第5章相控阵雷达要点
正确认识相控阵雷达—一种永不消逝的雷达体制

正确认识相控阵雷达—一种永不消逝的雷达体制第一篇:正确认识相控阵雷达—一种永不消逝的雷达体制正确认识相控阵雷达—一种永远不会消逝的雷达(1)相控阵雷达是指采用相控阵天线的一种雷达体制。
由于相控阵天线的波束是用电子方法在空域变动或扫描,非常灵活,变动速度可达微秒级;这种雷达天线体制再与其他先进的,能精密定位的雷达体制(如脉冲多普勒等)结合,就使整个雷达具有多目标,多功能,大空域,大功率,抗干扰强等一系列突出优点;在当今被认为是一种最有发展前景的雷达体制。
它是当今世界很多先进武器,如防空导弹系统,对空情报系统、预警机、歼击机、反导系统等的主体设备。
国外新第三代甚至第四代防空反导武器系统都是以相控阵雷达为主体构建的,典型的有:美国的爱国者PAC-3、宙斯盾弹道导弹防御系统;俄罗斯的S-300、S-400、“里夫”、“道尔”等。
现代预警机、歼击机是否达到新一代水平,重要标志之一就是是否采用相控阵雷达体制的预警雷达和火控雷达。
美国雷达专家,相控阵雷达技术的老前辈D.J.Picard生前有句名言:“有一种老式雷达永远都不会消逝,那就是相控阵”。
这句话已成为国内外专家学者们的共识。
这门技术不仅吸引了大批工程技术人员终身投身于这项事业,在我国,还收到大批军事爱好者和发烧友的青睐。
不过作者也发现,在一些资料、教材和专著中,尤其是网上很多博文,对相控阵雷达的阐述,理解和讨论中有很多误区。
例如:相控阵雷达和三坐标雷达是不是一回事?有源相控阵是不是就比无源相控阵先进?相控阵雷达号称多功能,是不是功能越多越好?武器装备(如预警机)是不是采用了别人没有采用的相控阵体制就算世界第一?宙斯盾号称神盾,为什么后来的俄国、西欧没有走宙斯盾道路?为什么新一代的DDG-1000舰雷达要对宙斯盾更新换代?本博文就是想和有兴趣的网友和读者共同探讨这些问题。
在讨论前,先向网友和读者介绍一本专著:《相控阵雷达的测试维修技术》。
这是航天科工集团二院几位退休老同志根据自己实践经验合编的,由我担任主编。
相控阵雷达基本原理(ZZ)(

相控阵雷达基本原理(ZZ)(相控阵雷达基本原理(ZZ)功能、优点相控阵雷达又称作相位阵列雷达,是一种以改变雷达波相位来改变波束方向的雷达,因为是以电子方式控制波束而非传统的机械转动天线面方式,故又称电子扫描雷达。
相控阵雷达有相当密集的天线阵列,在传统雷达天线面的面积上目前可安装一千多到两千多个相控阵天线(F-22约有2000个),任何一个天线都可收发雷达波,而相邻的数个天线即具有一个雷达的功能。
扫描时,选定其中一个区块(数个天线单元)或数个区块对单一目标或区域进行扫描,因此整个雷达可同时对许多目标或区域进行扫描或追踪,具有多个雷达的功能。
由於一个雷达可同时针对不同方向进行扫描,再加之扫描方式为电子控制而不必由机械转动,因此资料更新率大大提高,机械扫描雷达因受限於机械转动频率因而资料更新周期为秒或十秒级,电子扫描雷达则为毫秒或微秒级。
因而它更适於对付高机动目标。
此外由於可发射窄波束,因而也可充当电战天线使用,如电磁干扰甚至是构想中发射反相位雷达波来抵消探测电波等。
相控阵雷达对於飞机的匿踪性能也相当重要,传统的机械雷达之机械结构会造成相当大的回波,使用无机械结构的相控阵雷达就能使这一影响更小。
而侦查时发射的窄波束也减低了被发现的机会,并使得敌方的电战系统难以发挥功能。
原理相控阵雷达何以有此功效呢?在做进一步认识之前,笔者先简单介绍雷达原理及其演进。
雷达是高科技产物,但其基本原理是很简单的。
雷达是一种发射电磁波,藉由解算回波之种种数据来达到探测目的的一种装置。
随著年代的演进而增加新的功能,但都不脱离两个基本步骤:发射雷达波以及解算回波。
