割圆的算法, 例如, 关于割圆内接正六边形为正十二边形, 他说: “令半径一尺为弦, 半面五寸为勾, 为之求股. 以勾幂二十五寸减弦幂, 余七十五寸, 开方除之, 下至秒忽, 又一退法求其微数, 微数无名者以为分子, 以下为分母, 约为五分忽之二, 故得股八寸六分六厘二秒五忽五分忽之二. 以减半径, 余一寸三分三厘九毫七秒四忽五分忽之三, 谓之小股, 为之求弦, 其幂二千六百七十九亿四千九百一十九万三千四百四十五忽, 余分弃之, 开方除之, 即十二觚之一面也. ”4) 刘徽在计算了圆内接正一百九十二边形的面积后, 对圆面积进行了大胆推断, 从而获得了当时世界上最精确的圆周率的值. 他说: “差幂六百二十五分寸之一百五, 以十二觚之幂为率消息, 当取此分寸之三十六以增于一百九十二觚之幂( 即三百一十四寸六百二十五分寸之六十四) , 以为圆幂三百一十四寸二十五分寸之四. ”5) 刘徽验证了自己获得的结果的正确性, 为此, 他继续用割圆术, 直到求出圆内接正三千零七十二边形的面积. 他说: “当求一千五百三十六觚之一面, 得三千七十二觚之幂,而裁其微分, 数亦宜然, 重其验耳. ”2 刘徽割圆术的历史地位2. 1 古希腊已有割圆思想古希腊巧辩学派的学者Ant iphon ( 约公元前五世纪) 提出用边数不断增加的圆内接正多边形来接近圆, 并提出把圆看作是无穷多边的正多边形; 另一个古希腊巧辩学派的学者Br yso n( 约公元前五世纪) 类似地提出用边数不断增加的圆外切正多边形来接近圆; 而古希腊的一位大数学家Eudox us( 约公元前四世纪) 则依据这一思想创立了穷竭法这种着名的获取定理和证明定理的方法.虽然刘徽不是人类历史上第一个提出割圆思想的人, 但是, 他没有简单地重复任何人, 而是独立地、完整地、创造性地提出了割圆术, 和古希腊的数学家们一样, 刘徽的思想同样是辉煌的.2. 2 刘徽用割圆术获得了当时世界上最精确的圆周率值古希腊的Ant iphon, Br yso n, Eudo xus 虽然先于刘徽提出割圆思想, 但他们都没有用它去求圆周率的值. 然而, Archimedes( 公元前287~公元前212年) 继承了割圆思想, 并根据圆周长大于圆内接正多边形周长而小于圆外切正多边形周长, 得到圆周率P满足223/ 71 < P< 22/ 7 的结果. 古希腊的Ptolemy( 公元~168年) 并没有专门研究圆周率的值, 他依据他的定理( Ptolemy 定理) 提出一种特殊的割圆技巧,求出了各圆心角所对的弦长的六十进制数值, 其中1/ 2度圆心角所对弦长的数值为31′2 5″,相当于求得P的值为P≈377/ 120. 这是刘徽以前有据可考的圆周率的最好结果.我国古代很早就知道“周三径一”误差很大, 需要改进, 不少人在这方面作过工作:汉代的刘歆( 约公元前50~公元23年) 所用圆周率的值为P≈3. 1547;汉代的张衡( 公元78~139年) 所用圆周率的值为P≈3. 1623; 三国的王蕃( 公元219~257年) 所用圆周率的值为P≈3. 1556. 这些P的近似值都不如Archimedes 和Ptolemy 的结果好, 并且都未提供出正确的算法, 缺乏理论根据.而刘徽根据他所提出的割圆术, 运用勾股定理, 设计出一个完整的求圆周率P近似值的算法.设n= 6 ( 术曰: 割六觚以为十二觚) , 又设r= 1, 则有s= 1( 术曰: 置圆径二尺, 半之为一尺, 即六觚之面也) , 算法步骤如下:1 设弦为r , 勾为s/ 2, 求股, 赋予a( 此为小股, 术曰: 令半径为弦,半面为勾, 为之求股) ;o将r - a 赋予b( 此为余径, 术曰: 觚面之外, 又有余径, 又曰: 以减半径, 谓之小股) ;设勾仍为s/ 2, 股为b, 求弦, 赋予s( 实为圆内接正2n 边形的边长, 术曰: 为之求小弦, 即十二( 2n) 觚之一面也) ;求S= ns 圆周率的近似值( 实为圆内接正2n 边形的半周长, 亦为圆内接正4n 边形的面积, 术曰: 得二十四( 4n) 觚之幂) ;将2n 赋予向1 .上述算法为计算出更精确的圆周率值奠定了基础. 刘徽所获得的“圆幂三百一十四寸二十五分寸之四”,即P≈3. 1416, 这是当时世界上最精确的圆周率的值.顺便指出, 祖冲之( 公元429~500年) 研究过刘徽的割圆术, 再加上自己的创造, 他获得了当时世界上最精确的圆周率的值: 3. 1415926 < P< 3. 1415927. 此外, 他还用最佳近似分数给出所谓疏率和密率: P≈22/ 7, 这一结果与Archimedes的上限结果相同; P≈355/ 113, 这一结果在西方迟至1573年才由Otho 重新获得.2. 3 在中国刘徽首次比较准确地描述了极限概念在中国战国时代的着作《庄子》中记录了名家惠施的话: “一尺之棰, 日取其半, 万世不竭. ”这段话已经有了极限思想的雏形. 