正弦型三角函数的图像-中等难度-习题

合集下载

(完整版)中专校正弦型函数练习题.doc

(完整版)中专校正弦型函数练习题.doc

15.3 正弦型函数练习题(2)1. y= 2sin 2x-π的振幅、频率和初相分别为 ( ).41,-π 1 ,-πA .2,π 4 B. 2,2π 41,-π 1 ,-πC. 2,π8 D. 2,2π82.根据所给正弦型函数的图象,求出其表达式(1)函数的最大值是 ____ ,最小值是 ______,因此 A=________( 2)函数的一个周期T= ___________, 因此w___________(3)函数图象五个点中的第一个点的坐标为____________,因此函数的图象向 _____平移了 __________ 个单位,综上得出此函数图象的表达式为____________________3.根据正弦型函数的图象求其表达式。

(1)函数的最大值是 ____ ,最小值是 ______,因此 A=________(2)函数的一个周期 T=___________, 因此w___________(3)函数的图象向 _____平移了 _________个单位,综上得出此函数图象的表达式为 _____________4.根据正弦型函数的图象求其表达式。

(1)函数的最大值是 ____,最小值是 ______,因此 A=________(2)函数的一个周期 T= ___________, 因此w___________(3)函数图象五个点中的第一个点的坐标为____________,因此函数的图象向 _____平移了__________ 个单位,综上得出此函数图象的表达式为____________________5.根据正弦型函数的图象求其表达式。

(1)函数的最大值是 ____,最小值是 ______,因此 A=________(2)函数的一个周期 T= ___________, 因此w___________(3)函数图象五个点中的第一个点的坐标为____________,因此函数的图象向 _____平移了__________ 个单位,综上得出此函数图象的表达式为____________________6. 已知函数 f(x)= Asin(ωx+φ) |φ|<π的部分图象如图所示,则该函数的最小正周期T 和初相φ分别为 ().2ππA . T= 6π,φ=6B .T= 6π,φ=3ππC.T= 6,φ=6 D. T= 6,φ=3( 6)(7)7.已知函数f(x)= sin(ωx+φ)(ω> 0)的图象如图所示,则ω=________8.函数 y sin xcos x是()A.周期为2的偶函数B.周期为2的奇函数C.周期为的偶函数D.周期为的奇函数9.函数f(x) =Asin(ωx+φ)( A,ω,φ为常数, A> 0,ω> 0)的部分图象如图所示,则 T 的值是 ________.10. 函数f ( x) sin( x)的图像的一条对称轴是()4A.x B .x C.x D .x4 2 4 211. 函数 f ( x) sin 2x cos2x 的最小正周期是( )A. B. C.2 D. 42π12.已知函数 f( x)= Asin(ωx+ φ),x ∈ R(其中 A > 0, ω> 0,0< φ< 2)的图象与 x 轴的交点π 2π中,相邻两个交点之间的距离为2 ,且图象上的一个最低点为 M,- 2.3 (1) 求 f(x)的解析式;π π(2) 当 x ∈ 12, 2 时,求 f(x)的值域.13.已知 a =( 3 sin x , - cosx ), b =( cos x , cos x ),且函数 f ( x) = a ? b .求函数 f (x) 的最小正周期及最大值。

第37课 三角函数的图像(经典例题练习、附答案)

第37课  三角函数的图像(经典例题练习、附答案)

第37课 三角函数的图像◇考纲解读①会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义②了解参数 A.ω、φ对函数图像变化的影响 .◇知识梳理1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):①sin y x =图象在[0,2π]上的五个关键点坐标_______________________________; ②cos y x =图象在[0,2π]上的五个关键点坐标为______________________________; ③五点法作y =A sin (ωx +ϕ)的简图:五点取法是设X x ωϕ=+,由X 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图. 3.利用图象变换作三角函数图象三角函数的图象变换有振幅变换、周期变换和相位变换等. 函数y =Asin (ωx +φ)的物理意义:振幅_____,周期____T =,相位_____,初相_____.函数y =Asin (ωx +φ)(0,0)A ω>>可由sin y x =的图象作如下变换得到: ① 相位变换: sin y x =→sin(),y x ϕ=+将sin y x =图象上所有的点向____(0)ϕ>或向____(0)ϕ<平移____个单位。

