33超导材料解析

合集下载

超导简介_精品文档

超导简介_精品文档
➢1934年,C. J. Gorter 和 H. B. Casimir 就提出了关于超导的二流体模型 的唯象解释。
➢1935年 London 兄弟在二流体模型的基础上从电动力学的角度出发提 出了London模型,首次引入了穿透深度的概念。
➢A. B. Pippard 在五十年代初仔细研究了穿透深度随外加磁场的变化, 并从中提出了相干长度的概念并且建立了非局域方程。
合金超导体来说是目前种类最多的超导体,早在1961年B. W. Toberts 就列出了450多种。在进入21世纪之前其最高Tc一直是由Nb3Ge保持的, 转变温度接近23.2K 。直到2001年,MgB2的发现,才打破了这一纪录。 这种结构简单的二元化合物超导转变温度达到了39K。
NaCl型
NbN ZrN NbC MoC TaC
铜氧化物超导体:
➢1986年,IBM苏黎世实验室的两位科学家G. Bednorz和K. A. Muller发现在 La-Ba-Cu-O体系中存在30K的超导转变。 ➢1987年初,中国科学院物理研究所的赵忠贤小组和美国休斯敦大学的朱经 武、吴茂昆等人各自独立发现了在Y-Ba-Cu-O体系中90K以上的超导转变温 度。人们首次将超导转变温度提升到了液氮温区以上。 ➢1988年日本科学家H. Maeda等人在BiSrCaCu2Ox材料中发现临界温度在 105K以上。同年,人们在Tl-Ba-Ca-Cu-O体系中也发现了临界温度在100以 上的超导电性。 ➢1993年A. Schilling等人发现Hg-Ba-Ca-Cu-O的最高转变温度常压下达到 133K ➢1994年朱经武等人报道在30GPa的高压下可以将Tc提高到164K。
基本性质与理论
•基本性质 •Ginzburg-Landau 理论 •BCS理论

磁性材料、超导材料和器件

磁性材料、超导材料和器件

德镇陶瓷学院机电学院)//电子元件与材料.―2005,24(11).―33~34.当介质材料的εr一定时,谐振器的频率与其高度成反比。

通过试验发现:当谐振器的频率相同时,采用低εr的介质材料,可以降低研磨加工所需的精度要求,从而提高调频的工作效率。

采用εr=40介质材料制成1500MHz的谐振器,当高度误差为±0.01mm时,频率误差小于3MHz;如果采用εr=90的材料,则超过5MHz。

图1表2参5TM2862006050059 K ovar合金注射成形技术的研究/秦明礼,曲选辉,罗铁钢,段柏华(北京科技大学材料科学与工程学院)//真空电子技术.―2005,(4).―37~40.以Fe粉、Ni粉和Co粉为原料,研究了利用注射成形技术生产Kova r合金封装盒体的工艺。

选择了一种蜡基多聚物粘结剂体系,在粉末装载量为58%时,喂料的最佳注射参数是:温度160~170℃,压力90~120MPa。

以喂料的热分析结果为指导,制定出合理的热脱脂工艺,对于6mm×6mm ×50mm的注射坯,总共脱脂时间约为18h。

将脱脂坯在1300℃烧结后,材料的致密度可达8.06g cm-3,热膨胀系数在(4.5~6.0)×10-6K-1之间(25~450℃),所制备的封装盒体的气密性小于1.2×10-9Pa m3S-1。

图9表2参104、磁性材料、超导材料和器件O482006050060 CF4/C H F3反应刻蚀石英和BK7玻璃/黄长杰,王旭迪,汪力,胡焕林(合肥电力规划设计院)//真空.―2005,42(4).―49~51.用CF4/CHF3作为工作气体对石英和BK7玻璃进行了研究,分析了气体组分、气体流量和射频偏压等几种因素对刻蚀速率的影响,结果表明刻蚀速率与射频偏压的均方根成正比。