但名家所表现出的极限思想是不自觉的、模糊的. 名家的目的仅仅是为了在辩论中强调名词概念的相对性, 因而不可能形成数学上的清晰的极限概念.但是, 刘徽在割圆术中比较准确地描述了极限概念. 他说: “割之弥细, 所失弥少. 割之又割, 以至于不可割, 则与圆周合体而无失矣. ”这明确地肯定了limS= P. 这里S是圆内接正2n 边形的半周长, 亦为圆内接正4n 边形的面积.他又说: “觚面之外, 又有余径. 以面乘余径则幂出弧表. ”这表明刘徽实际上建立了不等式S < P< S+ e, 其中e= S- S , 此即刘徽所说的“差幂”.刘徽的这一不等式明显地优于Archimedes 的不等式, 这是因为: 第一, Archimedes 既要用到圆内接正多边形,也要用到圆外切正多边形, 而刘徽用“差幂”,只需要用圆内接正多边形, 可以减少大约一半运算次数; 第二, 由于S 等于圆内接正4n 边形的半周长, 并且容易证明, S+ e小于圆外切正4n 边形的半周长, 因而, 刘徽的这一不等式比Archimedes 的不等式更精确. 刘徽显然和Archimedes 一样, 已经意识到这里存在类似夹逼定理这样的极限性质, 由此既可以推断极限的存在, 还可以确定极限值各数位上的准确的有效数字. 刘徽正是这样做的, 他用圆内接正一千五百三十六边形和圆内接正三千零七十二边形的面积, 依据他的不等式, 验证了他的结果直到第四位小数都是正确的.刘徽接着说: “觚之细者, 与圆合体, 则表无余径, 表无余径, 则幂不外出矣. ”他正是根据这一点, 解释了圆田术求圆面积的方法( 半周半径相乘得积步) . 刘徽的解释方法, 与Eudox us 证明圆面积之比等于半径平方比的穷竭法如出一辙.3 刘徽割圆术的局限性刘徽的极限概念是不彻底的刘徽的割圆术虽然比较准确地描述了极限概念, 而且, 很可能进行了真正的极限运算, 但刘徽的数学素养还不足以完整地描述这个无限的趋向过程. 他采用了“割之又割, 以至于不可割, 则与圆周合体而无失矣”,“觚之细者, 与圆合体, 则表无余径”等绝对的、不准确的言词. 实际上, 刘徽的思想陷入了矛盾之中, 一方面, 他像惠施那样意识到割圆的过程是无限的, 是万世不竭的, 另一方面, 他又竭力回避无限, 不愿意正视无限, 相信总有“不可割”,“表无余径”,“幂不外出”,“与圆周合体而无失”之时. 这就足以说明刘徽的极限概念是不彻底的. 事实上, 我国古代还有不少学者虽具有极限思想的雏形, 但在描述中都毫无例外地不得不采用绝对的、不准确的言词. 极限概念的不彻底, 限制了刘徽对极限概念的挖掘和应用, 也限制了刘徽在数学上的创造性. 纵观刘徽在数学上的工作可以看出, 虽然他在圆周率的计算等方面取得了令世人瞩目的成果, 但是, 刘徽在整个数学史上的地位,则不可能超过Ar chimedes 等人.参考文献1 刘徽注. 九章算术. 上海: 上海古籍出版社, 19902 Morris Kl ine 着; 张理京, 张锦炎译. 古今数学思想. 上海: 上海科学技术出版社, 19793 How ard Eves . An In tr od uct ion to the His tory of Mathemat ics. New York: Saunders Coll ege Pub lish ing, 19834 李俨. 中算史论丛. 北京: 中国科学院出版, 19545 钱宝琮. 中国数学史. 北京: 科学出版社, 19816 邓建中, 葛仁杰, 程正兴. 计算方法. 西安: 西安交通大学出版社, 19857 王乃信,王树林,西北农业大学学报,1997年8月。
数学文化之割圆术

割圆术3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.“圜,一中同长也”.意思是说:圆只有一个中心,圆周上每一点到中心的距离相等.早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系.认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积.我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式.为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上著名的“割圆术”. 利用圆内接或外切正多边形,求圆周率近似值的方法,其原理是当正多边形的边数增加时,它的边长和逐渐逼近圆周.早在公元前5世纪,古希腊学者安蒂丰为了研究化圆为方问题就设计一种方法:先作一个圆内接正四边形,以此为基础作一个圆内接正八边形,再逐次加倍其边数,得到正16边形、正32边形等等,直至正多边形的边长小到恰与它们各自所在的圆周部分重合,他认为就可以完成化圆为方问题.