电磁波的发射,是利用正负电荷之往返震汤而发出的,在雷达上是在天线上产生正负电荷并使之震汤。
发出电磁波之强度分布,为一"横躺"在x轴上的"8"字绕y轴转动後所产生的立体形状,类似红血球一般,天线指向y轴而以横躺的8字中心为中心。
设由原点向任一方向画直线与此"红血球形"交於p点,则原点到p点的长度代表该方向电磁波强度。
简单说说相控阵雷达

简单说说相控阵雷达电子万花筒平台核心服务电子元器件:价格比您现有供应商最少降低10%射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!我们知道,蜻蜓的每只眼睛由许许多多个小眼组成,每个小眼都能成完整的像,这样就使得蜻蜓所看到的范围要比人眼大得多。
与此类似,相控阵雷达的天线阵面也由许多个辐射单元和接收单元(称为阵元)组成,单元数目和雷达的功能有关,可以从几百个到几万个。
这些单元有规则地排列在平面上,构成阵列天线。
利用电磁波相干原理,通过计算机控制馈往各辐射单元电流的相位,就可以改变波束的方向进行扫描,故称为电扫描。
辐射单元把接收到的回波信号送入主机,完成雷达对目标的搜索、跟踪和测量。
每个天线单元除了有天线振子之外,还有移相器等必须的器件。
不同的振子通过移相器可以被馈入不同的相位的电流,从而在空间辐射出不同方向性的波束。
天线的单元数目越多,则波束在空间可能的方位就越多。
这种雷达的工作基础是相位可控的阵列天线,“相控阵”由此得名。
有源相阵控雷达和无源相阵控雷达的区别是就是无源是只有单个或者几个发射机子阵原只能接收,而有源是每个阵原都有完整的发射和接收单元!相控阵雷达是一种新型的有源电扫阵列多功能雷达。
它不但具有传统雷达的功能,而且具有其它射频功能。
有源电扫阵列的最重要的特点是能直接向空中辐射和接收射频能量。
它与机械扫描天线系统相比,有许多显著的优点。
例如、相控阵省略了整个天线驱动系统,其中个别部件发生故障时,仍保持较高的可*性,平均无故障时间为10万小时,而机械扫描雷达天线的平均无故障时间小于1000小时。
下面主要介绍先进的相控阵雷达。
相控阵雷达的优点:(1)波束指向灵活,能实现无惯性快速扫描,数据率高;(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能;(3)目标容量大,可在空域内同时监视、跟踪数百个目标;(4)对复杂目标环境的适应能力强;(5)抗干扰性能好。
相控阵雷达的原理

相控阵雷达的原理
嘿,朋友!今天咱来聊聊超酷的相控阵雷达的原理。
你知道吗,相控阵雷达就像是一个超级敏锐的“电子眼”!
想象一下,你在一个热闹的广场上,你的眼睛可以同时看向四面八方,快速地捕捉到每一个细微的变化,这差不多就是相控阵雷达的厉害之处啦。
比如说在军事领域,它就像一个警惕的卫士,时刻保卫着国家的安全。
相控阵雷达是咋做到这么厉害的呢?简单来讲,它是通过很多个小天线组成的天线阵来工作的哟!就好比一群小伙伴齐心协力干一件大事。
每个小天线都可以单独调节信号的相位和幅度,这可太神奇啦!这不就像是一个舞蹈团队,每个成员都有自己独特的动作和位置,一起跳出精彩的舞蹈一样嘛!
比如说飞机在天上飞,相控阵雷达就能迅速地锁定它的位置,然后准确地跟踪它的飞行轨迹。
哇塞,这可真是太牛了!再想想,如果没有相控阵雷达,那我们的安全岂不是少了一道强有力的保障?“哎呀,那可不行呀!”
而且相控阵雷达还超级灵活呢!它可以快速地改变波束的方向和形状,适应不同的情况。
这就好像你在玩游戏的时候,可以随时根据局面的变化调整自己的策略,是不是很厉害?
在现代社会,相控阵雷达的应用越来越广泛,从军事到民用,都离不开它的功劳。
它就是那个默默守护我们的“超级英雄”呀!