在1CF4;1CHF3的等离子体中由于与光刻胶良好的刻蚀选择比。

在石英基片上获得了侧壁陡直的槽形。

3.3 超导材料解析

3.3 超导材料解析

1957年,BCS理论被提出
1969年,超导纤维研制成功 1973年—— Nb3(Al0.75Ge0.25),Nb3Ga、 NbGe等,最高 Tc=23.2 K。
金属氧化物超导体被发现,BaPbxBi1-xO3。
1975年——500Km/h的磁悬浮列车研制成功。 1986年——Muller(缪勒)和Bednorz(柏诺兹)发现高温超体。
实际上磁场强度 B 有一穿透深度
B B0 e

x

:
穿透深度
电阻为零和完全抗磁性是超导体最基本的两个 性质 ,衡量一种材料是否具有超导性 必须看 是否同时有零电阻和迈斯纳效应。
迈斯纳效应产生的原因:
当超导体处于超导态时,在磁场 作用下,表面产生一个无损耗感 应电流。这个电流产生的磁场恰 恰与外加磁场大小相等、方向相 反,因而总合成磁场为零。换句 话说,这个无损耗感应电流对外 加磁场起着屏蔽作用,因此称它 为抗磁性屏蔽电流。
库柏电子对在晶格中运动没有阻力,这是因为两个电子 在电场作用下运动时,受到晶格的散射时,发生相反的 动量改变,结果电子的总动量不变,所以晶格的散射不 能加快也不能减慢电子的运动,宏观上表现为直流电阻 为零的超导形式。
BCS理论针对金属的超导,无法成功的解释高温超导的现象
• 相干长度:是由吸引力束缚在一起的两个电子。实际
1987年——赵忠贤、陈立泉研制成功Tc=93K的 YBaCuO。
1988~至今——高温超导迅猛发展,Tc不断升高。
一些超导材料 的临界温度
3.3.2 超导材料的基本性质与理论基础
1:完全导电性(零电阻),超导体进入超导态时,其电阻
率实际上等于零。例如:室温下将超导体放入磁场中,冷却到低 温进入超导状态,去掉外加磁场后,线圈产生感生电流,由于没 有电阻,此电流将永不衰减。即超导体的“持久电流”。

超导材料基础知识介绍

超导材料基础知识介绍

超导材料基础知识介绍超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。

现已发现有28种元素和几千种合金和化合物可以成为超导体。

特性超导材料和常规导电材料的性能有很大的不同。

主要有以下性能。

①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。

如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。

这种“持续电流”已多次在实验中观察到。

②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。

③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。

当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。

这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。

基本临界参量有以下 3个基本临界参量。

①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。

Tc值因材料不同而异。

已测得超导材料的最低Tc是钨,为0.012K。

到1987年,临界温度最高值已提高到100K左右。

②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。

Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。

③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。

Ic一般随温度和外磁场的增加而减少。

单位截面积所承载的Ic 称为临界电流密度,以Jc表示。

超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。

以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。

超导体

超导体

1911年,荷兰科学家卡末林-昂内斯用液氮冷却汞,当温度下降到4.2K(-268.95℃)时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。

根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。

但这里所说的“高温”仍然是远低于冰点以下的。

1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。

1973年,发现超导合金—铌锗合金,其临界温度为23.2K(-249.95℃),这一纪录保持了近13年。

1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K(-240.15℃)的高温超导性。

这一年,美国贝尔实验室研究的超导材料,其临界温度达到40K(-235.15)液氢的“温度壁垒”(40K)被跨越。

1987年,美国华裔科学家朱经武以及中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界温度提高到90K(-185.15℃)以上,液氮的“温度壁垒”(77K)也被突破了。

1987年底,铊-钡-钙-铜-氧系材料又把临界温度的记录提高到125K (-150.15℃)。

从1986-1987年这短短一年多的时间里,临界超导温度提高了近100K。

2008年3月25日和3月26日,中国科技大学陈仙辉组合物理所王楠林组分别独立发现了临界温度超过-233.15℃的超导体,突破了麦克米兰极限(麦克米兰曾经断定,传统超导临界温度最高只能达到39K),被证实为非传统超导。

2012年9月,德国莱比锡大学的研究人员宣布了一项进展:石墨颗粒能在室温下表现出超导性,研究人员将石墨粉浸入水中后滤除干燥,置于磁场中,结果一小部分(大约占0.01%)样本表现出抗磁性,而抗磁性是超导体材料的标志性特征之一。

