26.1.1反比例函数-教案
初中数学人教版九年级下册26.1.1反比例函数 教案

第二十六章反比例函数26.1.1 反比例函数教案教学目标:1.理解反比例函数的概念,能够判断一个给定的函数是否为反比例函数;2.可以通过实际问题情境求反比例函数解析式;3.掌握用待定系数法求反比例函数解析式.教学重点:1.理解反比例函数的概念,能够判断一个给定的函数是否为反比例函数;2.掌握用待定系数法求反比例函数解析式.教学难点:可以通过实际问题情境求反比例函数解析式教学过程:一、复习回顾教师提出问题:我们之前已经学习了哪些函数?并说出它们的一般形式.学生回答:正比例函数(0)=+≠;二次函数y kx b ky kx k=≠;一次函数(0)2(0)=++≠y ax bx c a二、创设情景,导入新课(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一块面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;(3)已知北京市的总面积为1.68×104km2,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化.教师提问:上列问题中,变量间具有函数关系吗?如果有,你能尝试列出它们的函数解析式吗?学生回答:上列问题中,当一个量变化时,另一个量随着它的变化而变化,并且对应该量每一个确定的值,另外一个量都有唯一确定的值与其对应,因此变量间具有函数关系,解析式分别为:414631000 1.6810,,.v y S t x n⨯=== 三、思考探究:教师提问:同学们可以小组讨论概括一下这三个函数的特点吗? 学生小组讨论回答:都具有k y x=的形式,且k 是非零常数. 教师指导总结:一般地,形如(0)k y k k x =≠为常数,的函数,叫做反比例函数,其中x 是自变量,y 是函数.思考:反比例函数中,自变量x 和函数y 的取值范围分别是什么? 在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x无意义,所以自变量x 的取值范围是不等于0的一切实数,函数y 的取值范围是不等于0的一切实数.教师提问:同学们通过小组讨论,思考一下反比例函数的解析式还可以有哪些形式? 学生讨论交流后,教师指导总结:反比例函数的三种形式:①(0)k y k k x=≠为常数,;②(0)xy k k k =≠为常数,;③1(0)y kx k k -=≠为常数,四:例题练习已知y 是x 的反比例函数,并且当x =2时,y =6.(1)写出y 关于x 的函数解析式;(2)当x =4时,求y 的值.分析:因为y 是x 的反比例函数,所以设k y x =.把x =2和y =6代入上式,就可以求出常数k 的值.解:(1)设k y x =.因为当x =2时,y =6,所以有62k =. 解得k =12. 因此12.y x= (2)把x =4代入12,y x =得12 3.4y ==方法总结:用待定系数法求反比例函数解析式的一般步骤:①设出含有待定系数的反比例函数解析式;②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数;④写出反比例函数解析式.五、课后练习1.下列函数中,y 是x 的反比例函数的是( )A.y =y =y =11y x =-+ 答案:A故选:A. 解析:21m y x +=11=-1=-.故选:D. 3.正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为5310m ,设土石方日平均运送量为V (单位:3m /天),完成运送任务所需要的时间为t (单位:天),则V 与t 满足( )A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系 答案:A解析:由题意,得510V t =,所以V 与t 满足反比例函数关系.4.如果反比例函数的图象经过点()2,1P --,那么这个反比例函数的表达式为( )A.12y x =- B.12y =2x 答案:C解析:设反比例函数解析式为y =)1-代入得2k =, ∴这个反比例函数的表达式为y 六、小结今天我们学习了哪些知识?1.反比例函数的概念是什么?2.自变量和函数的取值范围是什么?反比例函数解析式三种形式分别是什么?3.如何根据已知条件求反比例函数的解析式?是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数。
26.1.1+反比例函数教学设计

