吸附等温线分类

合集下载

吸附等温线的3种类型 -回复

吸附等温线的3种类型 -回复

吸附等温线是指在恒定温度下,气体或其他物质与固体表面相互作用形成的等温线。

吸附等温线的类型取决于吸附过程中物质分子与固体表面之间的相互作用力,主要有3种类型,分别是单层吸附、多层吸附和准吸附。

下面将分别介绍这3种类型的吸附等温线特点。

1. 单层吸附单层吸附是指吸附分子只吸附在固体表面形成单层吸附层的吸附现象。

在单层吸附情况下,吸附分子与固体表面之间的相互作用力非常强,因此吸附等温线呈现出急剧上升的特点。

在低压下,吸附等温线随着压力的增加迅速上升,但一旦达到一定压力,吸附等温线会迅速趋于平缓,并最终趋于饱和。

单层吸附通常发生在活性吸附剂上,如活性炭对气体的吸附作用。

2. 多层吸附多层吸附是指吸附分子在固体表面形成多层吸附层的吸附现象。

多层吸附情况下,吸附分子与固体表面的相互作用力较弱,因此吸附等温线呈现出逐渐上升的趋势。

在低压下,吸附等温线随着压力的增加而逐渐上升,且不会出现迅速趋于平缓的情况。

多层吸附通常发生在非活性吸附剂上,如硅胶对水蒸汽的吸附作用。

3. 准吸附准吸附是介于单层吸附和多层吸附之间的一种吸附类型。

在准吸附情况下,吸附分子与固体表面的相互作用力介于单层吸附和多层吸附之间,呈现出吸附等温线先快速上升后逐渐趋于平缓的特点。

准吸附通常发生在具有一定孔隙结构的吸附剂上,如活性炭对大分子有机物的吸附作用。

总结吸附等温线的类型取决于吸附过程中物质分子与固体表面之间的相互作用力,主要有单层吸附、多层吸附和准吸附三种类型。

单层吸附呈现出急剧上升、迅速趋于饱和的特点;多层吸附呈现出逐渐上升的趋势;而准吸附则介于单层吸附和多层吸附之间,呈现出先快速上升后逐渐趋于平缓的特点。

了解吸附等温线的类型有助于我们深入理解吸附过程及其在实际应用中的作用,为吸附技术的研究和应用提供重要参考依据。

吸附等温线是研究吸附过程中物质分子与固体表面相互作用的重要方法之一。

吸附等温线的类型取决于吸附过程中物质分子与固体表面之间的相互作用力,主要有单层吸附、多层吸附和准吸附三种类型。

(推荐)吸附等温线的分类以及吸附机理简析

(推荐)吸附等温线的分类以及吸附机理简析

吸附等温线的分类以及吸附机理简析吸附等温线是有关吸附剂孔结构、吸附热以及其它物理化学特征的信息源。

在恒定的温度和宽范围的相对压力条件下可得到被吸附物的吸附等温线。

为了更好地了解吸附等温线中所包含的信息,以下对有关吸附等温线的分类以及吸附机理作一简单介绍[1,8,10,19,20,33,53~55]:众多的吸附等温线可以被分为六种(IUPAC分类),如图1-11所示为吸附等温线的类型。

对于具有很小外表面积的微孔吸附剂其吸附表现为I型吸附等温线,I型吸附等温线与分压P/Po线呈凹型且以形成一平台为特征,平台呈水平或接近水平状,随着饱和压力的到达吸附等温线或者直接与P/Po = 1相交或表现为一条“拖尾”。

吸附等温线的初始部分代表吸附剂中狭窄微孔的充填过程,其极限吸附容量依赖于可接近的微孔容积而不是表面积,在较高相对压力下平台的斜率是非微孔表面(如中孔或大孔以及外表面)上的多层吸附所致。

II型吸附等温线正常是由无孔或大孔吸附剂所引起的不严格的单层到多层吸附。

拐点的存在表明单层吸附到多层吸附的转变,亦即单层吸附的完成和多层吸附的开始。

III型吸附等温线通常与较弱的吸附剂-吸附质(Adsorbent-Adsorbate)相互作用以及较强的吸附质-吸附质(Adsorbate-Adsorbate)相互作用有关,在此情形,协同效应导致在均匀的单一吸附层尚未完成之前形成了多层吸附,故引起吸附容量随着吸附的进行而迅速提高,吸附质-吸附质之间的相互作用对吸附过程起很重要的影响。