虽然表现出超导体的石墨颗粒很少但这一发现仍然具有重要意义。

迄今为止,超导体只有在温度低于-110℃下才能够发挥作用。

CuZn33(2.028)铜锌合金化学成分力学性能介绍

CuZn33(2.028)铜锌合金化学成分力学性能介绍

CuZn33(2.028)铜锌合金化学成分力学性能介绍-绿兴金属牌号:CuZn33(2.028)化学成分:Cu:66-68.5Zn:余量Pb:0.05Sn:0.05力学性能:铜合金(copper alloy )以纯铜为基体加入一种或几种其他元素所构成的合金。

纯铜呈紫红色﹐又称紫铜。

纯铜密度为8.96﹐熔点为1083℃﹐具有优良的导电性﹑导热性﹑延展性和耐蚀性。

主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。

常用的铜合金分为黄铜﹑青铜﹑白铜3大类。

简介黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。

铜锌二元合金称普通黄铜或称简单黄铜。

三元以上的黄铜称特殊黄铜或称复杂黄铜。

含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。

含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。

为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。

铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。

锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。

铅能改善黄铜的切削性能;这种易切削黄铜常用作钟表零件。

黄铜铸件常用来制作阀门和管道配件等。

船舶常用的消防栓防爆月牙扳手,就是黄铜加铝铸造而成。

种类白铜以镍为主要添加元素的铜合金。

铜镍二元合金称普通白铜﹔加有锰﹑铁﹑锌﹑铝等元素的白铜合金称复杂白铜。

工业用白铜分为结构白铜和电工白铜两大类。

结构白铜的特点是机械性能和耐蚀性好﹐色泽美观。

这种白铜广泛用於制造精密机械﹑眼镜配件、化工机械和船舶构件。

电工白铜一般有良好的热电性能。

锰铜﹑康铜﹑考铜是含锰量不同的锰白铜﹐是制造精密电工仪器﹑变阻器﹑精密电阻﹑应变片﹑热电偶等用的材料。

黄铜黄铜是由铜和锌所组成的合金。

超导体及其应用

超导体及其应用超导材料,又称为超导体(superconductor)。

当某导体在一温度下,可使电阻为零而称之。

零电阻和抗磁性是超导体的两个重要特性。

使超导体电阻为零的温度,叫超导临界温度。

最初发现物体的超导现象是在1911年。

某些材料在极低的温度下,其电阻会完全消失,这令荷兰科学家卡?翁纳斯等人惊奇不已。

于是这以后,超导研究便成为一个重要课题。

关于超导体,科学家在不断的研究,因此也发现和创造出许多的超导材料例如1911年,荷兰物理学家卡莫林.昂内斯(H.Karmerligh-onnes)在莱顿(Leiden)实验室研究在极低温度下各种金属电阻变化时,首先发现水银(Hg)在4.2K 时电阻突然为零的现象(称为超导电性),揭开了超导研究的序幕.昂内斯由于1980年液化了氦和1911年超导现象的研究,获得了1913年度诺贝尔物理学奖.此后科学家们经过七十余年的努力,直到1986年初,已发现并制造出了解上千种超导材料,同时把金属及其合金超导材料的临界温度Tc(出现超导现象的温度)从4.2K提高到23.2K(1973年发现的NB3Ge化合物的Tc=23.2k,直到1985年一直保持着最高临界温度的记录),平均每年只获得0.253K的进展,然而在1986年却发生了突破.1986年1月,IBM苏黎世实验室的德国人贝德诺尔兹(J.G.Bednorz)瑞士人米勒(K.A.Muler)宣布发现可能达到Tc=35K的镧钡铜氧化物超导体。

超导体按不同条件可以分为不同种类例如.超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。

由温度的不同范围可分为高温超导体和低温超导体和常温超导体低温超导材料(low temperaturesuperconducting material) 具有低临界转变温度(Tc<30K),在液氦温度条件下工作的超导材料。

