超导体的基本物理特性
2-3 超导体的基本理论

(2)BCS理论 二流体模型和伦敦方程虽然可以解释一些超导现象,
但是不能揭示那种奇异的超导电子究竟是什么。1957年, 巴丁、库柏和施里佛提出了超导电性量子理论,称为BCS 超导微观理论。1972年获得了诺贝尔物理学奖。
BCS理论证明了低温下材料的超导电性起源于物质 中电子与声子的相互作用。当电子间通过声子的作用而产 生的吸引力大于库仑排斥力时,电子结合成库柏电子对, 使系统的总能量降低而进入超导态。在超导的基态与激发 态之间有一等于电子对结合能的能隙△(T),超导电子 对不接受小于能隙的能量。
M Tc 常数
对于大多数超导体,α=1/2。同位素效应使人们想到电 子-声子相互作用与超导电性有密切的联系,因而对超导理 论的建立产生了重要的影响。需要指出的是高温氧化物超导 体表现出很弱的同位素效应。
2.3.4 超导电性的微观机制 自超导现象发现以来,科学界一直在寻找能解释超
导这一奇异现象的理论,先后提出唯象理论,BCS理论 等。这些理论各有其合理性,同时也存在局限性。他们 在机理上并不互相排斥,相反可以互相补充。但到目前 为止,所有理论的一个严重不足之处就是,他们并不能 预测实际的超导材料的性质,也不能说明由哪些元素和 如何配比时才能得到所需临界参量的超导材料,尤其对 于高温超导现象还没有比较完善的理论加以解释。下面 简单介绍解释超导电现象的理论和微观机制。
晶体中电子是处于正离子组成的晶格环
境中,带负电荷的电子吸引正离子向它
靠拢;于是在电子周围又形成正电荷聚
集的区域,它又吸引附近的电子。电子
间通过交换声子能够产生吸引作用。
电子与正离子相互作用形 成库柏电子对示意图
当电子间有净的吸引作用时,费密面附近的两个电子将
形成束缚的电子对的状态,它的能量比两个独立的电子的总
超导体的基本性质和应用

超导体的基本性质和应用超导体是一种在极低温下表现出完全电阻为零的材料,是电学领域中独特且引人瞩目的现象。
超导体的发现和研究不仅极大地推动了科学领域的发展,也为行业的应用带来了巨大的潜力。
本文将介绍超导体的基本性质和一些重要的应用。
一. 超导体的基本性质超导体具有以下的基本性质:1. 零电阻:在超导态下,超导体内部没有电阻,电流可以在其中自由地流动。
这个性质让超导体在电力输送和能量储存方面具有巨大的潜力。
2. 迈出Meissner效应:超导体在过渡到超导态时,会对外部磁场产生排斥作用,将磁场排斥出体内。
这种现象被称为迈出Meissner效应,它是超导体的又一个重要性质。
3. 让低温成为关键:要使超导体发挥超导状态,需要将温度降到很低的极端。
对于常见的超导体材料来说,常规的液氮温度(77K)已经足够维持超导态。
二. 超导体的应用1. 增强能源传输:由于超导体的零电阻特性,能量在超导体中的传输效率非常高。
这使得超导体在能源传输方面具有广阔的应用前景。
超导体电缆可以大大提高电能传输的效率,降低能量损耗,并减少能源供应的对环境的影响。
2. 磁共振成像(MRI):超导磁体被广泛应用于医学成像领域中的核磁共振(NMR)和磁共振成像(MRI)技术。
超导磁体提供了一个强大的稳定磁场,可以更准确地检测疾病和生成高质量的影像。
3. 磁悬浮交通:超导磁悬浮技术利用超导体的穿透磁通特性,使列车浮起并在轨道上悬浮行驶。
这种无摩擦的悬浮方式可以大大提高列车的速度和运行平稳性,且不会产生噪音和振动,未来可能将成为一种重要的交通方式。
4. 快速电子元件:超导体的超快电子运输特性也为电子元件提供了可能。
超导元件可以实现更高的开关速度,更高的运行频率和更低的功耗。
这对于信息技术领域和计算机科学来说是非常有前途的。
5. 等离子体研究:超导体在等离子体物理研究中扮演着重要的角色。
超导磁体可以提供足够的磁场来约束等离子体,并使其保持稳定。
浅谈超导体