②周期变换:sin()y x ϕ=+→sin(),y x ωϕ=+将sin()y x ϕ=+图象上所有的点横坐标__________(01)ω<<或_________(1)ω>到原来的_______倍(纵坐标保持不变),得到sin()y x ωϕ=+的图象.③振幅变换: sin()y x ωϕ=+→sin(),y A x ωϕ=+将sin()y x ωϕ=+的图象上所有的点的纵坐标)________(A >1)或________(0<A <1)的到原来的_____倍(横坐标保持不变),得到sin()y A x ωϕ=+的图象.4.由函数的图象求sin(),(0,0)y A x B A ωϕω=++>>的解析式的步骤:① 求A , max min2y y A -=② 求B , max min2y y B +=③ 求T . 从而可得2Tπω=.④求ϕ, 通常是利用图象得最高或最低点.如果利用平衡点求ϕ,则当平衡点图象上升时,令2,,x k k Z ωϕπ+=∈当平衡点图象下降时,令2,x k k Z ωϕππ+=+∈.◇基础训练1. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于( ) A .12π-B .3π-C .3π D .12π 2. 用五点法作x y 2sin 2=的图象时,首先应描出的五点的横坐标可以是( ) A .ππππ2,23,,2,0 B .30,,,,424ππππ C .ππππ4,3,2,,0 D .32,2,3,6,0ππππ 3.若函数ϕωϕω和则如图部分的图象,)()sin()(+=x x f 的取值是( ) A .3,1πϕω-==B .3,1πϕω==C .6,21πϕω-==D .6,21πϕω==4. 函数)0,0)(sin(πϕϕω<<>+=A x A y 的图像的两个相邻零点为)0,6(π-和(,0)2π,且该函数的最大值为2,最小值为-2,则该函数的解析式为( )A .)423sin(2π+=x y B .)42sin(2π+=x y C .)623sin(2π+=x y D .)62sin(2π+=x y ◇典型例题例1.(2007·天津改编)(1)画出函数π24y x ⎛⎫=- ⎪⎝⎭在一个周期内的图像,(2) 试述如何由sin y x =的图象得到π24y x ⎛⎫=- ⎪⎝⎭的图象.变式:(2007·山东)要得到函数sin y x =的图像,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图像( ) A. 向右平移π6个单位B. 向右平移π3个单位 C. 向左平移π3个单位D. 向左平移π6个单位例2.(2008深圳)如下图,某地一天从6时到14时的温度变化曲线近似满足函数y =Asin (ωx +φ)+b(1)求这段时间的最大温差(2)写出这段曲线的函数解析式◇能力提升1.(2007·江苏南通)已知函数图像如右图所示,则它的解析式可以为( ) A.2sin()24y x π=-+ B.4sin()24y x π=-+C.2sin()24y x π=++ D.4sin()24y x π=++2.(2008珠海一模)已知函数)sin(2)(ϕω+=x x f (其中0>ω,2πϕ<)的最小正周期是π,且3)0(=f ,则( ) A .21=ω,6πϕ= B .21=ω,3πϕ=C .2=ω,6πϕ=D .2=ω,3πϕ=3.(2007·重庆)把函数sin(2)16y x π=+-的图像按向量(,1)6a π= 平移,再把所得图像上各点的横坐标缩短为原来的12,则所得图像的函数解析式是( )A .2sin(4)23y x π=+-B .sin(4)6y x π=-C .sin(2)6y x π=+D .2cos(4)3y x π=+4. 要得到函数x y cos 2=的图像,只需将函数)42sin(2π+=x y 的图像上所有的点的( )A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 B .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度5. 试述如何由y =31sin (2x +3π)的图象得到y =sin x 的图象.6.(2008佛山二模)函数()sin()(0,0,||)2f x A x B A πωϕωϕ=++>><的图像上一个最高点的坐标为(,3)12π,与之相邻的一个最低点的坐标为7(,1)12π-. (Ⅰ)求()f x 的表达式; (Ⅱ)求()f x 在6x π=处的切线方程.第37课 三角函数的图像◇知识梳理2.①(0,0) (2π,1) (π,0) (23π,-1) (2π,0) ② (0,1) (2π,0) (π,-1) (23π,0) (2π,1) 3. |A|,2πω, ;x ωϕ+ ϕ.①左 右 ϕ.②伸长 缩短1ω③伸长 缩短 A.◇基础训练1. C2. B 3. C 4. A◇典型例题例1.解:(1)列表描点、连线(2) sin y x =4πsin()4y x π−−−−−−−−→=-图象向右平移个单位纵坐标不变12πsin 4y x −−−−−−−−−→=-横坐标缩小为原来的倍纵坐标不变(2))4y x π−−−−−=-横坐标不变[规律总结]五点法作图的技巧:函数sin()(0,0)y A x j A ωω=+>>的图像在一个周期内的五点横向间距必相等,为4T ,于是五点横坐标依次为12132,,,44T Tx x x x x ϕω=-=+=+ ,这样,不仅可以快速求出五点坐标,也可在求得1x 的位置后,用圆规截取其他四点,从而准确作出图像. 变式:解:根据“左加右减”原则,备选答案D 中,函数图像向左平移π6个单位,其解析式变为cos[()]cos()sin 632y x x x πππ=--=-=,故选D .[误区警示]本题考生容易错选A ,原因在于可能有部分考生错把题目看错为要把函数sin y x =变成cos y x π⎛⎫=- ⎪3⎝⎭.例2.解: (1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图像是函数y =Asin (ωx +φ)+b 的半个周期的图像∴ωπ221⋅=14-6,解得ω=8π, 由图示A =21(30-10)=10,b =21(30+10)=20,这时y =10sin (8πx +φ)+20,将x =6,y =10代入上式可取φ=43π 综上所求的解析式为y =10sin (8πx +43π)+20,x ∈[6,14]◇能力提升1.A. 2. D 3. B 4. C5. 解:y =31sin (2x +3π))(纵坐标不变倍横坐标扩大为原来的3πsin 312+=−−−−−−−−−→−x y x y sin 313π=−−−−−−−−→−纵坐标不变个单位图象向右平移x y sin 3=−−−−−−−−−→−横坐标不变倍纵坐标扩大到原来的6.解:(Ⅰ)依题意的2121272πππ=-=T ,所以π=T ,于是22==Tπω 由⎩⎨⎧-=+-=+13B A B A 解得⎩⎨⎧==12B A 把)3,12(π代入()2sin(2)1f x x ϕ=++,可得1)6sin(=+ϕπ,所以226ππϕπ+=+k ,所以32ππϕ+=k ,因为2||πϕ<,所以3πϕ=综上所述,1)32sin(2)(++=πx x f(Ⅱ)(Ⅱ)因为()4cos(2)3f x x π'=+所以2()4cos(2)4cos 26633k f ππππ'==⨯+==-而2()2sin(2)12sin116633f ππππ=⨯++=+=从而()f x 在6x π=处的切线方程为1)2()6y x π-=--即6330x y π+--=。