k ,再把 x=2 x
k ,因为当 x=2 时 y=6,则有 x
精讲点拨
k .解得:k=12, 2 12 ∴y= . x 12 12 (2)把 x=4 代入 y= ,得 y= =3. x 4
例 2 已知 y 与 x2 成反比例,并且当 x=-2 时,y=2,那么当 x=4 时,y 等于( ) A.-2 B.2 C.
k ,y=kx-1,xy=k 是反比例函数的三种表现形式.其中 k x
是常数,k≠0. 活动 1 小组讨论 例 1 已知 y 是 x 的反比例函数,当 x=2 时,y=6. (1)写出 y 与 x 的函数关系式; (2)求当 x=4 时 y 的值. 分析:因为 y 是 x 的反比例函数,所以设 y= 和 y=6 代入上式就可求出常数 k 的值. 解:(1)设 y= 6=
自学探究
1463 t
(2)某住宅小区要种植一个面积为 1 000 m2 的矩形草坪,草 坪的长 y(单位:m)随宽 x(单位:m)的变化而变化. 解:y=
1000 x
(3)已知北京市的总面积为 1.68×104 平方千米,人均占有的 土地面积 S(单位:平方千米/人)随全市总人口 n(单成反比例,∴y= 代入 y=
k (k≠0).将 x=-2,y=2 x2
k 可求得 k,从而确定该函数表达式. x2 k (k≠0). x2
解:∵y 与 x2 成反比例, ∴y=
当 x=-2 时 y=2,
学习研讨
交流共享
峨山县初中数学集体备课教学设计
k .解得:k=8, (2) 2
课时
1.理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数, 并会用待定系数法求函数解析式. 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想. 1.理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数, 并会用待定系数法求函数解析式. 1.理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
26.1.1反比例函数的图像与性质(教案)

2.教学难点
(1)反比例函数图像的绘制:学生对反比例函数图像的绘制方法掌握不足,容易在图像的准确性和细节上出现问题。
解决方法:教师可通过示范、指导,让学生动手实践,逐步掌握图像绘制的方法和技巧。
(2)反比例函数性质的推导:学生对反比例函数性质的理解和推导存在困难,如单调性、奇偶性等。
举例:通过实际例子(如速度与时间的关系)引导学生理解反比例函数的定义,突出k值对函数图像的影响。
(2)反比例函数的图像:掌握反比例函数图像的绘制方法,了解图像在坐标平面上的分布特点。
举例:利用数形结合的方法,让学生动手绘制反比例函数图像,观察并总结图像在第一、第三象限的分布情况。
(3)反比例函数的性质:理解反比例函数的单调性、奇偶性等性质,并能应用于实际问题。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图像性质这两个重点。对于难点部分,如反比例函数图像的绘制和性质的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过改变变量,观察反比例函数图像的变化,从而验证反比例函数的性质。
解决方法:教师可以通过问题引导、小组讨论等方式,帮助学生理解反比例函数的性质,并学会推导方法。
(3)反比例函数在实际问题中的应用:学生在将反比例函数应用于实际问题时,容易忽略条件限制,导致解题错误。
解决方法:教师需提供丰富的实际案例,让学生在练习中学会分析问题、解决问题,提高应用能力。
(4)反比例函数与一次函数、二次函数等其他函数的联系与区别:学生容易混淆不同类型函数的性质和图像。
人教版数学九年级下册:(反比例函数)反比例函数(教案)

第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =kx(k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x,只须把x =2,y=6代入,求出k 值,即可得y =12x,再把x =4代入可求出 y=3. 【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) x ≠0,∴ y =12k k x . 11220,k 0,0,k k k ≠≠∴≠ 故y =12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数? y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x ,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.。
《第26章反比例函数》全章教案