浅谈超导体徐建强河南省卢氏县第一高级中学来源人教网由于导体的电阻,在远距离输电等方面造成较大的电能浪费;如能生产一种超导体材料,没有电阻,电流流经它时将不受任何阻力,没有热损耗,于是就能以小的功率得到大的电流,从而产生几个甚至几十个特斯拉的超强磁场,将具有很高的应用价值。
今天,这一切以成为现实。
一、超导体的基本特性1. 零电阻效应超导现象的发现是与低温技术的发展分不开的。
1906年荷兰著名低温物理学家昂纳斯(H.K.Onnes,1853—1926)首次制备出液态氮,获得4开的低温(相当于-269℃),随后又获得了1.04开的低温。
这是继1898年制备出液态氢获得14开低温之后的巨大进展。
随着低温技术的进展,科学家已注意到纯金属的电阻随温度的降低而减小的现象。
昂纳斯首先研究低温下水银电阻的变化。
l911年发现了水银的超导现象。
在4.2开附近水银电阻突然变小。
图1是水银的电阻随温度的变化情况,纵坐标是该温度下水银电阻与0℃时电阻的比值:R(T)/R(0℃)。
较精确的测量给出水银的超导转变温度(临界温度)Tc=4.153 开。
继续降温到3开时,电阻降到仅为0℃时电阻值的10-7Ω,电阻值实际已可看作零了。
图1水银的零电阻效应1912—1913年间昂纳斯又发现锡(Sn)在3.8开低温时,也有零电阻现象。
随后科学家们又发现了其他许多金属或合金在低温下都有零电阻效应。
昂纳斯首先将这种特殊的电学性质称为超导。
昂纳斯由于液氦的制备和超导现象的研究获 l913 年诺贝尔物理学奖。
2 .完全抗磁性1933年,德国物理学家迈斯纳(W.Meissner) 通过实验发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁感线会一下子被完全排斥到超导体之外 (见图2),超导体内磁感应强度变为零,这表明超导体是完全抗磁体。
这个现象称为迈斯纳效应。
3 .存在临界磁场实验表明,超导态可以被外磁场所破坏,在低于Tc的任一温度T下,当外加磁场的磁感应强度B小于某一临界值Bc时。
超导体的性质及其应用

超导体的性质及其应用超导体是一种特殊的物质,具有超导性质,即在超导状态下,电流能够无阻尼地流动。
超导体的发现已经有一百多年的历史,但是这一领域仍然在不断地探索和发展,因为它具有广泛的应用前景。
一、超导体的基本特性超导现象是普通金属、半导体、绝缘体在低温下发生的。
在某一温度下,金属或其他材料的电阻突然降到零,这被称为超导现象。
此时电流可以在材料内无耗散地流动。
超导体具有以下几个基本特性:1. 零电阻超导体在超导状态下的电阻是零,电流能够在材料内无阻尼地流动。
这种特性意味着超导体可以作为高效的电线和电缆使用。
通过在超导体内流动电流,我们可以将能量输送到远处的地方。
2. 磁通量量子化在超导体中,磁通量的变化是量子化的。
这意味着磁通量只能在一个固定的大小范围内变化。
这一特性使得超导体可以作为高精度的磁测量仪使用。
3. 非常低的热导率超导体的热导率非常低,这意味着在超导状态下,超导体会把电流输送到远处,而不会将能量释放为热量。
这是超导体应用于高能物理实验和医疗成像等领域的原因之一。
二、超导体的应用超导体的这些特性使得它在各种领域中具有广泛的应用前景。
以下是一些主要的应用领域:1. 超导磁体超导体可以用来制造非常强大的磁体。
这些磁体在医疗成像、核磁共振、加速器、磁悬浮列车等领域中广泛应用。
利用超导体制造的磁体比利用传统材料制造的磁体更强大,同时也能节省能源和成本。
2. 超导电缆超导体可以作为高能量输送的高效电缆使用。
利用超导体制造的电缆具有比传统电缆更高的能量传输速率,同时能够降低能量损失和线路堵塞。
3. 超导电子元器件超导体可以用来制造高速、高精度的电子元器件,如微波滤波器、量子比特、SQUID等。
这些元器件在通信、计算机、量子计算等领域中有重要的应用。
4. 超导电动机利用超导体制造的电动机比利用传统材料制造的电动机更高效、更具可靠性。
这些电动机在船舶、航空航天、高速列车等领域中有广泛的应用前景。
5. 超导材料随着超导材料的研究和制造技术的发展,超导材料的性能不断提高,同时成本也在逐步降低。
超导体技术的研究及其应用