(完整版)正弦函数的图像及性质练习题

(完整版)正弦函数的图像及性质练习题

(完整版)正弦函数的图像及性质练习题正弦函数是数学中重要的三角函数之一。

它的图像呈现周期性变化的波形,具有一些特殊的性质。

以下是一些关于正弦函数图像及性质的练题,帮助加深对该函数的理解。

练题1画出正弦函数$f(x) = \sin(x)$在$x$轴上的一个完整周期的图像。

标明原点$(0,0)$和与$x$轴交点$(2\pi,0)$。

练题2正弦函数的图像在何种情况下与$x$轴相切?给出一个具体的例子。

练题3在一个完整周期内,正弦函数的最大值是多少?最小值是多少?它们出现在图像的什么位置?练题4对于正弦函数$f(x) = \sin(ax)$,$a$的取值会如何影响函数图像的周期和振幅?给出两个具体的例子。

练题5将正弦函数$f(x) = \sin(x)$的图像上所有点的横坐标的值增加$\pi/2$,得到新的函数图像$g(x)$。

$g(x)$与$f(x)$有什么关系?画出$g(x)$的图像。

练题6正弦函数的图像具有的对称性是什么?说明是关于哪个点对称,并给出一个具体的例子。

练题7对于一般的正弦函数$f(x) = a\sin(bx+c)+d$,$a$、$b$、$c$和$d$的取值会如何影响函数图像的振幅、周期、平移和垂直方向的偏移?给出一个具体的例子。

练题8正弦函数有无界范围吗?是否可以取到任意实数值?解释你的答案。

练题9正弦函数在实际问题中的应用有哪些?举出一个具体的例子,并分析为什么正弦函数适用于该问题。

以上是一些关于正弦函数图像及性质的练题,希望能够帮助你巩固对该函数的理解。

通过解答这些题目,你可以更好地掌握正弦函数的特点和应用。

请注意,这些题目只涉及正弦函数的基本性质和应用,更深入的研究还需要进一步的研究和探索。

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx, x£[0, 2“]的图象中,五个关键点是:(0,0)(三,1) (^,-1) (2TC,0)2 2余弦函数y=COSX X€ [0,271]的图像中,五个关键点是:(0,1) (― ,0) (71,-1) (― ,0)(271,1)2 22、例作下列函数的简图(1)y=|sinx| , xe[O z 2n], (2)y=-cosx , xU[O , 2n]例利用正弦函数和余弦函数的图象,求满足下列条件的x的集合:(l)sinx > —(2) cosx < —3、周期函数定义:对于函数y = f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时, 都有:/(x + T) = /(x),那么函数y = /'(x)就叫做周期函数,非零常数T叫做这个函数的周期。

注意:周期T往往是多值的(如y = sinx 2冗,4兀广・,・2兀,・4兀广・都是周期)周期T中最小的正数叫做),=/(W的最小正周期(有些周期函数没有最小正周期)y = sinx,),=cosx的最小正周期为2JI ( 一般称为周期)正弦函数、余弦函数:r = —o正切函数:- co (0例求下列三角函数的周期:1 ° y=sin(x+ y) 2° y=cos2x 3° y=3sin( ; + ;) 4° y=tan3x例求下列函数的定义域和值域:(1) y = 2-sinx (3) y = Igcosx例5求函数y = sin(2x-勺的单调区间例不求值,比较大小.(1)sin(- —)v sin(-—): 18 10解:(1)V--<- —2 10182且函数v=sinx, xG-]是增函数. 2 2:.sin(— — )<sin(——) 10 18 即 sin(— —)—sin(— —)>018 103兀 71「.cos ——<cos —5 4 即 cos — —cos — <0 5 4• , 23勿、 ,17刀、- • •cos(— ----- )—cos(— ------- )<05 44,函数y = Asin(w + 0)(A>O°>O )的图像:(1) 函数),= Asin(aM+e)(A>O0>O)的有关概念: ①振幅:A ;②周期:T =—;③频率:/=- = — ; ④相位:CDx+(p,⑤初相:0. coT 2汗(2) 振幅变换① y=Asinx.xeR(A>0且A H 1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1) 到原来的A 倍得到的.② 它的值域[-A,A ]最大值是A,最小值是-A③ 若A<0可先作y=-Asinx 的图象,再以x 轴为对称轴翻折. 皆称为振幅,这一变换称为振幅变换I(3) 周期变换① 函数y=sin (->x, xeR (“)>0且⑴招)的图象,可看作把正弦曲线上所有点的横坐标缩短(”)>1)或伸长(0<GX 1)到原来的土倍(纵坐标不变)(0, 23勿、 17/r (2)cos(— ------ )、cos(— ------ ).5 4八、,23/r 、 23;r 3N (2)cos(— ------ )=cos^^ =cos —5^,17汗、 17万 n COSI — --- ) = cos ------ =cos —4 4 4 V0< —< — < Ji 4 5且函数y=cosx, xc [0,刀]是减函数②若3<0则可用诱导公式将符号"提出”再作图. 3决定了函数的周期,这一变换称为周期变换・(4)相位变换一般地,函数y=sin(x+0), X£R(H中9尹0)的图象,可以看作把正弦曲线上所有点向左(当0>0 时)或向右(当9<0时=平行移动I (p I个单位长度而得到.(用平移法注意讲清方向:“加左”“减右”)y=sin(x+ 0)与y=sinx的图象只是在平面直角坐标系中的相对位置不一样,这一变换称为相位变换. 5、小结平移法过程(步骤)/Ar / 1/ 亡斗\沿X轴平移I乏I个单位1 CO. . —2 / • • ■. •611 llX+=/d3^ l/=P^±^r=得y=Asin((ji)x+0)的图象,先在一6、函数y = Asin(azr+°) + B,当x = x}时,取得最小值为)扁:当v = x2时,取得最大值为)'max,1 1 T则入=5()%_)扁),8 = 5()&+)扁),- = x2-x1(x I<x2).例如图e,是/ (x) =4sin (四+。