分为金属、合金和化合物。

具有实用价值的低温超导金属是Nb( 铌 ),Tc 为9.3K已制成薄膜材料用于弱电领域。

超导材料


1986年——瑞士科学家贝德诺兹和缪勒,发现 高温超导铜氧化物。30K左右的钡镧铜氧。 1986年——朱经武发现Tc=52k的BaLaCuO. 1987年——赵忠贤、陈立泉研制成功Tc=93k的 YBaCuO。 1988-2000年——高温超导体迅猛发展,Tc不 断升高已达132k. 2008年2月日本和中国科学家发现了一类新的 高温超导材料——铁基超导材料。东京工业大
理论基础—BCS超导理论
1956年的时候,美国物 理学家库柏提出了一个 重要的观点:当满足一 定条件,在电子和电子 之间存在有吸引力时, 这两个电子就会形成一 个 “ 电子对 ” ,它 们被束缚在一起 。这样 的 “ 电子对 ” 称为 “ 库柏对 ” 。 电子在晶格点阵中运动,它对周围的正离子有吸 引作用,从而造成局部正离子的相对集中,导致 对另外电子的吸引作用。这种作用可以用电子声子相互作用模式处理。
学的研究小组发现临界温度达26k的镧氧氟铁砷
超导材料LaO0.5F0.5FeAs。 2011年,日本发现了一种新的超导体材料—— BiS2基超导体。LaO1-xFxBiS2的Tc=10.6k
四、超导材料的应用
应用一,输电电缆、电机、储能
零电阻效应 高温超导输电线可大大节约电能一般的铜线高 架远距离输电,输电线路电能损失达5%— 15%。就美国太平洋煤气电力公司而言,一年 线路电能损失达2亿美元,如果用高温超导线 路远距离输电,则可以避免电能的损失。届时, 我国西南丰富的水能资源即全部开发出来,通 过高温超导输电线路,输送到东南沿海经济发 达地区,解决这些地区的缺电问题。 超导电机:无热损耗,电能全部转化。 超导储能:非常高的能量密度,可以无损耗贮 存巨大的能量。
常规超导材料
弱电超导材料:只涉及小电流和弱磁场。 弱电应用的超导材料多数情况下是先做 成薄膜,然后由膜加工成适当的元器件。 例如,目前最准确的电压标准仪器,其 心脏部件是4个铅膜——氧化铅膜——铅 膜做成的约瑟夫森结。

神奇的低温材料

神奇的低温材料外国语学院 宋超【关键词】拿破仑的纽扣 冷脆 低温材料 材料化学一.从拿破仑的纽扣讲起1812年,在欧洲大陆上取得了一系列辉煌胜利的拿破仑兵败俄罗斯。

世人往往将其失败归结为战线拖得太长、后勤供应不上。

但加拿大著名化学家潘妮·拉古德所著《拿破仑的纽扣:改变历史的16个化学故事》中提到,一个简单的化学反应很有可能对拿破仑的失败起了重要作用。

拿破仑军的军服上,采用的是锡制纽扣。

锡是一种坚硬的金属,然而它有3种同素异形体——白锡、脆锡和灰锡。

在常温下,我们通常所看到的锡是银白色的白锡,白锡坚硬且稳定,而在低温下(13.2摄氏度以下),白锡可以开始发生化学反应而变成粉末状的灰锡。

Sn(s、灰)Sn(s、白);△H=+2.1kJ/mol白锡为银白色金属,有延展性,为四方晶系,密度为7.31g/cm3灰锡为金刚石形立方晶系,密度为5.75g/cm3灰锡比白锡密度小,因此低温下白锡体积膨胀,锡上会出现一些粉状小点,然后会出现一些小孔,最后其边缘会分崩离析。