到公元前3世纪,古希腊科学家阿基米德在《论球和圆柱》一书中利用穷竭法建立起这样的命题:只要边数足够多,圆外切正多边形的面积与内接正多边形的面积之差可以任意小.阿基米德又在《圆的度量》一书中利用正多边形割圆的方法得到圆周率的值小于三又七分之一而大于三又七十分之十,还说圆面积与外切正方形面积之比为11:14,即取圆周率等于22/7.公元263年,中国数学家刘徽在《九章算术注》中提出“割圆”之说,他从圆内接正六边形开始,每次把边数加倍,直至圆内接正96边形,算得圆周率为 3.14或157/50,后人称之为徽率.书中还记载了圆周率更精确的值3927/1250(等于3.1416).刘徽断言“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.其思想与古希腊穷竭法不谋而合.割圆术在圆周率计算史上曾长期使用.1610年德国数学家柯伦用2^62边形将圆周率计算到小数点后35位.1630年格林贝尔格利用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最好结果.分析方法发明后逐渐取代了割圆术,但割圆术作为计算圆周率最早的科学方法一直为人们所称道.。
魏晋数学家刘徽与《九章算术》

这就是现代数学中的极限概念。圆周率是数学上的一个重要数据,
计算圆面积、圆周长、球表面积和球体积等,都离不开圆周率,所
以,推算出它的准确数值,无论是在理论上还是在实践上都具有
重要的意义。
在世界数学史上,许多国家的数学家都曾把圆周率作为重要
的研究课题,为求出它的精率数值的准确程度,可以衡量这个国
家数学的发展情况。刘徽的贡献就在于他开创了圆周率研究的新
阶段,推动了我国古代数学的发展。
刘徽在注解《九章算术》时除了创建了新的体系“割圆术”外,
他还运用了“齐同术”,即分数加减法中的通分法,用“今有术”
魏晋时期,有一位名叫刘徽的杰出数学家。他在数学领域做
出了很大贡献,而最主要的是为我国古代数学的经典著作《九章
算术》做注。他撰写的《九章算术注》一书,共有卷,在世界
数学史上占有突出的地位
《九章算术》是东汉初期(公元1世纪左右)流传下来的最早
的数学方面的专著,书中总结了我国古代劳动人民和数学家在长
《九章算术》虽是一部经典著作,但它对所列问题的解法或结
论缺乏必要的解释和说明,对所依据的理论也没有做系统的探讨,
这就妨碍了数学的进一步发展。刘徽看到了这一点,于是他不畏
艰难,决定为《九章算术》做注,这是一项非常繁琐的工作。大
约在魏陈留王景元四年(公元263年)刘徽开始注解《九章算
术》,他在序言中说“:我从小学习《九章》,长大后又仔细阅读,
理的应用及相似直角三角形的解法)等九章,其中还包含了系统
的分数四则运算,面积、体积的计算,开平方开立方的方 法,各
种分配比例问题,正负数概念和正负数加减法则,多元一次方程
刘徽与割圆术

②在筹式演算理论方面 先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基 础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数 学中的“方程”,即现代数学中线性方程组的增广矩阵。 学中的“方程”,即现代数学中线性方程组的增广矩阵。 ③在勾股理论方面 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理 论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图 形的论析,形成了中国特色的相似理论。 ④在面积与体积理论方面 用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理, 用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理, 并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值 至今仍闪烁着余辉。
成就
刘徽的成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算 是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《
术注》 术注》中。它实已形成为一个比较完整的理论体系: ①在数系理论方面 用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的 用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的 运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根 的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