正弦型三角函数的图像] · [培优] · [知识点+典型例题]

正弦型三角函数的图像] · [培优] · [知识点+典型例题]

正弦型三角函数的图像知识讲解一、正弦型三角函数的性质1.函数()sin y A x ωϕ=+的图像与函数sin y x =图像的关系振幅变换:()sin 0,1y A x A A =>≠的图像,可以看成是sin y x =图像上所有点的纵坐标都伸长()1A >或缩短()01A <<到原来的A 倍(横坐标不变)而得到的.周期变换:)1,0(sin ≠>=w w wx y 的图像,可以看成是sin y x =的图像上各点的横坐标都缩短()1ω>或伸长()01ω<<到原点的1ω倍(纵坐标不变)而得到的,由于sin y x =的图像得到()sin y A x ωϕ=+的图像主要有下列两种方法:()()()sin sin sin sin y x y x y x A x ϕωϕωϕ=−−−−→=+−−−−→=+−−−−→+相位变换周期变换振幅变换()()sin sin sin sin y x y x y x y A x ωωϕωϕ=−−−−→=−−−−→=+−−−−→=+周期变换相位变换振幅变换2.三角函数的性质],[(π(k k -∈Z[(π,(k k k ∈Z3.sin y x=与sin y x=的性质典型例题一.选择题(共10小题)1.(2018•南昌二模)如图,已知函数f(x)=cos(ωx+φ)(ω>0,﹣<φ<0)的部分图象与x轴的一个交点为A(﹣,),与y轴的交点为B(0,),那么函数f(x)图象上的弧线AB与两坐标所围成图形的面积为()A.B.C. D.2.(2018•河南一模)据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+b (A>0,ω>0,|φ|<)的模型波动(x 为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为()A.f(x)=2sin(x﹣)+7 (1≤x≤12,x∈N+)B.f(x)=9sin(x﹣)(1≤x≤12,x∈N+)C.f(x)=2sin x+7 (1≤x≤12,x∈N+)D.f(x)=2sin(x+)+7 (1≤x≤2,x∈N+)3.(2018•全国I模拟)已知曲线E:y=sin(2x+φ)(ω>0,π>φ>0)的一条对称轴为x=.曲线C的方程为y=cosx,以下哪个坐标变换可以将曲线C变换成曲线E()A.将横坐标变为原来的2倍,纵坐标不变,再把所得曲线向左平移个单位B.向左平移个单位,再把所得曲线的横坐标变为原来的2倍,纵坐标不变C.将横坐标变为原来的倍,纵坐标不变,再把所得曲线向左平移个单位D.向左平移个单位,再把所得曲线的横坐标变为原来的倍,纵坐标不变4.(2018•河南一模)已知函数f(x)=2sin(ωx+)(ω>0)的图象与函数g(x)=cos(2x+φ)(|φ|<)的图象的对称中心完全相同,则φ=()A.B.﹣ C.D.﹣5.(2018•石家庄二模)将函数f(x)=2sinx图象上各点的横坐标缩短到原来的,纵坐标不变,然后向左平移个单位长度,得到y=g(x)图象,若关于x的方程g (x)=a在,上有两个不相等的实根,则实数a的取值范围是()A.[﹣2,2]B.[﹣2,2)C.[1,2) D.[﹣1,2)6.(2018•宁城县模拟)已知x1,x2是函数f(x)=2sin2x+cos2x﹣m在区间[0,]内的两个零点,则sin(x1+x2)=()A.B. C.D.7.(2018•三明模拟)函数f(x)=cos(πx+φ)(φ>0)的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,则tan∠PAB等于()A.1 B.2 C.3 D.48.(2018•青州市三模)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的图象过点B(0,﹣1),且在(,)上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当x1,x2∈(﹣,﹣),且x1≠x2时,f(x1)=f(x2),则f(x1+x2)=()A.﹣B.﹣1 C.1 D.9.(2018•滨州二模)如图,函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的图象过A(0,1)和B(2,﹣2)两点,将函数f(x)的图象向右平移1个单位长度后得到函数g(x)的图象,则函数g(x)的递增区间是()A.[6k,6k+3](k∈Z)B.[3k﹣3,3k﹣1](k∈Z)C.[3k,3k+2](k∈Z)D.[6k﹣3,6k](k∈Z)10.(2018•乌鲁木齐模拟)已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,<)的部分图象如图所示,若,则的值为()A.B.C.D.二.填空题(共3小题)11.(2013•揭阳校级模拟)如图为y=Asin(ωx+φ)(A<0,ω>0,<的图象的一段,其解析式为:.12.(2013秋•滨江区校级期末)关于x的不等式(sinx+1)|sinx﹣m|+≥m对x ∈[0,]恒成立,则实数m的取值范围是.13.已知x∈R,则函数f(x)=max,的最大值与最小值的和等于.三.解答题(共2小题)14.(2017秋•天津期末)已知函数>,<<的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若α为第二象限角且,求f(α)的值.15.(2017秋•宜昌期末)如图为函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的部分图象.(1)求函数解析式;(2)求函数f(x)的单调递增区间;(3)若方程f(x)=m在,上有两个不相等的实数根,则实数m的取值范围.。