如果温度急剧下降到零下33摄氏度时,就会产生锡疫(tin plague),晶体锡会变成粉末锡。

由于衣服上没有了纽扣,数十万大军在冰天雪地中敞开着衣服,许多人被活活冻死,还有一些人得病而死。

潘尼道:“毫无疑问,1812冬天的寒冷温度是造成拿破仑征俄大军崩溃的主要因素,而锡在低温度下可变的特性,正是拿破仑士兵被迫披上这些古怪衣服的真正原因。

”类似的案例也发生在了1867年冬天的俄国。

当气温达到零下38摄氏度以下,彼得堡海军仓库里发生了一件怪事:堆在仓库内的大批锡砖全部变成了灰色粉末。

而从仓库里取出军大衣发给士兵时,发现纽扣都不见了,同样只留下一些灰色粉末。

而在1912年,英国探险家斯科特率领一支探险队,在携带了大量给养的情况下冻死在了南极。

原来,斯科特一行人在返回的路上发现,储藏库里的装煤油的铁桶上有裂缝,煤油已经全部漏完了。

后来科学家们经过反复研究终于发现,原来盛煤油的铁桶是用锡焊的,当锡变成粉末时,煤油就顺着缝隙流出来了。

超导材料

超导材料:具有在一定的低温条件下呈现出电阻等于零(零电阻)以及排斥磁力线(抗磁性)性质的材料。

研究历史:荷兰物理学家昂内斯在1908年成功的液化了氮气,1911年发现汞在4.2K下电阻突然消失,即超导现象。

1913年获得诺贝尔奖。

1973年,发现超导合金――铌锗合金(Nb3Ge),其临界超导温度为23.2K,这一记录保持了近13年。

1986年,高温超导体的研究取得了重大的突破,掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。

1986年,美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物La-Ba-Cu-O)具有36K的高温超导性。

1987年,亨茨维尔亚拉巴马大学的吴茂昆及其研究生,与休斯顿大学的中华民国科学家朱经武和他的学生共同发现了钇钡铜氧(Y-Ba-Cu-O),这是首个超导温度在77K以上的材料,突破了液氮的“温度壁垒”(77K)。