【学习过程】一、课前导学:预习课本第1页至第3页,完成下列问题:1.我们形如 的函数叫做一次函数,当 时,又叫做正比例函数.2.探究:反比例函数的意义问题1:(1)京沪线铁路全长1 463km ,某次列车的平均速度vkm/h•随此次列车的全程运行问题th 的变化而变化,其关系可用函数式表示为: 。
(2)某住宅小区要种植一个面积为1 000m 2矩形草坪,草坪的长ym 随宽xm•的变化而变化,可用函数式表示为 。
(3)已知北京市的总面积为1.68×104km 2,人均占有的土地面积Skm 2/人,随全市总人口n 人的变化而变化,其关系可用函数式表示为 。
九年级 ()班 课题 26.1 反比例函数 课型 新授教 学目标 知识 技能1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解.[来源:]2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念.过程 方法 1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点. 2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识.情感态度 认识到数学知识是有联系的,逐步感受数学内容的系统性;通过分组讨论,培养合作交流意识和探索精神。
教学重点 理解和领会反比例函数的概念. 教学难点 通领悟反比例函数的概念. 教法学案导学 学法 探究、合作 教学媒体 多 媒 体教 学 过 程 设 计问题2:上述问题中的函数关系式都有什么共同的特征?答: .4. 反比例函数的意义:一般的,形如 的函数,叫做反比例函数,其中x 是自变量, y 是函数学.自变量的取值范围是 的一切实数.5.下列哪个等式中的y 是x 的反比例函数?6.已知y 是x 的反比例函数,当x=2时,y=6.写出y 与x 的函数关系式; 求当x=4时,y 的值.7.若y 与x 成正比例,z 与y 成反比例,则x 与z 之间成______________关系. 8.已知y 与(2x+1)成反比例,且x=1时,y=2,那么当x=0时,y 的值是 二、 合作、交流、展示:1.比例函数的意义:反比例函数的解析式 ,y=xk 反比例函数的变形形式:(1)xy=k (2)1-=kx y 2.例题1.下列等式中,哪些是反比例函数? (1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y(5)x y 23-= (6)31+=xy (7)y =x -4 例题2.当m 取什么值时,函数23)2(m x m y --=是反比例函数?例题3(拓展提升).已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5.(1)求y 与x 的函数关系式; (2)当x =-2时,求函数y 的值三、巩固与应用:()()()().518;57;76;3652x y x y xy x y ==-=+-=()()()().24;23;4.02;51====xy x y x y x y1已知函数y=(m+2)x|m|-3是反比例函数,则m的值是..2.已知y=y1-y2,y1与x成反比例,y2与x-2成正比例,并且当x=3时,y=5;当x=1时,y=-1.求y与x之间的函数关系式.3.下列各变量之间的关系属于反比例函数关系的有( )。
26.1.1反比例函数教案

26.1.1反比例函数教案篇一:九年级下册数学26.1反比例函数教学设计26.1反比例函数板书设计:反比例函数定义:等价形式:篇二:26.1.1反比例函数教案第26章反比例函数26.1.1反比例函数【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。
从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。
因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究篇三:26.1反比例函数教案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如y?k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量xx栏建一个面积为另一边长y(m)与的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数?y?k(k≠0)?xy=k(k≠0)?变量y与x成反比例,比例系数为k.x第1页k(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,x 123分母不能是多项式,只能是x的一次单项式,如y?,y?等都是反比例函数,但y?就不是关1xx?1x2拓展(1)在反比例函数y?于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数y?k中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上x一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式y?k(k≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.第2页(3)反比例函数y?k(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0. k的图象是由两支曲线组x(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数y?成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
-反比例函数全章教案

第二十六章 反比例函数第1课时26.1.1反比例函数的意义教学目标知识于技能.使学生理解并掌握反比例函数的概念过程与方法.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式情感与态度价值观.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想教学重、难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式难点:理解反比例函数的概念难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xk y =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k ;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0。
讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 教学过程一、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?二、例题讲解例1.见教材P3分析:因为y 是x 的反比例函数,所以先设xk y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。
(补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念)。
例1.(补充)下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成x k y =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是xx y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m xm y --=是反比例函数? 分析:反比例函数xk y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。
《26.1.1反比例函数》优课一等奖教学设计