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。

正弦型三角函数的图像-中等难度-讲义

正弦型三角函数的图像-中等难度-讲义

正弦型三角函数的图像知识讲解一、正弦型三角函数的性质1.函数()sin y A x ωϕ=+的图像与函数sin y x =图像的关系振幅变换:()sin 0,1y A x A A =>≠的图像,可以看成是sin y x =图像上所有点的纵坐标都伸长()1A >或缩短()01A <<到原来的A 倍(横坐标不变)而得到的.周期变换:)1,0(sin ≠>=w w wx y 的图像,可以看成是sin y x =的图像上各点的横坐标都缩短()1ω>或伸长()01ω<<到原点的1ω倍(纵坐标不变)而得到的,由于sin y x =的图像得到()sin y A x ωϕ=+的图像主要有下列两种方法:()()()sin sin sin sin y x y x y x A x ϕωϕωϕ=−−−−→=+−−−−→=+−−−−→+相位变换周期变换振幅变换()()sin sin sin sin y x y x y x y A x ωωϕωϕ=−−−−→=−−−−→=+−−−−→=+周期变换相位变换振幅变换2.三角函数的性质函数 sin y x =cos y x =tan y x = cot y x =定义 域 R R{|,,}2x x R x k k ππ∈≠+∈Z 且{|,,}x x R x k k π∈≠∈Z 且值域 [1,1]-[1,1]-RR奇偶性奇函数 偶函数奇函数奇函数3.sin y x=与sin y x=的性质典型例题一.选择题(共10小题)1.(2018•天津)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin[2(x﹣)+]=sin2x.当x∈[]时,2x∈[,],函数单调递增;当x∈[,]时,2x∈[,π],函数单调递减;当x∈[﹣,0]时,2x∈[﹣,0],函数单调递增;当x∈[,π]时,2x∈[π,2π],函数先减后增.故选:A.2.(2018•天津)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.3.(2018•三明模拟)已知函数的最小值为a,将函数的图象向左平移个单位长度得到函数h(x)的图象,则下面结论正确的是()A.函数h(x)是奇函数B.函数h(x)在区间[﹣π,π]上是增函数C.函数h(x)图象关于(2π,0)对称D.函数h(x)图象关于直线x=2π对称【解答】解:∵,当且仅当,即x=±1时,上式“=”成立.∴a=4.则g(x)=sin().将函数g(x)的图象向左平移个单位长度,得到函数h(x)的图象,则h(x)=sin[+]==.∵h(2π)=cos=0,∴函数h(x)图象关于(2π,0)对称.故选:C.4.(2018•广西二模)将函数y=sin2x+cos2x的图象向左平移φ(0<φ<)个单位长度后得到f(x)的图象,若f(x)在(π,)上单调递减,则φ的取值范围为()A.(,)B.(,)C.[,]D.[,)【解答】解:y=sin2x+cos2x=sin(2x+),将函数y=sin2x+cos2x的图象向左平移φ(0<φ<)个单位长度后得到f(x)的图象,则f(x)=sin[2(x+φ)+]=sin(2x+2φ+),由2kπ+≤2x+2φ+≤2kπ+,k∈Z,得kπ+﹣φ≤x≤kπ+﹣φ,k∈Z,若f(x)在(π,)上单调递减,则,得﹣,即kπ﹣≤φ≤kπ﹣,k∈Z,当k=1时,≤φ≤,即φ的取值范围为[,],故选:C.5.(2018•呼和浩特二模)已知函数的图象与x轴的两个相邻交点的距离等于,若将函数y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则在下列区间中使y=g(x)是减函数的是()A.B.C.D.【解答】解:函数=2sin(ωx﹣)的图象与x轴的两个相邻交点的距离等于=,∴ω=4,若将函数y=f(x)的图象向左平移个单位得到函数y=g(x)=2sin(4x+﹣)=2sin(4x+)的图象,则在区间(﹣,0)上,4x+∈(﹣π,),y=g(x)没有单调性,故排除A;在区间(,)上,4x+∈(,),y=g(x)单调递减,故满足条件;在区间(0,)上,4x+∈(,),y=g(x)没有单调递性,故排除C;在区间(,)上,4x+∈(,),y=g(x)没有单调递性,故排除D,故选:B.6.(2018•沈阳二模)将函数f(x)=cosx(2sinx﹣cosx)+sin2x的图象向左平移个单位长度后得到函数g(x),则g(x)具有性质()A.在上单调递增,为奇函数B.周期为π,图象关于对称C.最大值为,图象关于直线对称D.在上单调递增,为偶函数【解答】解:函数f(x)=cosx(2sinx﹣cosx)+sin2x=2sinxcosx﹣cos2x+sin2x=sin2x﹣cos2x=sin(2x﹣);f(x)的图象向左平移个单位长度,得y=f(x+)=sin[2(x+)﹣]=sin2x的图象;∴函数g(x)=sin2x,∴g(x)在上单调递增,为奇函数,A正确;g()=sin=≠0,函数图象不关于对称,B错误;g()=sinπ=0,函数图象不关于x=对称,C错误;x∈时,2x∈(﹣π,0),∴g(x)不是单调递增函数,D错误.故选:A.7.(2018•宿州一模)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且函数f(x+)是偶函数,下列判断正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点(,0)d对称C.