也因此引发了对新高温超导材料的研究热潮。

随后,中国科学家赵忠贤以及中华民国科学家朱经武相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上。

1987年底,铊-钡-钙-铜-氧系材料(Tl-Ba-Ga-Cu-O)又把临界超导温度的记录提高到125K。

从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。

2001年,二硼化镁(MgB2)被发现其超导临界温度达到39K。

此化合物的发现,打破了非铜氧化物超导体的临界温度纪录。

特性:零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。

抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。

(磁悬浮列车)临界参量临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。

Tc值因材料不同而异。

已测得超导材料的最低Tc是钨,为0.012K。

到1987年,临界温度最高值已提高到100K左右。

现在,日本发现超导陶瓷临界温度可达14℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据这种原理,可以利用超导体做成 无摩擦轴承 、高精度的导航用超导陀螺仪、磁悬浮列车 等。
3. 超导态的临界参数
?临界温度(TC)
超导体必须冷却至某一临界温度以下才能保持其超导性。
?临界电流密度(JC) 通过超导体的电流密度必须小于某一临界电流密度才能保 持超导体的超导性。
?临界磁场(HC) 施加给超导体的磁场必须小于某一临界磁场才能保持超导 体的超导性。
实际上磁场强度 B 有一穿透深度
?x
B ? B0e ?
? : 穿透深度
电阻为零和完全抗磁性 是超导体最基本的两个 性质 ,衡量一种材料是否具有超导性 必须看 是否同时有零电阻和迈斯纳效应。
迈斯纳效应产生的原因:
当超导体处于超导态时,在磁场 作用下,表面产生一个无损耗感 应电流。这个电流产生的磁场恰 恰与外加磁场大小相等、方向相 反,因而总合成磁场为零。换句 话说,这个无损耗感应电流对外 加磁场起着屏蔽作用,因此称它
1957年,BCS 理论被提出 1969年,超导纤维研制成功 ? 1973年—— Nb3(Al0.75 Ge0.25),Nb3Ga 、 NbGe 等,最高 Tc=23.2 K。
金属氧化物超导体被发现, BaPb xBi1-xO3。 ? 1975年——500Km/h 的磁悬浮列车研制成功。 ? 1986年——Muller(缪勒)和Bednorz(柏诺兹)发现高温超体。 ? 1987年——赵忠贤、陈立泉研制成功Tc=93K的 YBaCuO 。 ? 1988~至今——高温超导迅猛发展,Tc不断升高。
一些超导材料 的临界温度
3.3.2 超导材料的基本性质与理论基础
? 1:完全导电性(零电阻),超导体进入超导态时,其电阻
率实际上等于零。例如:室温下将超导体放入磁场中,冷却到低 温进入超导状态,去掉外加磁场后,线圈产生感生电流,由于没 有电阻,此电流将永不衰减。即超导体的“持久电流”。
高温超导体YBCO的电阻-温度曲线
超导现象的发现:
1911 年,荷兰科学家昂纳斯 在研究极低温度下金属导电性时 发现,当温度降到 4.2K 时,汞的 电阻率突然降低到接近于零。这 种现象称为汞的超导现象。
昂纳斯, 1913年获诺贝尔物理奖
?超导电现象: 材料的电阻随温度降低而减小并 最终出现零电阻的现象。
?超导体: 低于某导态变成正常态
3.3.3 超导体分类
? 元素超导体 ? 合金超导体 ? 金属间化合物超导体 ? 陶瓷超导体 ? 高分子超导体
1. 元素超导体
为抗磁性屏蔽电流。
观察迈纳斯效应的磁悬浮试验
现象:在锡盘上放一条永久磁铁, 当温度低于锡的转变温度时,小磁 铁会离开锡盘飘然升起,升至一定 距离后,便悬空不动了。
原因:由于磁铁的磁力线不能穿过 超导体,在锡盘感应出持续电流的 磁场,与磁铁之间产生了排斥力, 磁体越远离锡盘,斥力越小,当斥 力减弱到与磁铁的重力相平衡时, 就悬浮不动了。
库柏电子对在晶格中运动没有阻力,这是因为两个电子 在电场作用下运动时,受到晶格的散射时,发生相反的 动量改变,结果电子的总动量不变,所以晶格的散射不 能加快也不能减慢电子的运动,宏观上表现为直流电阻 为零的超导形式。
BCS理论针对金属的超导,无法成功的解释高温超导的现象
? 相干长度:是由吸引力束缚在一起的两个电子。实际
3.3.1超导研究历史
? 1911年——Onnes 发现Hg,现已有5000种。 ? 1911~1932年——元素超导体,Pb 、Sn、In 、Ta、Nb、Ti等。 ? 1933年——迈斯纳( Meissner )和奥森菲尔德发现迈斯纳效应。 ? 1933—1953年——合金、过渡金属碳化物和氮化物的超导现象 。 ? 1953 ~ 1973年——Tc>17K的V3Si、Nb3Sn等
超导体完全导电性的解释机理 —BCS理论
该理论以其发明者 巴丁(Bardeen) 库珀(Cooper) 施里弗(Schrieffer) 的名字首字母命名。 超导现象于1911年发现,但直 到1957年,美国科学家巴丁、 库珀和施里弗在《物理学评论 》提出BCS理论,其微观机理 才得到一个令人满意的解释。
临界温度(Tc )、临界磁场(Hc)、临界电流JC是约
束超导现象的三大临界条件。只有当上述三个条件均满
足超导材料本身的临界值时,才能发生超导现象。
(由Tc 、Hc,Jc形成的闭合曲面内为超导态)
H
Hc
正常态
V
失 超
超导态
Tc T
Ic(V) I
临界电流:即当每厘米样品长度上 出现电压为1? V时所输送的电流
巴丁、库珀和施里弗因为提出 超导电性的BCS理论而获得 1972年的诺贝尔物理学奖
BCS 理论: ——适用于金属晶体
金属晶体是有周期型排列的金属正离子和可以自由移动 的自由电子构成。金属晶体中的电子处于带正电的原子 核环境中,当温度处于超导体的临界温度以下时 T<Tc, 电子不再单独一个一个存在,带负电的电子吸引原子核 向它靠拢,那么在电子周围形成局域正电势密集区,吸 引第二个自旋相反的电子。这个电子 和原来的电子以一 定的结合能相结合配对,成为 库柏电子对。两个电子自 旋方向相反,动量大小相等,方向相反,总能量为零。 库柏电子对的能量低于两个单独电子的能量。
E
正常态
超导态
2. 完全抗磁性 (迈斯纳效应 )
?迈斯纳效应
当超导体冷却到临界温度以下 而转变为超导态后, 只要周围 的外加磁场没有强到破坏超导 性的程度,超导体就会把穿透 到体内的磁力线完全排斥出体 外,在超导体内永远保持磁感 应强度为零。超导体的这种特 殊性质被称为“迈斯纳效应”。
迈斯纳效应表明,处于超导态的超导体是一 个具有完全抗磁性的抗磁体
上这种吸引作用并不强。一个库柏对的尺寸约为 104cm左右,这个尺寸相当于晶格常数的10万倍。由此可 见,一个库柏对在空间延展的范围是很大的,在这空 间范围内存在着许多个库柏对互相重叠交叉的分布。 库柏对有一定的尺寸,反映了组成库柏对的两个电子, 不像两个正常电子那样,完全互不相关的独立运动,
而是存在着一种关联性。
相关文档
最新文档