在非孔表面上的水蒸气吸附就是III型吸附等温线最好的实例。

Ⅳ型吸附等温线的明显特征是其存在滞后回线,这与毛细凝聚的发生有很大关系,而且在较高和较宽的分压范围保持一恒定吸附容量,其起始部分类似于II型吸附等温线,由此对应中孔壁上的单层到多层吸附。

在很少吸附剂中的一些中孔或微孔炭表现出V型水吸附等温线,像III型吸附等温线一样,吸附剂-吸附质之间的相互作用与吸附质-吸附质之间的相互作用相比非常弱,这当然包括水分子形成氢键的情形。

第三章吸附等温线

第三章吸附等温线

3.2.8 Frenkel-Halsey-Hill 厚板理论
-195℃氩气在Spheron6炭黑上的吸附等温线
活性炭吸附CO2的特征曲线
为什么Polanyi吸附势理论不能 用于超临界吸附 ?
3.2.7 微孔填充理论和DR方程
微孔内的势场
表面覆盖 (surface layering)
微孔填充 (pore filling)
D-R方程
DR标绘
~
DA方程
303K苯在活性炭上吸附数据的DA拟 和 点:实验数据,线:方程拟和
(13)
则根据(12)式有:
将(13)式带入上式得到:
(14)
因此,(14)式可以写做: (15)
Kelvin方程:
关于Kelvin方程的几点说明
*Kelvin方程给出了发生毛细孔凝聚现象时 孔尺寸与相对压力之间的定量关系
*毛细孔凝聚与多分子层吸附不是两个独立 的过程
*关于Kelvin半径
Kelvin方程对Ⅳ和Ⅴ型等温线的解释
*第一层的吸附热是常数,第二层以 后各层的吸附热都相等并等同于凝 聚热
*吸附是无限层
多分子层吸附模型
θ0 θ1 θ2
θ3
方程的推导
气体分子在第零层上吸附形成第一层的速度等于第一层脱附形成第零层的速度:

为了简化方程,BET引进两个假设: 假设1: 假设2:
其中,

对(1)式进行数学处理,即得
BET方程
发生毛细孔凝聚时孔尺寸与相对压力的关系(77KN2吸附)
r(nm)
1 2 5 10 20 25
p(tor)
297 475 630 691 725 732
p/p0
0.391 0.625 0.829 0.909 0.954 0.963

3-吸附等温线

3-吸附等温线

混合吸附的Langmuir方程
设有两种物质A和B 在表面同时吸附且都 不发生解离,用A 和 B分别代表A和B的 覆盖度,则用以上方 法推导出:
Brunaauer-Emmett-Teller 吸 附等温式-BET方程(两个假定)
BET方程是建立在Langmuir吸附理论基础上 的,但同时还认为:1,物理吸附为分子间力, 被吸附的分子与气相分子之间仍有此种力,故 可发生多层吸附,多层吸附与气体的凝聚相似。 2,吸附达到平衡时,每个吸附层上的蒸发速 度等于凝聚速度,故能对每层写出相应的吸附 平衡式,经过一定的数学运算得到BET方程。
反应物的扩散过程
催化剂的颗粒具有使反应物分子可以进 入的内孔。反应物的扩散过程是分以下 两步进行的:
在催化剂周围的介质中的外扩散DE 催化剂孔中的内扩散Di
催化剂周围的介质中的外扩散
在工作状态时,催化剂的颗粒被一个 固定的分子(反应物、产物或介质)滞 流层所包围,反应物、产物分子通过 这个层向催化剂颗粒的外表面的扩散 或向其反方向的扩散,称为外扩散。
III型等温线
在整个压力范围内凸向下,曲线没有拐 点B,此种吸附甚为少见。
曲线下凸表明此种吸附所凭借的作用力 相当弱。吸附质对固体不浸润时的吸附, 如水在石墨上的吸附即属此例。
IV型等温线
开始部分即低P/Po区,与II型等温线类 似凸向上。
在较高P/Po区,吸附明显增加,这可能 是发生了毛细管凝聚的结果。 由于毛细管凝聚,在这个区内,有可能 观察到滞后现象、即在脱附时得到的等 温线与吸附时得到的等温线不重合。
吸附等温线
当吸附与脱附速度相等时,催化剂表面 上吸附的气体量维持不变,这种状态即 为吸附平衡。 吸附平衡与压力、温度、吸附剂的性质 等因素有关。一般地,物理吸附达到平 衡时很快,而化学吸附则很慢。 对于给定的物系,在温度恒定和达到平 衡的条件下,吸附质与压力的关系称为 吸附等温式或称吸附平衡式,绘制的曲 线称为吸附等温线。