函数f(x)的图象关于直线x=﹣对称D.函数f(x)在[,π]上单调递增【解答】解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于,∴函数f(x)的周期T=π,故A错误;∵ω>0∴ω=2,∴函数f(x+)的解析式为:f(x)=sin[2(x+)+φ]=sin(2x++φ),∵函数f(x+)是偶函数,∴+φ=kπ+,k∈Z,又|φ|<,解得:φ=.∴f(x)=sin(2x+).∴由2x+=kπ,k∈Z,解得对称中心为:(﹣,0),k∈Z,故B错误;由2x+=kπ+,k∈Z,解得对称轴是:x=,k∈Z,故C错误;由2kπ≤2x+≤2kπ+,k∈Z,解得单调递增区间为:[kπ,kπ],k∈Z,故D正确.故选:D.8.(2018•南昌三模)将函数的图象向左平移个单位,再向上平移1个单位,得到g(x)图象.若g(x1)+g(x2)=6,且x1,x2∈[﹣2π,2π],则x1﹣x2的最大值为()A.πB.2πC.3πD.4π【解答】解:函数的图象向左平移个单位,y=f(x+)=2sin[2(x+)﹣]=2sin(2x+),再向上平移1个单位,得y=2sin(2x+)+1图象,∴g(x)=2sin(2x+)+1;若g(x1)+g(x2)=6,则2x1+=+2k1π,x1=+k1π,2x2+=+2k2π,x2=+k2π,其中k1,k2∈Z;又x1,x2∈[﹣2π,2π],则x1﹣x2的最大值为(+π)﹣(﹣2π)=3π.故选:C.9.(2018•潮南区模拟)将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数g (x)的图象,在g(x)图象的所有对称轴中,离原点最近的对称轴方程为()A.B.C. D.【解答】解:将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,得到y=2sin(4x+),再将所得图象向左平移个单位得到函数g(x)的图象,得到g(x)=2sin[4(x+)+]=2sin(4x+),由4x+=+kπ,k∈Z,得x=kπ﹣,k∈Z,当k=0时,离原点最近的对称轴方程为x=﹣,故选:A.10.(2018•广西三模)将函数y=cos(2x﹣)的图象上各点的横坐标伸长到原来的4倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是()A.x= B.x= C.x=πD.x=【解答】解:将函数y=cos(2x﹣)的图象上各点的横坐标伸长到原来的4倍(纵坐标不变),得到函数y=cos(),再向左平移个单位,得到y=cos[],即y=cos()的图象,令,可得x=2kπ+,故函数的对称轴为x=,k∈Z.结合选项可得函数图象的一条对称轴是直线x=.故选:D.二.填空题(共3小题)11.(2018•江苏模拟)已知函数f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分图象如图所示,若,,则f(0)=.【解答】解:由函数f(x)=2cos(ωx﹣φ)的部分图象知,f(x)的周期为T=﹣=π,∴ω==2;又f()=2cos(π﹣φ)=﹣2cosφ=,∴cosφ=﹣;又φ∈[0,π],∴φ=;∴f(x)=2cos(2x﹣).∴f(0)=2cos(﹣)=﹣.故答案为:﹣.12.(2018•北京)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.【解答】解:函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,可得:,k∈Z,解得ω=,k∈Z,ω>0则ω的最小值为:.故答案为:.13.(2018•肇庆二模)函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f()的值是.【解答】解:根据函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象,可得A=,==﹣,∴ω=2.再根据五点法作图可得2×+φ=π,∴φ=,∴f(x)=sin(2x+),∴f()=sin=,故答案为:.三.解答题(共2小题)14.(2018•玉溪模拟)已知函数f(x)=sin2x+sinx•cosx+2cos2x,x∈R(1)求函数f(x)的最小正周期和单调递减区间;(2)函数f(x)的图象可以由函数y=sin2x的图象经过怎样的变换得到?【解答】解:(1)f(x)=sin2x+x,=,=,=,函数的最小正周期为:T=.令:(k∈Z),解得:(k∈Z),函数的单调递减区间为:(k∈Z).(2)函数y=sin2x的图象向左平移个单位得到函数y=sin(2x+)的图象,再将函数图象向上平移各单位得到f(x)=sin(2x+)+的图象.15.(2018•玉溪模拟)设函数f(x)=2sinxcosx﹣cos2x+1(1)求f()(2)求f(x)的最大值和最小正周期.素材来源于网络,林老师搜集编辑整理【解答】解:(1)函数f(x)=2sinxcosx﹣cos2x +1=sin2x﹣cos2x +1=sin (2x﹣)+1,∴f()=sin(2×﹣)+1=×+1=2;…(6分)(2)由f(x)=sin(2x﹣)+1,当2x﹣=+2kπ,k∈Z,即x=+kπ,k∈Z时,f(x)取得最大值为+1,最小正周期为T==π.…(12分)素材来源于网络,林老师搜集编辑整理。