我的观点就是相控阵雷达真的是一项超级伟大的发明,给我们的生活带来了巨大的保障和便利!咱可得好好珍惜和利用它呀!。
相控阵雷达抗干扰方法应用及实现

摘要摘要随着现代装备技术的日益发展,战场上电磁干扰的形势越来越严峻。
为了与时俱进,适应现代战场的复杂环境。
现代雷达装备必须在原来所具备的性能基础上,切实提高抗干扰的能力,将理论转化为工程实际,以适应实时战场的需要。
抗干扰能力是衡量雷达性能的主要标志之一,同时也作为整机系统设计的重要考虑。
雷达面临的干扰一般不是单一的干扰方式,而是多种干扰组成的综合干扰。
本文主要针对有源干扰进行分析,列举了多种主要的不同类型的干扰信号。
雷达的抗干扰也必须要采用具有多种抗干扰措施的综合抗干扰技术。
这样,在同一部装备上就拥有了较全面的抗干扰能力,使我们的产品能够适应时代和战场的需要。
本文结合某中远程三坐标雷达,以工程实践为主要研究方法,完成了多种抗干扰技术的应用及实现。
从工程实践的角度对多种抗干扰技术进行讨论。
论文首先介绍了相控阵三坐标雷达的基本原理,系统基本组成及其抗干扰性能优势。
详细介绍了大动态接收机、数字脉压、辅助通道、匿隐等技术的实现。
深入分析和研究了天馈系统抗干扰技术的实现。
以超外差接收机为基础,在接收分系统中实现了多种抗干扰技术。
联合脉压系统和信号处理系统,进一步提高整机的抗干扰能力。
利用多年来积累的工程实践经验,充分发挥目前的工艺技术水平。
根据各抗干扰措施的技术要求,对各相关的分系统进行硬件上改进,或者在原来的硬件基础上增加一些硬件。
在各抗干扰技术措施实现过程中,从整机的角度优化好各分系统,协调融合好各分系统。
在原来的体制下采用了一些新的方法来实现技术指标。
在多种抗干扰措施都实现以后,对多种抗干扰方法实现的效果进行分析。
对部分抗干扰技术的实现效果采用仿真的方法介绍,部分技术采用录取目标的效果来介绍。
抗干扰措施在工程上实现以后要,通过调试发挥出硬件的最佳效能。
最终研究结果表明,本文所应用的抗干扰方法达到了很好的效果,使雷达的抗干扰性能得到了提高。
关键词:大动态接收,干扰对消,数字脉压,辅助天线IABSTRACTWith the development of modern equipment technology, the situation of electromagnetic interference in the battlefield becomes more and more severe. In order to keep pace with the times, adapt to the complex environment of modern battlefield, modern radar equipment must be in the original performance, and effectively improve the ability of anti interference, the theory into practice, in order to meet the needs of real-time battlefield. Anti-jamming capability is one of the main signs of measuring radar performance, and it is also an important consideration for the whole system design. Radar interference is generally not a single interference, but a variety of interference composed of integrated interference. This paper focuses on the analysis of positive interference, lists a variety of different types of interference signals. Radar anti-interference must also be used with a variety of anti-jamming measures of integrated anti-jamming technology. In this way, the single equipment has more comprehensive anti-interference ability, so that our products can meet the needs of the times and the battlefield.In this paper, the application and implementation of a variety of anti-jamming technology are studied by using the engineering practice as the main research method in a remote three coordinate radar. From