刘徽断言“割之弥细,所失弥少,割之又割,以至于不可割,则 与圆合体,而无所失矣”。其思想与古希腊穷竭法不谋而合。割 圆术在圆周率计算史上曾长期使用。1610年德国数学家柯伦用 圆术在圆周率计算史上曾长期使用。1610年德国数学家柯伦用 2^62边形将圆周率计算到小数点后35位。1630年格林贝尔格利 2^62边形将圆周率计算到小数点后35位。1630年格林贝尔格利 用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最 用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最 好结果。分析方法发明后逐渐取代了割圆术,但割圆术作为计算 圆周率最早的科学方法一直为人们所称道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
割圆术——刘徽《九章算术注》
割圆术(cyclotomic method)
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。
这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。
但用这个数值进行计算的结果,往往误差很大。
正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。
东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。
这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。
刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。
这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。
如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.14和 3.1416这两个近似数值。
这个结果是当时世界上圆周率计算的最精确的数据。
刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的
各个方面,从而使汉代以来的数学发展大大向前推进了一步。
以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于使圆周率精确到了小数点以后的第七位。
在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。
祖冲之还求得了圆周率的两个分数值,一个是“约率”,另一个是“密率”,其中这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。
刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。
利用圆内接或外切正多边形,求圆周率近似值的方法,其原理是当正多边形的边数增加时,它的边长和逐渐逼近圆周。
早在公元前5世纪,古希腊学者安蒂丰为了研究化圆为方问题就设计一种方法:先作一个圆内接正四边形,以此为基础作一个圆内接正八边形,再逐次加倍其边数,得到正16边形、正32边形等等,直至正多边形的边长小到恰与它们各自所在的圆周部分重合,他认为就可以完成化圆为方问题。
到公元前3世纪,古希腊科学家阿基米德在《论球和阅柱》一书中利用穷竭法建立起这样的命题:只要边数足够多,圆外切正多边形的面积与内接正多边形的面积之差可以任意小。
阿基米德又在《圆的度量》一书中利用正多边形割圆的方法得到圆周率的值小于三又七分之一而大于三又七十分之十,还说圆面积与夕卜切正方形面积之比为11:14,即取圆周率等于22/7。
公元263年,中国数学家刘徽在《九章算术注》中提出“割圆”之说,他从圆内接正六边形开始,每次把边数加倍,直至圆内接正96边形,算得圆周率为3.14或157/50,后人称之为徽率。
书中还记载了圆周率更精确的值3927/1250(等于3.1416)。
刘徽断言“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”。
其思想与古希腊穷竭法不谋而合。
割圆术在圆周率计算史上曾长期使用。
1610年德国数学家柯伦用2^62边形将圆周率计算到小数点后35位。
1630年格林贝尔格利用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最好结果。
分析方法发明后逐渐取代了割圆术,但割圆术作为计算圆周率最早的科学方法一直为人们所称道。