正弦函数的性质与图像练习题含答案

正弦函数的性质与图像练习题含答案

正弦函数的性质与图像练习题含答案1. 求出sin x≥的解集()A. B.C. D.2. 已知函数f(x)=cos(2x−π6)(x∈R),下列命题正确的是()A.若f(x1)=f(x2)=0,则x1−x2=kπ(k∈Z)B.f(x)的图象关于点(π12, 0)对称C.f(x)的图象关于直线x=π3对称D.f(x)在区间(−π3, π12)上是增函数3. 已知函数f(x)的周期为4π,且,则f ()的值与下列哪个函数值相等()A. B. C.f(π) D.4. f(x)是R 上的奇函数,对任意实数x 都有f(x)=−f(x −32),当x ∈(12, 32)时,f(x)=log 2(2x −1),则(2018)+f(2019)=( ) A.0 B.1 C.−1 D.25. 函数y =1−sin x 的最大值为( ) A.1 B.0 C.2 D.−16. 已知四个命题:p 1:∃x 0∈R ,sin x 0−cos x 0≥√2;p 2:∀x ∈R ,tan x =sin x cos x;p 3:∃x 0∈R,x 02+x 0+1≤0;p 4:∀x >0,x +1x ≥2.以下命题中假命题是( ) A.p 1∨p 4 B.p 2∨p 4 C.p 1∨p 3 D.p 2∨p 37. 已知函数f(x)=sin (ωx +φ)(ω>0, 0<φ<π2)在(π8, 5π8)上单调,且f(−π8)=f(3π8)=0,则f(π2)的值为( ) A.√22B.1C.−1D.−√228. 已知函数f(x)=ax 3+bx ,a ,b ∈R ,若f(−2)=−1,则f(2)=( ) A.−2 B.1 C.3 D.−39. 已知函数f(x)是定义在R 上的奇函数,且f(x −4)=−f(x),在[0, 2]上f(x)是增函数,则下列结论:①若0<x 1<x 2<4,且x 1+x 2=4,则f(x 1)+f(x 2)>0;②若0<x 1<x 2<4,且x 1+x 2=5,则f(x 1)>f(x 2);③若方程f(x)=m 在[−8, 8]内恰有四个不同的解x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=±8,其中正确的有( ) A.0个 B.1个 C.2个 D.3个10. 已知f(x)=cos 2x +2sin x,x ∈[π4,π],则f(x)的值域是( ) A.[1, 2] B.[1,12+√2]C.[−∞, 2]D.[−2, 2]11. 若函数f(x)=sin (2x +θ)的图象关于直线x =−π6对称,则|θ|的最小值是________.12. 在[0, 2π]内,使sin x≥−成立的x的取值范围是________.13. 函数f(x)=√3sin x cos x+cos2x的最大值为________.14. 已知[x]表示不超过x的最大整数,如[−1.2]=−2,[1.5]=1,[3]=3.若f(x)=2x,)=________,函数g(x)的值域为________.g(x)=f(x−[x]),则g(3215. 求函数的对称轴和对称中心..16. 已知函数f(x)=sin x⋅cos x−√3cos2x+√32(1)化简函数f(x),并用“五点法”画出函数f(x)在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);]时,求函数f(x)的最大值和最小值及相应的x的值.(2)当x∈[0, π2参考答案与试题解析正弦函数的性质与图像练习题含答案一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】C【考点】三角函数线正弦函数的图象三角不等式【解析】此题暂无解析【解答】此题暂无解答2.【答案】D【考点】正弦函数的奇偶性和对称性【解析】利用余弦函数的对称性质可知,2x−π6=kπ可得对称轴,2x−π6=kπ+π2,可得其对称中心,根据2kπ−π≤2x−π6≤2kπ单调递减,可得增区间.【解答】函数f(x)=cos(2x−π6)(x∈R),其周期T=2π2=π,一个周期有两个零点,即f(x1)=f(x2)=0,则x1−x2=12kπ(k∈Z)故A不对.余弦函数的性质可知:由2x−π6=kπ+π2,可得其对称中心为(π3+12kπ, 0),经考察,故B不对.由2x−π6=kπ可得其对称中轴x=12kπ+π12,(k∈Z),经考察,故C不对.由2kπ−π≤2x−π6≤2kπ可得增区间为[kπ−5π12, kπ+π12],∴f(x)在区间(−π3, π12)上是增函数.3.【答案】C【考点】三角函数的周期性【解析】此题暂无解析【解答】此题暂无解答4.【答案】A【考点】正弦函数的奇偶性和对称性【解析】主要考查函数的周期性和奇偶性,考查转化与化归能力、运算求解能力【解答】解:∵f(x)是R上的奇函数,且f(x)=−f(x−32),∴f(x+32)=−f(x),∴f(x+32+32)=−f(x+32)=f(x),即f(x+3)=f(x).∴函数f(x)的最小正周期为3,∴f(2018)+f(2019)=f(672×3+2)+f(673×3+0) =f(2)+f(0)=f(−1+3)+f(0) =f(−1)+f(0)=−f(1)=0.故选A.5.【答案】C【考点】正弦函数的定义域和值域正弦函数的图象三角函数的最值【解析】此题暂无解析【解答】此题暂无解答6.【答案】D【考点】命题的真假判断与应用【解析】此题暂无解析【解答】此题暂无解答7.【答案】D【考点】正弦函数的图象【解析】由已知可得函数f(x)的最小正周期为T=2πω,解得0<ω≤1,结合已知列关于ω,φ的方程组,求解可得ω,φ得到函数解析式,进一步求得f(π2)的值.【解答】由题意得,函数f(x)的最小正周期为T=2πω,∵f(x)在(π8, 5π8)上单调,∴T2=πω≥π2,得0<ω≤2.且f(−π8)=f(3π8)=0,所以T2=3π8−(−π8)=π2,解得ω=2.由于f(−π8)=0,所以sin[2×(−π8)+φ]=0,整理得φ=π4.所以f(x)=sin(2x+π4),则f(π2)=sin(π+π4)=−√22.8.【答案】B【考点】函数奇偶性的性质与判断【解析】根据题意,分析可得f(x)为奇函数,进而由奇函数的性质分析可得答案.【解答】根据题意,函数f(x)=ax3+bx,其定义域为R,有f(−x)=a(−x)3+b(−x)=−(ax3+bx)=−f(x),即函数f(x)为奇函数,又由f(−2)=−1,则f(2)=−f(−2)=1;9.