吸附等温线

吸附等温线

吸附等温线包伟吸附相平衡是吸附分离科学技术的重要基础之一,是表述吸附剂对吸附质分子的最大吸附容量以及吸附选择性。

吸附等温线是吸附相平衡的具体描述,是吸附分离装置设计所必需的参数。

通过对一系列吸附等温线的分类,人们可以更好地理解各种吸附机理并建立相应的理论模型。

同时这一系列吸附等温线的分类还有利于将理论模型更好地应用到实际中去,例如用BET 或Langmuir 的方法测量出样品的比表面积。

IUPAC [International Union of Pure and Applied Chemistry,国际理论与应用化学协会]手册上就有说明:对于吸附过程的研究,第一步就是“确定吸附等温线的类型,然后再确定吸附过程的本质[1,2]”。

对于吸附等温线的分类,主要有以下3种分类方法:1.早期的BDDT 的5 类吸附等温线1940年,在前人大量的研究和报道以及从实验测得的很多吸附体系的吸附等温线基础上,Brunauer S.,Deming L. S.,Deming W. E.和Teller E.等人对各种吸附等温线进行分类,将吸附等温线分为5类(如图1所示),称为BDDT分类,也常被简称为Brunauer吸附等温线分类。

(如上图所示)类型I 是向上凸的Langmuir 型曲线,表示吸附剂毛细孔的孔径比吸附质分子尺寸略大时的单层分子吸附或在微孔吸附剂中的多层吸附或毛细凝聚。

该类吸附等温线,沿吸附量坐标方向,向上凸的吸附等温线被称为优惠的吸附等温线。

在气相中吸附质浓度很低的情况下,仍有相当高的平衡吸附量,具有这种类型等温线的吸附剂能够将气相中的吸附质脱除至痕量的浓度,如氧在-183℃下吸附于炭黑上和氮在-195℃下吸附于活性炭上,以及78K时N2在活性炭上的吸附及水和苯蒸汽在分子筛上的吸附。

类型II 为形状呈反S 型的吸附等温线,在吸附的前半段发生了类型I 吸附,而在吸附的后半段出现了多分子层吸附或毛细凝聚,例如在20℃下,炭黑吸附水蒸气和-195℃下硅胶吸附氮气。

常见吸附等温曲线的类型及其理论分析

常见吸附等温曲线的类型及其理论分析
常见吸附等温曲线的 类型及其理论分析
contents
目录
• 吸附等温线的基本概念 • 常见吸附等温曲线类型 • 吸附等温曲线理论分析 • 吸附等温曲线在实践中的应用 • 吸附等温曲线的发展趋势与展望
01
吸附等温线的基本概念
定义与分类
定义
吸附等温线是指在一定的温度下,吸 附剂对气体分子的吸附量与气体压力 之间的关系曲线。
吸附等温曲线的调控和优化。
吸附等温曲线理论模型的改进与发展
1 2 3
多分子层吸附模型
在传统的单分子层吸附模型基础上,发展多分子 层吸附模型,能够更准确地描述复杂吸附等温曲 线。
统计热力学模型
结合统计热力学理论,建立更为精确的吸附等温 曲线理论模型,以解释实验数据并预测新体系的 吸附行为。
机理导向模型
气体分子性质
气体分子的性质如分子大小、 极性、扩散系数等也会影响吸
附等温线的形状和位置。
02
常见吸附等温曲线类型
Ⅰ型吸附等温线
总结词
表示单层饱和吸附,吸附量随相对压力的增加而增加,直至接近饱和压力。
详细描述
Ⅰ型吸附等温线是典型的物理吸附等温线,表示吸附剂表面完全被吸附质覆盖, 形成单分子层吸附。在相对压力较低时,吸附量随相对压力的增加迅速增加, 当接近饱和压力时,吸附量增长速度减缓。
VS
详细描述
D-R理论假设气体分子在固体表面形成单 分子层吸附,同时考虑了气体分子在固体 表面和孔内的吸附。该理论可以用来计算 孔径分布和孔体积等参数。
04
吸附等温曲线在实践中 的应用
在气体分离中的应用
分离空气中的氧气和氮气
利用吸附等温曲线,可以找到最佳的吸附剂和操作条件,将空气中的氧气和氮气进行有 效分离。