教学设计
科目:数学课题:
课型:新授课
2.函数 是
反比例函数,那么 m = .
3.当m = 时,关于x 的函数 是
反比例函数?
4.以下的数表中分别给出了变量y 与x 之间的对应关系,其中有一个表示的是反比例函数,你能把它找出来吗?
要求:学生指明每一题是根据反比例函数的哪种形式解题 思考: 如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 与x 具有怎样的函数关
学生代表口答每题答案并说明解题思路,其他学生纠错和补充
独立思考,并完成 果,做到堂堂清
引导学生回归反比例函数的三种形式
利用反比例函数的概念解题,通过此题建立反比例与其他函数的联系
板书设计
26.1.1反比例函数
一、回忆
二、新知
1.反比例函数三种形式
)0(≠=
k x
k
y )0(≠=k k xy )0(1≠=-k kx y
2.建模思想
布置作业 分层作业
必做题:课本练习P8练习1、2、 P9第4。
选做题:课本练习P9第6、7题
学生的板演导学案练习1的过程
73-=m x y 2
2)1(-+=m x m y 3
2-
21-当堂检测 反应新知
拓展延伸
)0(≠=k kx y )0(2≠++=a c bx ax y )0(≠+=k b kx y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1.1《反比例函数的概念》教学设计
教学目标
知识与技能:1.从现实情境出发、讨论两个变量之间的关系,加深对函数概念的理解;
2.通过与正比例函数概念的类比,使学生理解并掌握反比例函数的概念。
过程与方法:经历两个变量之间相互关系的讨论,及实际问题中探索数量关系的过程,体会函数的建模思想。
情感、态度与价值观:经历抽象反比例概念的过程,提高学习数学的兴趣;
教学重点:理解反比例函数的概念,能根据已知条件写出函数解析式.
教学难点:理解反比例函数的概念.
教学过程:(情境引入)压岁钱问题:爸爸100元,妈妈100元,爷爷100元,奶奶100元……如果有x 个人,每人都给我100元,我共有y 元, 则y =100x ,正比例函数一般形式:y =kx (其中k≠0)
压岁钱100元,拿去用太大,把100元换成……面值小一点的,另一种人民币即y x =100
一、(新课讲授)下列问题中,变量间具有函数关系吗?如果有,请直接写出解析式.
(1)京沪线铁路全程为1463km ,某次列车的平均速度v (单位:km/h )随此次列车的全程运行时间t (单位:h )的变化而变化.你能写出关于t 的解析式吗?
(2)某住宅小区要种植一块面积为1000m 2的矩形草坪,草坪的长y (单位:m )随宽x (单位:m )的变化而变化.
(3)已知北京市的总面积为1.68×104km 2,人均占有面积S (单位:km 2/人)随全市总
人口n (单位:人)的变化而变化. 1463v t =, 1000y x = ,41.6810S n ⨯= 二、归纳概念:一般地,形如k y x
=(k 为常数,且k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.强调1、自变量x 的取值范围是不等于0的一切实数.2、变形xy =k 或y =kx -1(k 为常数,且k ≠0)
三、例题解析
例1.当m 取什么值时,函数y =(m +1)x m2-2
解:
解得 m m ⎧-=-⎨+≠⎩22110m m =±⎧⎨≠-⎩11.
m ∴=1
例2:已知y 是x 的反比例函数,并且当x =2时,y =6.
(1)写出y 关于x 的函数解析式; (2)当x =4时,求y 的值.
解:(1)设k y x =
,因为当x =2 时,y =6, 所以有62=.k 解得:k =2. 因此12=.y x
(2)把x =4代入12y x =
, 得1234y == 四、当堂检测
1.(1)已知函数7m y x -=是正比例函数,则m = .
(2)已知函数75m y x -=是反比例函数,则m = .
2.下列哪些关系式中的y 是x 的反比例函数?
4y x =,3y x =,2y x =-,61y x =+,21y x =-,21y x
=,123xy =. 3.已知y 是2x-3 成反比例,当x= 时,y=-2,写出y 与x 的函数关系式 选做题(中考链接) 4.(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时,汽车的速度v 千米/小时与时间t 小时的函数关系是( )A.v=320t B.v= 320/t C.v=20t D.v=20/t
5.(2016•哈尔滨)点(2,﹣4)在反比例函数 的图象上,则下列各点在此函数图象上的是( )A.(2,4) B.(﹣1,﹣8) C.(﹣2,﹣4) D.(4,﹣2)
五、归纳总结
1.掌握反比例函数的定义,会判断反比例函数.
2.根据实际问题或待定系数法确定反比例函数解析式.
六、作业 必做题:习题 26.1第 1、2 题. 选做题:习题 26.1第 6、7题.
4
1k y x
=。