【答案】D【考点】奇函数【解析】由条件“f(x−4)=−f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0, 2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0, 2]上为增函数,综合条件得函数的示意图,由图看出,①若0<x1<x2<4,且x1+x2=4,f(x)在[0, 2]上是增函数,则f(x1)>f(x1−4)=f(−x2)=−f(x2);则f(x1)+f(x2)>0;故①正确;②若0<x1<x2<4,且x1+x2=5,f(x)在[0, 2]上是增函数,由图可知:f(x1)>f(x2);故②正确;③当m>0时,四个交点中两个交点的横坐标之和为2×(−6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=−8.当m<0时,四个交点中两个交点的横坐标之和为2×(−2),另两个交点的横坐标之和为2×6,所以x1+x2+x3+x4=8.故③正确;故选D.10.【答案】A【考点】三角函数的最值【解析】将f(x)化简转化为关于sin x的二次函数形式,然后根据sin x的范围求出f(x)的值域即可.【解答】f(x)=cos2x+2sin x=−sin2x+2sin x+1=−(sin x−1)2+2∵x∈[π, π],∴sin x∈[0, 1],4∴当sin x=0时,f(x)min=1;当sin x=1时,f(x)max=2,∴f(x)的值域为:[1, 2].二、填空题(本题共计 4 小题,每题 5 分,共计20分)11.【答案】π6【考点】正弦函数的奇偶性和对称性【解析】结合正弦函数的对称轴处取得函数的最值即可求解.【解答】依题意可知2×(−π6)+θ=kπ+π2(k∈Z),得θ=kπ+5π6(k∈Z),所以|θ|=|kπ+5π6|,故当k=−1时,|θ|取得最小值π6.12.【答案】【考点】三角函数线正弦函数的图象【解析】此题暂无解析【解答】此题暂无解答13.【答案】32【考点】三角函数的最值【解析】运用二倍角的正弦公式和余弦公式、以及辅助角公式,结合正弦函数的值域,即可得到所求最大值.【解答】解:函数f(x)=√3sin x cos x+cos2x=√32sin2x+12cos2x+12=sin(2x+π6)+12,当2x+π6=2kπ+π2,k∈Z,即x=kπ+π6,k∈Z,函数取得最大值1+12=32.故答案为:32.14.【答案】√2,[1, 2)【考点】函数的值域及其求法【解析】代入自变量x ,利用取值求出,代入即可,求出[x]∈(x −1, x],故x −[x]∈[0, 1),代入即可. 【解答】由f(x)=2x ,g(x)=f(x −[x]),g(32)=f (32−[32])=f(32−1)=f(12)=212=√2,由g(x)=2x−[x], [x]∈(x −1, x], 故x −[x]∈[0, 1), 所以g(x)∈[1, 2),三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 ) 15. 【答案】由,得,所以对称轴为.由,得,所以对称中心为.【考点】正弦函数的图象正弦函数的奇偶性和对称性 【解析】 此题暂无解析 【解答】 此题暂无解答 16. 【答案】解:(1)f(x)=sin x⋅cos x −√3cos 2x +√32=12sin 2x −√32cos 2x =sin (2x −π3),令X =2x −π3,则x =12(X −π3).填表:…(2)因为x∈[0, π2],所以2x∈[0, π],2x−π3∈[−π3, 2π3]…所以当x=0时,即2x−π3=−π3,y=sin(2x−π3)取得最小值−√32;当x=5π12时,即2x−π3=π2,y=sin(2x−π3)取得最大值1…【考点】五点法作函数y=Asin(ωx+φ)的图象正弦函数的图象【解析】(1)先化简函数f(x),然后利用“五点法”进行作图.(2)根据三角函数的最值性质进行求解.【解答】解:(1)f(x)=sin x⋅cos x−√3cos2x+√32=12sin2x−√32cos2x=sin(2x−π3),令X=2x−π3,则x=12(X−π3).填表:y010−10…(2)因为x∈[0, π2],所以2x∈[0, π],2x−π3∈[−π3, 2π3]…所以当x=0时,即2x−π3=−π3,y=sin(2x−π3)取得最小值−√32;当x=5π12时,即2x−π3=π2,y=sin(2x−π3)取得最大值1…试卷第11页,总11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦型三角函数的图像
一、选择题(共12小题;共60分)
1. 函数的一条对称轴方程为
A. B. C. D.
2. 要得到函数的图象,只需将函数的图象
A. 向左平移个单位长度
B. 向右平移个单位长度
C. 向左平移个单位长度
D. 向右平移个单位长度
3. 函数在区间中的简图如图所示,则函数的解析式可以是
A. B.
C. D.
4. 已知函数的图象如图所示,,则
A. B. C. D.
5. 如果函数+的图象关于点中心对称,那么的最小值为
A. B. C. D.
6. 已知函数,,则的单调递减区间是
A. B.
C. ,
D. ,
7. 函数的定义域是
A. B.
C. D.
8. 将函数的图象向左平移个周期后,所得图象对应的函数为
A. B.
C. D.
9. 已知函数对任意实数有恒成立,且,则
实数的值为
A. B. C. 或 D.
10. 已知函数,若对任意的实数,总有,则
的最小值是
A. B. C. D.
11. 将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得
的图象向左平移个单位,得到的图象对应的解析式是
A. B.
C. D.
12. 函数的部分图象如图所示,如果且
,则等于
A. B. C. D.
二、填空题(共5小题;共25分)
13. 函数(,)的图象的一部分如图所示,则该函数的解析式为

14. 要得到的图象,可以将的图象向平移个单位长度.
15. 为了得到函数的图象,可以将函数的图象至少向右平
移个单位长度.
16. 已知,,,是函数一个周期内图象上的四个点,如
图,点,为轴上的点,为图象上的最低点,为该函数图象的一个对称中心,点与点关于点对称,在轴上的投影为,则,的值分别为.
17. 若已知,函数在上单调递增,则的取值范围是.
三、解答题(共5小题;共65分)
18. 函数的图象向左平移个单位,得到的图象恰好关于直线对称,求
的最小值.
19. 已知函数的定义域为,最大值为,最小值为,求实数和
的值.
20. 已知函数的图象的一部分如图所示.
(1)求的表达式;
(2)试写出的对称轴方程.
21. 某同学用“五点法”画函数的图象,先列表,并填写了一些数据,如表:
(1)请将表格填写完整,并画出函数在一个周期内的简图;
(2)写出如何由的图象变化得到的图象,要求用箭头的形式写出变化的三个步骤.
22. (1)将函数的图象如何变换可得到函数的图象?
(2)已知函数的图象,将它怎样变换,可得到函数的图象?。

相关文档
最新文档