吸附等温线类型特征

吸附等温线类型特征

吸附等温线类型特征吸附等温线是描述气体或液体在固体表面上吸附的数量与压力之间的关系。

吸附等温线可以分为三种类型:Langmuir型、Freundlich型和BET型。

本文将会详细介绍这三种吸附等温线类型的特征。

一、Langmuir型Langmuir型是最简单的吸附等温线类型,它假设所有的吸附位点都是相同的,并且只有一个分子可以占据每个位点。

Langmuir模型可以用以下方程表示:θ = Kp / (1 + Kp)其中,θ是被覆盖表面积与总表面积之比,K是一个常数,p是气体压力。

Langmuir型吸附等温线有以下特征:1. 吸附饱和当气体压力增加到一定程度时,所有可用的吸附位点都被占据了,此时覆盖率达到100%并保持不变。

这个压力称为饱和压力。

2. 单层吸附根据Langmuir模型,每个位点只能被一个分子占据。

因此,当饱和时只有一层分子被覆盖在固体表面上。

3. 反应热量为常数Langmuir型假设吸附过程是无热效应的,因此反应热量是常数。

二、Freundlich型Freundlich型吸附等温线假设吸附位点不同,并且每个位点可以被多个分子占据。

Freundlich模型可以用以下方程表示:θ = Kp^(1/n)其中,θ是被覆盖表面积与总表面积之比,K和n是常数,p是气体压力。

Freundlich型吸附等温线有以下特征:1. 吸附不饱和与Langmuir型不同的是,Freundlich型假设存在无限多的吸附位点。

因此,在任何气体压力下都有一些位点没有被占据。

2. 多层吸附由于每个位点可以被多个分子占据,因此在达到饱和前可以形成多层分子覆盖。

3. 反应热量随着覆盖度变化而变化由于每个位点可以被多个分子占据,因此当覆盖度增加时反应热量也会增加。

这意味着在Freundlich模型中反应热量并不是一个常数。

三、BET型BET(Brunauer, Emmett, and Teller)型吸附等温线假设固体表面存在不同的吸附位点,但每个位点只能被一个分子占据。

六种吸附类型

六种吸附类型

Ⅰ型等温线:Langmuir 等温线相应于朗格缪单层可逆吸附过程,是窄孔进行吸附,而对于微孔来说,可以说是体积充填的结果。

样品的外表面积比孔内表面积小很多,吸附容量受孔体积控制。

平台转折点对应吸附剂的小孔完全被凝聚液充满。

微孔硅胶、沸石、炭分子筛等,出现这类等温线。

这类等温线在接近饱和蒸气压时,由于微粒之间存在缝隙,会发生类似于大孔的吸附,等温线会迅速上升。

II 型S 型等温线等温线反映非孔性或者大孔吸附剂上典型的物理吸附过程,这是BET 公式最常说明的对象。

由于吸附质于表面存在较强的相互作用,在较低的相对压力下吸附量迅速上升,曲线上凸。

等温线拐点通常出现于单层吸附附近,随相对压力的继续增加,多层吸附逐步形成,达到饱和蒸汽压时,吸附层无穷多,导致试验难以测定准确的极限平衡吸附值。

Ⅲ型等温线:在整个压力范围内凸向下,曲线没有拐点B在憎液性表面发生多分子层,或固体和吸附质的吸附相互作用小于吸附质之间的相互作用时,呈现这种类型。

例如水蒸气在石墨表面上吸附或在进行过憎水处理的非多孔性金属氧化物上的吸附。

在低压区的吸附量少,且不出现B 点,表明吸附剂和吸附质之间的作用力相当弱。