the point of view of engineering practice, this paper introduces several kinds of anti jamming technologies. Firstly, this paper introduces the basic principle of the three phased array radar, the basic composition of the system and its anti-jamming performance. This paper introduces the realization of the technologies of large dynamic range receiver, digital pulse compression, auxiliary antenna and so on. The anti - jamming technology of antenna system is deeply analyzed and studied. Based on the superheterodyne , a variety of anti-jamming techniques have been implemented in the receiving subsystem. Through the digital pulse compression system and digital signal processing system, we can further improve the anti-jamming ability of the radar. According to the technical requirements of the anti-jamming measures, the hardware of each subsystem is improved, or some hardware is added based on the original hardware. In the process of the realization of the anti-jamming technology, the optimization of each subsystem from the perspective of the whole machine, and coordinate the integration of the various subsystems.Some measures for enhancing anti-jamming capability of phased array radar areIIachieved. We show the best performance of each subsystem of radar. This paper analyzes the effect of some anti-jamming methods. In this paper, we show the real target captured by phased array radar with some anti-jamming methods. Finally, the results show that the anti-jamming method used in this paper has achieved good results, so that the anti-jamming performance of the radar has been improved.Keywords: dynamic-range,jammingcancellation,pulsecompression,auxiliary antennaIII目录第一章绪论 (I)1.1研究工作的背景与意义 (1)1.2抗干扰方法的国内外研究历史与现状 (3)1.3本文的主要贡献 (4)1.4本论文的结构安排 (5)第二章雷达干扰与抗干扰技术 (6)2.1雷达干扰技术 (6)2.1.1应答式干扰 (7)2.1.2转发式干扰 (8)2.1.3复合灵巧干扰 (11)2.2雷达抗干扰技术 (12)2.3相控阵雷达抗干扰的特点 (13)2.4本章小结 (13)第三章相控阵体制雷达反干扰措施 (14)3.1相控阵雷达系统 (14)3.2常见的抗干扰方法 (19)3.3 相控阵抗干扰方法 (19)3.3.1系统组成 (19)3.2.2大动态范围接收机 (22)3.4脉冲压缩抗干扰技术 (26)3.4.1脉冲压缩原理 (26)3.4.2系统时序 (28)3.4.3线性调频信号压缩 (37)3.5辅助天线的位置 (39)3.6大功率发射机 (47)Ⅳ3.7本章小结 (50)第四章相控阵反干扰性能分析 (51)4.1脉冲压缩雷达抗干扰性能 (51)4.2相控阵抗干扰性能 (52)4.3 抗干扰方法实现效果 (56)4.4本章小结 (57)第五章全文总结与展望 (58)5.1全文总结 (58)5.2后续工作展望 (58)致谢 (60)参考文献 (61)攻读硕士学位期间取得的成果 (64)Ⅶ图表图1-1 Pave-Paws预警雷达 (1)图1-2 APAR有源相控阵雷达 (3)图2-1雷达干扰分类 (7)图2-2宽带阻塞式干扰 (7)图2-3窄带瞄准式干扰 (8)图2-4杂乱脉冲干扰 (8)图2-5距离波门拖引 (9)图2-6距离欺骗干扰 (9)图2-7速度拖引 (10)图2-8速度跟踪曲线 (10)图2-9航迹欺骗 (11)图3-1相控阵雷达基本组成 (14)图3-2相控阵示意图 (15)图3-3触发延时图 (21)图3-4接收机组成 (24)图3-5数字中频接收机 (25)图3-6限幅器组成框图 (25)图3-7测试噪声系数框图 (26)图3-8 线性调频回波脉压原理 (27)图3-9脉压雷达系统 (28)图3-10脉压处理组成框图 (28)图3-11脉压雷达工作时序示意图 (30)图3-12多种情况下脉冲压缩雷达时序 (30)图3-13干扰信号时序图 (31)图3-14同步时序逻辑 (31)图3-15 多分层慢门限原理 (32)图3-16 STC输出 (32)图3-17非参量快门限原理 (33)图3-18五周期积累过程示意图 (33)图3-19滑窗式检测器原理 (33)图3-20滑窗式检测器角度录取 (34)图3-21 LFM线性调频信号 (38)Ⅳ图3-22三联波束在仰角上完成一个扫描周期 (39)图3-23扫描变换组成框图 (39)图3-24辅助天线位置图 (42)图3-25和差波束信号示意图 (42)图3-26主辅通道波束信号 (43)图3-27辅助通道示意图 (44)图3-28线性调制器 (49)图3-29四端环行器 (49)图3-30放大系统设计 (50)图4-1脉冲压缩对作用距离的改善 (52)图4-2高灵敏度接收机仿真回波信号 (52)图4-3干扰情况下脉冲雷达仿真回波信号 (53)图4-4干扰脉压雷达仿真回波信号 (53)图4-5干扰情况下相控阵雷达接收回波 (54)图4-6干扰试验框图 (54)图4-7 波束形成技术原理 (54)图4-8 信号方向与干扰关系示意图........... .. (55)图4-9干扰置零示意图 (55)图4-10稀疏和密集假目标仿真图 (56)图4-11未受干扰时终端画面 (56)图4-12受到干扰的画面 (56)图4-13 MTI后画面 (57)图4-14 烧穿作用画面 (57)图4-15目标放大图 (57)图4-16干扰对消后画面 (57)表3-1相控阵抗干扰手段及其主要作用 (19)表3-2脉冲压缩雷达的时序关系概念 (29)Ⅶ第一章绪论1.1研究工作的背景与意义21 世纪的战争是高技术含量的战争,在作战形式多样化的现代战争中电子战起着主导作用。
2024版技术相控阵雷达入门到精通

智能化和自适应波束控制技术
智能化和自适应波束控制技术是相控阵雷达实现 智能化、自动化的重要手段。
通过引入人工智能、机器学习等技术,可以实现 雷达系统的自主决策、优化控制和智能维护等功 能。
自适应波束控制技术可以根据实际环境和目标特 性,自动调整波束形状和指向,提高雷达的探测 性能和跟踪精度。
未来,智能化和自适应波束控制技术将在相控阵 雷达中发挥越来越重要的作用,推动雷达技术的 智能化发展。
100%
波束控制
根据任务需求,实时调整波束指向、 波束宽度和波束形状等参数。
80%
控制网络
实现天线阵列中各阵元之间的相位 和幅度控制,保证波束形成的准确 性和稳定性。
信号处理与数据处理单元
信号处理
对接收到的回波信号进行滤波、 检测、参数估计等处理,提取 出目标信息。
数据处理
对信号处理后的数据进行进一 步处理,包括航迹处理、态势 感知、威胁评估等。
未来,随着新型材料和器件技术的不 断发展,相控阵雷达的性能和可靠性 将得到进一步提升。
05
实战化环境下相控阵雷达运用策略探讨
复杂电磁环境下作战需求分析
电磁环境复杂性分析
包括电磁干扰、噪声、多径效应等因素对雷达性能的影响。
作战需求梳理
根据实战任务,明确雷达在探测、识别、跟踪、制导等方面的具 体需求。
建立协同能力评估机制,定期评估各平台之间的协同作战能力,并 针对评估结果制定提升措施。
06
仿真实验平台搭建与案例分析
MATLAB/Simulink仿真实验平台介绍
MATLAB/Simulink软件概述
介绍MATLAB/Simulink软件的基本功能、特点和优势,以及在相控阵雷达仿真中的应 用。
第5章相控阵雷达概要讲解学习

比特率
线性调频扫描 非线性调频扫描
噪声
|f2-f1| |f2-f1|
B
分辨率 1/比特率
1/|f2-f1| 1/|f2-f1|
1/B
9.脉冲压缩原理:
设信号函数为s(t),对应的匹配滤波器的冲激响应为: h(t)=s*(t0-t) 经过匹配滤波器的输出信号y(t)为:
y ( t) s ( t)* h ( t) s ( ) s * ( t t0 ) d
N1
E() E ejk k0
如果各阵元馈电相位差均为0,上式可用于研究阵列天线的方向图。 假设θ0为波束指向,利用等比级数求和公式,欧拉公式和(5-1),得归 一化天线方向图(p154):
FaN ssiniN nddssii n n
Fa(θ)称为阵列因子或阵因子。如果天线阵元不是向空间所有角 度均匀辐射的,方向图为Fe(θ),阵列方向图变为:
13.相位编码脉冲压缩
线性调频信号是连续变化的编码信号。相位编码是离散型编码 信号。
常用的按两个相位变化,在0o和-180o两者之间编码,相位只 取这两个值。主要有巴克码、M序列码、L序列码和互补编码等。巴 克码见p142。
另外,还有四相码,取0o, 90o, 180o, 270o四个相位点。 相位编码脉冲压缩仍有副瓣抑制的问题。
海明函数为:
w (t) 0 .0 8 0 .9c22 o ( ts ) T
加权以后的失配滤波器的冲激响应为:
t T 2
h(t)s(t0t)w(t)
海明加权以后,失配将导致主瓣信噪比增益下降,主瓣宽度增加 等。
12.压缩滤波器
匹配滤波器可用数字方法实现,结果就是一个横向滤波器。 线性调频信号还可以在频域进行压缩。
相控阵雷达入门到精通

信号处理与数据处理流程
1 2 3
信号处理流程
包括回波信号的预处理、杂波抑制、目标检测与 跟踪等步骤,提取目标信息并传递给数据处理模 块。
数据处理流程
对信号处理后的数据进行进一步处理和分析,包 括目标识别、态势感知、威胁评估等步骤,为指 挥决策提供支持。
算法与软件实现
采用先进的信号处理和数据处理算法,结合高性 能计算机和软件平台,实现雷达系统的自动化和 智能化。
渔业资源调查和评估
相控阵雷达可用于监测鱼群的位置、数量和迁移路径,为渔业部门提供科学的渔业资源评 估和合理捕捞建议。
无线通信网络优化辅助
信号覆盖和质量分析
相控阵雷达能够实时监测无线通 信网络的信号覆盖范围和信号质 量,帮助运营商了解网络性能瓶 颈和优化方向。
干扰源定位和排除
通过测量无线信号的回波特性, 相控阵雷达能够准确定位干扰源 并辅助排除干扰,提高通信网络 的稳定性和可靠性。
如遗传算法、粒子群算法等,可 用于雷达信号处理的参数优化和 问题求解。
多功能一体化发展趋势探讨
雷达通信一体化
实现雷达探测和通信功能的集成,提高系统整 体性能。
雷达电子战一体化
将雷达探测和电子战功能相结合,实现对敌方 目标的探测和干扰。
多模态感知一体化
融合雷达、光学、红外等多种传感器信息,提高对环境感知的全面性和准确性 。
能够实现复杂结构天线的快速制造,提高生产效率和 降低成本。
超材料
通过设计材料的微观结构,实现对电磁波的特殊调控 ,为天线设计提供新的思路和方法。
人工智能技术在信号处理中的融合
01
深度学习
通过训练大量数据,实现对雷达 信号的自动识别和分类,提高信 号处理效率和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.脉冲压缩的实现:
发射脉冲应按一定规则编码,以获得较大带宽。 接收机中应有一个压缩网络,
脉冲压缩网络实际上是一个匹配滤波器。脉冲压缩常
用的四种
7.调制方式:
线性调频脉冲压缩 非线性调频 相位编码脉冲压缩 时间频率编码脉冲压缩
8.能够进行脉冲压缩的波形:
调制类型
带宽
伪随机二进制序列
比特率
线性调频扫描 非线性调频扫描
N 1
E() E e jk k 0
如果各阵元馈电相位差均为0,上式可用于研究阵列天线的方向图。 假设θ0为波束指向,利用等比级数求和公式,欧拉公式和(5-1),得归 一化天线方向图(p154):
Fa
sin
Nd
sin
N
sin
d
sin
Fa(θ)称为阵列因子或阵因子。如果天线阵元不是向空间所有角 度均匀辐射的,方向图为Fe(θ),阵列方向图变为:
F Fa Fe
Fe(θ)称为阵元因子。
关于阵列天线的栅瓣
阵列因子图: 主瓣
栅瓣
栅瓣
-π/2
0
π/2
π
3π/2 2π
图5-2阵列因子图
主瓣
栅瓣
栅瓣
-π/2
0
π/2
π
3π/2 2π
图5-2阵列因子图
由图5-2可以看出,主瓣是我们感兴趣的,所有栅瓣应去掉。
不出现栅瓣的条件:
πd λ
ht e T
t T 2
11.失配加权
线性调频信号的包络是一个矩形,其经过频谱滤波器输出信号 的包络为sinc函数。见p124图4.13。最大副瓣为-13分贝。在实际 应用中,要求副瓣电平低于-30dB至-45dB。
海明函数为:
w(t) 0.08 0.92cos2( t ) T
加权以后的失配滤波器的冲激响应为:
2.脉冲压缩
产生一个这样的脉冲,它的TB积远大于1,一般在20-100 之间。作用距离以T为标准,距离分辨率以B为标准,两者兼顾。
3.雷达距离分辨率:
r
c 2B
4.压缩比D
D T TB 1/ B
5.脉冲压缩的优点:
时宽带宽互相基本独立,可选择较宽的脉冲宽度,有较大的作用距 离。
有较高的距离分辨率。 有较好的抗干扰能力。 脉冲压缩的缺点: 由于加大了“T”,最小作用距离增加了。 信号处理复杂。 存在距离旁瓣 存在一定的测距模糊和测速模糊。
第五章 相控阵雷达
§5.1概述
相控阵:
相位可控的阵列。相控阵天线是由许多辐射单元排 列组成的,每个单元的馈电相位均可灵活控制,改变波 阵面。
相控阵的概念很明确、很简单,但它与其他许多技术 有关,研究较早,发展较慢。目前处于迅速发展、激烈 变化的时期。
相控阵采用的高技术:
计算机技术 固态技术 信号处理技术 光电子技术 新材料技术 以及器件、结构、工艺的发展
sinθ
,或
d/λ≤1
结论:
1.