超导体技术的研究及其应用随着科技的进步,超导体技术在现代科学研究中得到了广泛的应用。
超导体具有零电阻和完美导电的性质,不受电线电场影响,磁场强度非常强,因此在电力传输、磁共振成像、加速器和超导量子计算机等领域都有广泛应用前景。
一、超导体的研究历史早在1911年,荷兰物理学家海克·卡末林提出了超导现象。
直到1957年,当时美国的约翰·巴丹就成功地制得了超导体,这标志着超导体技术的研究得以真正被开展。
此后,光滑表面、单晶、高温、多层等新型超导材料的发现,让超导体技术得以不断地演化和发展。
二、超导体的基本特性超导体的最基本特性就是常温下的电阻率为零,当电流通过超导体时,不会受到任何阻碍。
并且在低温条件下,超导体的磁性非常强,超导体在强磁场下的特性是其主要的优势之一。
此外,超导体还具备高能效、稳定性、高输出功率等优点。
三、超导体的应用领域1. 电力传输超导体技术可用于电力传输,可以相对现有电线线路减少电能损耗,提高电线路的传输效率。
这一方面对全球城市化,农村电气化发展有积极意义。
2. 磁共振成像磁共振成像(MRI)技术利用强磁场和高频电磁波去捕捉人体内部器官的影像。
磁共振成像必须利用超导体来制造磁场,因为超导体可以提供比传统磁体更大的电流密度。
当使用超导体时,MRI图像清晰度更高,同时扫描速度也更快。
3. 加速器高能粒子加速器是粒子物理学实验的常用工具。
超导体在加速器中使用可以较前代的传统电磁铁更好的操纵高能粒子,因此在加速器中超导体得到广泛应用。
还有就是,在电子加速器中,如果使用超导体有助于更好地控制电子束在加速器中的移动,在束元和引出端可达到非常精确的不同形状。
4. 超导量子计算机超导量子计算机利用量子位相和超导电流在超导回路中的运动来存储和处理信息。
由于亚原子级别的巨大存储,超导电路中量子比特(qubit)可以同时处理多个值,使得量子计算机可以在瞬间完成传统计算机需要数百年才能达到的任务。
超导体的性质及应用

超导体的性质及应用超导体是一种在极低温下(通常小于零下196度)能够完全无阻力地导电的材料。
超导体具有一系列特殊的性质,而这些性质也为其在现代科技中的应用带来了极大的潜力。
本文将介绍超导体的基本性质以及其在各个领域中的应用。
一、超导体的基本性质1. 零电阻在极低温下,超导体能够完全无阻力地导电。
此时,电流会在超导体内部的电子对上流动,而这些电子对能够有效地避免了电阻的产生。
同时,由于存在零电阻状态,超导体的能量损失也非常小,因此能够有效地减少能量的浪费。
2. 恒定磁通量超导体内部的磁通量是恒定的,不受外界磁场的影响。
这是由于超导体内部的电流会产生磁场,而这个磁场会抵消外部的磁场,从而使得超导体内部的磁通量保持不变。
3. 超导态和正常态超导体存在两种状态,分别为超导态和正常态。
在超导态下,电流能够无阻力地流动,而在正常态下,电流受到阻力的影响,会产生能量损耗。
超导体的这种双重状态使其在不同领域中的应用具有极大的灵活性。
二、超导体的应用1. 磁共振成像技术超导体能够恒定磁通量,因此被广泛应用于MRI(磁共振成像)技术中。
MRI技术利用磁场和无线电波来创建图像,而超导体是产生这种强磁场的关键材料。
目前,MRI技术已经成为医学诊断的重要手段,为人们提供了高清晰度的内部图像。
2. 超导电缆超导电缆利用超导体的零电阻特性,将电流无损耗地传输。
由于超导电缆不仅能够减少能量的损失,而且还能够极大地提高能量传输的效率,因此被广泛应用于输电和通信领域。
例如,一些国际能源大项目中需要长距离、高电流密度输电,而超导电缆正是实现这一目标的重要手段。
3. 量子计算量子计算是一种基于量子力学原理的计算方式,其中的基本单位是量子比特(qubit)。
超导体能够很好地充当qubit,因为其双重状态使其有较好的干净度、长寿命和易于量子操控等特点。
目前,量子计算被看作是未来计算技术的发展方向之一,而超导体则是量子计算中不可或缺的重要材料。
超导体的基本物理特性

超导体的基本物理特性超导体,又称为超导材料,指在某一温度下,电阻为零的导体。
那么关于超导体,它的基本物理特性有哪些?在下面店铺给你分享超导体的基本物理特性,欢迎阅读。
超导体的基本物理特性:完全导电性完全电导性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。
完全电导性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。
[1] 交流损耗是超导体实际应用中需要解决的一个重要问题,在宏观上,交流损耗由超导材料内部产生的感应电场与感生电流密度不同引起;在微观上,交流损耗由量子化磁通线粘滞运动引起。
交流损耗是表征超导材料性能的一个重要参数,如果交流损耗能够降低,则可以降低超导装置的制冷费用,提高运行的稳定性。
超导体的基本物理特性:完全抗磁性完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。
完全抗磁性的原因是,超导体表面能够产生一个无损耗的抗磁超导电流,这一电流产生的磁场,抵消了超导体内部的磁场。
超导体电阻为零的特性为人们所熟知,但超导体并不等同于理想导体。
从电磁理论出发,可以推导出如下结论:若先将理想导体冷却至低温,再置于磁场中,理想导体内部磁场为零;但若先将理想导体置于磁场中,再冷却至低温,理想导体内部磁场不为零。
对于超导体而言,降低温度达到超导态、施加磁场这两种操作,无论其顺序如何,超导体超导体内部磁场始终为零,这是完全抗磁性的核心,也是超导体区别于理想导体的关键。
超导体的基本物理特性:通量量子化通量量子化又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体(superconductor)—绝缘体(insulator)—超导体(superconductor)结构可以产生超导电流。
超导体的物理特性及应用

超导体的物理特性及应用超导体是一类具有特殊电学性质的物质。
在低温下,这些物质可以表现出完全失去电阻的现象,即电流可以在超导体中自由流动,不会产生任何热量,这被称为超导现象。
由于这一现象的独特性质,超导体在许多领域得到了广泛应用,例如医学成像、磁悬浮列车等。
超导体的物理特性超导体的物理特性与其内部电子结构密切相关。
在超导体中,当温度降至某一阈值以下时,就能表现出超导现象。
这一温度被称为超导临界温度,一般来说,这个温度越低,越容易表现出超导现象。
超导体的超导现象还体现在了它的电学表现上,即在流经超导体的电流会呈现出零电阻、完全反射、稳定性和等效于导体的电容等特性。
超导体中电流的传递是基于库仑理论的,也就是说,超导现象的表现是由电子之间的相互作用产生的。
超导体的应用由于超导体具有零电阻、完全反射等特性,在多个领域都得到了广泛应用。
医学成像:超导磁共振成像(MRI)就是一种典型的应用超导体的医学成像技术。
MRI可以获得精细的图像,不需要其他放射性物质或化学药品,不会对身体产生危害,可以用于诊断多种疾病,如癌症、心脏病等。
磁悬浮列车:由于超导体内部不存在磁阻,所以可以用于制造高速磁悬浮列车。
磁悬浮列车利用超导磁体的特性,可以制造高速交通,且具有快速、安全、环保等多种优点。
其他领域:超导体还可以用于电力传输、电子器件、能源储存等多个领域。
例如,超导体电缆可以传输更多的电能,不会损失相应的电能,因此可以提高电力传输效率;超导体电子器件可以加快计算速度,提升计算性能等等。
结论超导体是一类具有特殊电学性质的物质,它具有零电阻、完全反射等特性,在多个领域得到了广泛应用,如医学成像、磁悬浮列车、电力传输以及电子器件等。
随着技术的发展,超导体在未来还将有更多的应用前景和价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超导体的基本物理特性
超导体的基本物理特性
1、完全导电性
完全电导性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。
完全电导性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。
交流损耗是超导体实际应用中需要解决的一个重要问题,在宏观上,交流损耗由超导材料内部产生的感应电场与感生电流密度不同引起;在微观上,交流损耗由量子化磁通线粘滞运动引起。
交流损耗是表征超导材料性能的一个重要参数,如果交流损耗能够降低,则可以降低超导装置的制冷费用,提高运行的稳定性。
2、完全抗磁性
完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。
完全抗磁性的原因。