相对压力越高,吸附量越多,表现出有孔充填。

有一些物系(例如氮在各种聚合物上的吸附)出现逐渐弯曲的等温线,没有可识别的B点.在这种情况下吸附剂和吸附质的相互作用是比较弱的。

IV 型等温线与II 型等温线类似,但曲线后一段再次凸起,且中间段可能出现吸附回滞环,其对应的是多孔吸附剂出现毛细凝聚的体系。

在中等的相对压力,由于毛细凝聚的发生IV 型等温线较II 型等温线上升得更快。

中孔毛细凝聚填满后,如果吸附剂还有大孔径的孔或者吸附质分子相互作用强,可能继续吸附形成多分子层,吸附等温线继续上升。

但在大多数情况下毛细凝聚结束后,出现一吸附终止平台,并不发生进一步的多分子层吸附。

V型等温线的特征是向相对压力轴凸起。

与III型等温线不同,在更高相对压力下存在一个拐点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸附等温线分类
一定温度下,特定压力与该压力对应的平衡吸附量之间的关系曲线称为吸附等温线。

吸附质与吸附剂之间作用的强弱、吸附界面上分子的存在状态以及吸附层可能的存在结构,可由吸附等温线的形状和变化规律进行判定。

早期的吸附等温线分类为BDDT 的5种类型,后来发展成由IUPAC 划分的6种类型,之后又出现根据Ono-kondo 晶格模型分的5种Gibbs 吸附等温线。

大家普遍使用IUPAC 物理吸附等温线划分方法[69](如图1-7),其主要贡献是引入毛细凝结现象对曲线进行解释分析。

图1-7 吸附等温线分类
Fig.1-7 IUPAC classification of 6 adsorption curves I 型吸附等温线适用于单分子层吸附、微孔内的容积充填或化学吸附。

活性炭、分子筛及岩石多孔介质分布大量微孔隙,气体在该类吸附剂发生吸附时符合I 型吸附等温曲线。

页岩等多孔介质的微孔中,气体分子的吸附作用显著高于其他孔径的孔隙,主要是由于微孔相邻壁面的气固作用势能相互叠加。

I 型等温吸附线低压呈迅速升高趋势,当微孔提供的吸附位都被充满后曲线趋于平缓,进而出现平台,此后吸附量不随压力升高而变化。

II 型吸附等温线适用于多分子层吸附,主要发生在大孔或无孔均一固体表面。

分子首先在吸附剂表面单层吸附,随环境压力逐渐升高,由于吸附空间不受与固体表面距离的限制,分子由单层向多层吸附过渡。

III 型吸附等温线适用于多分子层吸附,适用于大孔吸附剂,由于这类吸附表面的吸附质与吸附剂分子之间作用力弱,单层吸附后,以后各层的吸附热显著增大。

IV 型吸附等温线适用于有毛细凝聚现象发生的吸附过程,多发生在介孔内。

IV 型吸附等温线的吸附支与解吸支不重合,解吸过程中,相同压力下的吸附量明显高于吸附过程对应的吸附量,曲线出现吸附回线,据此,可以计算介孔吸附剂内的孔径分布。

V 型吸附等温线适用于微孔或介孔吸附剂内的吸附。

V 型吸附等温线与IV 型等温线类似,存在滞留回环。

在较低的相对压力下,V 型吸附线上升缓慢。

VI 型吸附等温线呈阶梯状,曲线中的垂直上升段可以认为是发生了两维相变。

结构简单的非极性分子,如Ar ,Kr ,Xe 等在石墨上的吸附可以得到VI 型等温线。

随着测试温度逐渐升高,等温线的阶梯状变得不明显。

相关文档
最新文档