阵元间距越大,阵元数越多,角度分辨率越高。∑
2N
d
sin
2.
πd
阵元间距过大,天线方向图将会出现副瓣。λ
sinθ
二、相控阵天线扫描
在图5.3中,阵列天线馈电相位按ψ0递减,则波束指向为θ0。改 变ψ0,就能实现相控阵扫描。馈电相位差与等价波程差关系:
噪声
|f2-f1| |f2-f1|
B
分辨率 1/比特率
1/|f2-f1| 1/|f2-f1|
1/B
9.脉冲压缩原理:
设信号函数为s(t),对应的匹配滤波器的冲激响应为: h(t)=s*(t0-t) 经过匹配滤波器的输出信号y(t)为:
y(t) s(t) * h(t) s()s*( t t0)d
第四章小结
1.雷达距离分辨率与雷达信号带宽
雷达信号TB积的概念
普通脉冲雷达信号的时宽(T)带宽(B)积是一个常量(约为1), 矩形脉冲的带宽是时宽的倒数。 要增加带宽只有减小脉冲时宽一
条道。要进一步减小时宽有一定的难度。要有足够大的作用距离就 要有足够大的平均功率。因此,减小脉宽就得增加脉冲功率。现在 的峰值功率已经非常大,给设备的耐压,防止高压打火,体积和重 量提出了高要求。
相控阵雷达的特点:
波束捷变 多目标跟踪 远作用距离 高数据率 自适应抗干扰 快速识别目标 高可靠性 天线共形
§5.2相控阵列的基本原理
相控阵天线的阵元一般在100-10000 个,每个阵元后接一个可控移相器。改 变每个移相器的移相量就改变了阵元间 的相对馈电相位,改变了天线辐射电磁 波的波阵面指向。
t T 2
h(t) s (t0 t)w(t)
海明加权以后,失配将导致主瓣信噪比增益下降,主瓣宽度增加 等。
12.压缩滤波器
匹配滤波器可用数字方法实现,结果就是一个横向滤波器。 线性调频信号还可以在频域进行压缩。
13.相位编码脉冲压缩
线性调频信号是连续变化的编码信号。相位编码是离散型编码 信号。
当t=t0时,y(t)达到最大,实现了脉冲压缩。
10.线性调频脉冲压缩线性调频信号为源自 s' t
Re[ e
j 2
f0
B 2T
t
t
]
t T 2
式中幅度已经归一化,f0中心频率,T为脉冲宽度,B为带宽。其零
中频信号为:
j B t 2
st e T
t T
2
j B t 2
常用的按两个相位变化,在0o和-180o两者之间编码,相位只 取这两个值。主要有巴克码、M序列码、L序列码和互补编码等。巴 克码见p142。
另外,还有四相码,取0o, 90o, 180o, 270o四个相位点。 相位编码脉冲压缩仍有副瓣抑制的问题。
四相码应用较少。
习题:线性调频信号的带宽B为1MHz,时宽T为100μs,零中频,t0=0。采 样频率fs=B。 1. 画出线性调频信号实部和虚部的时域图形。 2. 画出线性调频信号的频谱图(FFT变换后取模,0频率在坐标中间)。 3. 画出无加权的脉冲压缩波形,计算最大副瓣电平,三分贝脉冲宽度。 4. 画出海明加权的脉冲压缩波形,计算最大副瓣电平,三分贝脉冲宽度。
θ
dsin(θ)
波阵面
dd 0 12
d N-1
图5.1阵列天线示意图
天线阵元之间的间距为d,目标方位(不一定是波束指向)与天线 阵面法矢量夹角为θ。相邻阵元回波相位差为ψ,波程差为dsin (θ),由波程差引起的相位差为:
2 d sin
考虑远场情况(补充远场、近场的概念),设N个天线阵元等间隔分布, 等幅馈电,在θ方向某点辐射场矢量和: