一个求椭圆离心率问题的三种做法
离心率问题的7种题型15种方法

离心率问题的7种题型15种方法求离心率常用公式题型一椭圆离心率的求值方法一定义法求离心率1.已知椭圆C 14222=+y a x 的一个焦点为(2,0),则C 的离心率为()A .31B .21C .22D .322【解析】14222=+y a x ,∵,则,选C 2.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()A .13B .12C .23D .34【解析】由直角三角形的面积关系得bc =124⨯12c e a ==,选B 3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A .45B .35C .25D .15【解析】设长轴为2a ,短轴为2b ,焦距为2c ,则2222.a c b +=⨯即22222()44()a c b a c b a c +=⇒+==-.整理得:2225230,5230c ac a e e +-=+-=,选B4.椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为【解析】椭圆12222=+by a x (a >b >0)左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2若|AF 1|,|F 1F 2|,|F 1B |成等比数列,所以(a ﹣c )(a +c )=4c 2,即a 2=5c 2,所以e =55方法二运用通径求离心率5.设椭圆C 2222x y a b+=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C的离心率等于【解析】不妨假设椭圆中的a =1,则F 1(﹣c ,0),F 2(c ,0),当x =c 时,由2222x y a b +=1得y =ab 2=b 2,即A (c ,b 2),B (c ,﹣b 2),设D (0,m ),∵F 1,D ,B三点共线,∴,得m =﹣2b 2,即D (0,﹣2b 2),∴若AD ⊥F 1B ,在,即=﹣1,即3b 4=4c 2,则3b 2=2c =3(1﹣c 2)=2c ,即3c 2+2c ﹣3=0,解得c==,则c =,∵a =1,∴离心率e =a c =336.从椭圆22221x y a b+=(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥O P (O 是坐标原点),则该椭圆的离心率是【解析】由题意知A (a ,0),B (0,b ),P 2,b c a ⎛⎫- ⎪⎝⎭∵AB ∥O P ,∴2b b ac a -=-.∴b =c ;又∵a 2=b 2+c 2,∴22212c e a ==.∴2e =7.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是【解法一】设1(,0)F c -,2(,0)F c ,由题意易知,21212,PF F F c PF ===,1212212F F c e a PF PF ∴====+【解法二】由题意易知,2122,PF F F c ==由通径得22=a b PF ,故22c=ab ,解得e 1方法三运用e =e =求离心率8.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且FD BF 2=,则C 的离心率为【解】如图,,作DD 1⊥y 轴于点D 1,则由,得,所以,,即,由椭圆的第二定义得又由|BF |=2|FD |,得,a 2=3c 2,解得e ==33,9.经过椭圆2222=1x y a b+(a >b >0)的左焦点F 1作倾斜角为60°的直线和椭圆相交于A ,B两点,若||||AF BF 112=,求椭圆的离心率。
求离心率的范围问题整理分类

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。
2.利用线段长度的大小建立不等关系。
F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。
4.利用题目不等关系建立不等关系。
5. 利用判别式建立不等关系。
6.利用与双曲线渐近线的斜率比较建立不等关系。
7.利用基本不等式,建立不等关系。
二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。
求解离心率问题的三种策略

’’
b ) >0 的左 、右焦 点 ,若 在其 右准线 上存 在 P,使线
段 的 中垂线 过点 , 则椭 圆离 心率 的取值 范 围是
●
_ r , , J - J u ‘ _ _ _ _ _ _ _ _ _ 一
立 不 等 关系 的重 要依 据 ,在 求解 参 数范 围问题 中经
解 由意知-+ )√1 析 题可el 。1+ . √( =+ ()
・
.
・ > 。 o < + < . 2 < 5. 以 1 . 1 2. o < √ . 1 . √
a
得到动点 P的坐标与 a b C , , 的等量关系,再将点 尸
的坐标 代 入 方程 即建 立 了 a, c 方程 ,从而 求 出 b, 的 离 心率 .
福建 中学数 学
2 1 第 9期 02年
e 一x 1 l1 e , J +X .
l— e “
<
l
e
,
用 I n 替换 X,可得 iX X , n 一1
令 = , k=1 2 …, 一1 , ( ∈N , 2 , , , ) z
n
‘
r、 r、 1 2
la l 4 3 J
-
半 =l J. 径r 去 = 所以 口
解得a 2,. : ,b √ : ・ 1 : . . c
=, a
0 0 <X <口,得 <P . <1
3运用函数方程思想求解离心率
所 椭圆 程 ÷=. 求 方 为X+ 1
点评 ① 先将 圆 锥 曲线 上 点 的 坐标 用 有 关 数 量 表示 ,将 其代 入 到 圆锥 曲线 的方 程 间接 地得 到 了关
于 abc的方程 ,这是 数 学 中方程 思想 的一种重 要体 ,,
求椭圆离心率的方法

求椭圆离心率的方法椭圆是平面上的几何图形,具有有限个点的离心率的性质。
离心率是描述椭圆形状独特度的一个重要参数,它表明椭圆的偏心程度。
离心率的计算是通过椭圆的长短轴的长度来进行的。
首先,我们来了解一下什么是椭圆。
椭圆可以看作是一个平面上的一条固定点到平面上任意一点的距离之和等于常数的点的集合。
这个固定点叫做焦点,常数叫做焦距。
椭圆的长轴是连接两个焦点的线段,并通过椭圆的中心点。
短轴是垂直于长轴的线段,并通过椭圆的中心点。
焦距的一半等于椭圆的离心距离。
椭圆的离心率是一个无量纲的比例,用e表示。
离心率的范围是0≤e<1,当e 等于0时,说明椭圆是一个圆;当e接近1时,椭圆的偏心程度越大。
要求椭圆的离心率,首先需要知道椭圆的长轴和短轴的长度。
假设椭圆的长轴长度是2a,短轴长度是2b,那么离心率e的计算公式为:e = √(a^2 - b^2)/a即离心率等于椭圆的长轴和短轴长度之差的平方根除以长轴长度。
通过这个公式,我们可以求解任意椭圆的离心率。
下面通过一个例子来进一步说明求解椭圆离心率的方法。
假设有一个椭圆,长轴的长度是6,短轴的长度是4。
我们先代入公式:e = √(6^2 - 4^2)/6计算得到离心率e=√(36-16)/6=√20/6≈0.82。
这个结果表明该椭圆的离心率约为0.82,说明椭圆的偏心程度较大。
除了通过椭圆的长短轴长度来计算离心率,还有另一种计算方法,即通过椭圆的焦点和焦距来计算离心率。
焦点的坐标可以表示为(F1,0)和(-F1,0),焦距可以表示为2c。
离心率的计算公式如下:e = c/a对于上面的例子,假设焦点的坐标分别是(-2,0)和(2,0),焦距是2c=4。
代入公式得到离心率e=4/6≈0.67,与前面的计算结果相近。
总结一下,我们可以通过椭圆的长短轴长度或者焦点和焦距来计算椭圆的离心率。
这个参数可以帮助我们进一步了解椭圆的形状特征,判断椭圆与其他几何图形的关系,以及在各种科学工程领域的应用。
离心率的常见求法

离心率的常见求法
离心率是一个有重要意义的机械物理概念,是描述物质或者物体在离心力作用下运动的特性。
常见的离心率求法有:
1、对角法:对角法测量离心率的原理是:根据观察介质的同心圆状态,用视线衡量介质的对角线,从而获得两个半径,离心率就是两个半径之比。
3、椭圆法:椭圆法测量离心率的原理是:由介质形成的椭圆形折线变化,衡量介质的长轴和短轴,利用椭圆长轴和短轴之比,进行求解离心率。
4、三角法:三角法测量离心率的原理是:根据三角形的相关公式,利用介质的试样在极坐标系下的不同的极坐标点的坐标,计算出夹角的正弦、余弦,再求出离心率。
离心率的测量方法有很多,上述的这五种比较常用,其中对角法和三角法最为简单方便,但测量精度较低,旋转法和椭圆法测量精度较高,但较复杂,重力法测量不受介质的影响,推荐使用。
关于高中数学离心率题型解法的有效解决技巧

关于高中数学离心率题型解法的有效解决技巧离心率是描述椭圆或者双曲线形状的一个重要参数,在高中数学中是一个常见的题型。
解决离心率题型需要掌握一些有效的解决技巧,以下是一些常用的解题方法:1. 确定椭圆或双曲线的方程类型:首先要根据题目中的给定信息确定椭圆或双曲线的方程类型,例如椭圆的方程一般形式为\dfrac{x^2}{a^2}+ \dfrac{y^2}{b^2} = 1,双曲线的方程一般形式为\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1。
2. 求取离心率:当已知椭圆或双曲线的方程时,可以利用离心率的定义求取离心率。
椭圆的离心率为e = \sqrt{1 - \dfrac{b^2}{a^2}},双曲线的离心率为e =\sqrt{\dfrac{b^2}{a^2} + 1}。
3. 利用离心率性质解题:离心率有许多有用的性质可以用来解决题目。
椭圆的离心率e满足0 < e < 1,即离心率是大于0小于1的实数。
双曲线的离心率e满足e > 1,即离心率是大于1的实数。
4. 求取椭圆或双曲线的焦点:椭圆的焦点可以通过离心率来求取,焦点的坐标为(\pm ae, 0)。
双曲线的焦点的坐标为(\pm ae, 0)和(0, \pm b)。
5. 利用焦点和离心率的性质求取题目所需要的信息:有时候题目会给出椭圆或双曲线的焦点和离心率,需要求取其他相关信息。
可以根据离心率和焦点的坐标来求取椭圆的长轴、短轴长度,以及双曲线的极限。
6. 综合运用多种方法解题:有些题目可能需要综合运用离心率的性质、椭圆、双曲线的方程以及焦点、长轴、短轴等信息来解决。
在解决离心率题型时,需要熟练掌握椭圆和双曲线的基本概念和公式,同时运用离心率的性质来推导和求解。
多做一些题目,加深对离心率和椭圆、双曲线的理解,掌握常见的解决技巧,就能够更有效地解决高中数学离心率题型。
离心率问题的7种题型15种方法(教师版)

目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。
求椭圆离心率常用的三种方法

椭圆的离心率是椭圆的一个重要性质,它是反映椭圆的扁平程度的量.求椭圆的离心率问题比较常见.这类问题常与平面几何、三角函数、平面向量等知识相结合,侧重于考查同学们的逻辑推理和数学运算能力.那么,求椭圆的离心率有哪些方法呢?下面结合实例进行探讨.一、公式法我们知道,圆锥曲线的离心率公式为e=ca.因此要求椭圆x2a2+y2b2=1(a>b>0)的离心率,只需求出椭圆方程中的参数a、c的值或c与a的比值即可.例1.已知椭圆E:x2a2+y2b2=1(a>b>0)的长轴长是短轴长的2倍,则E的离心率为_______.解:因为椭圆的长轴长是短轴长的2倍,所以2a=4b,所以ba=12,可得e=ca本题较为简单,由题意可以很容易确定椭圆中参数a、b之间的关系,直接根据椭圆方程中参数a、b、c之间的关系a2=b2+c2,即可求得c与a的比值,从而求得椭圆的离心率.例2.已知椭圆C:x2a2+y2b2=1()a>b>0的右焦点为F()2,0,P为椭圆的左顶点,且||PF=5,则椭圆C的离心率为().A.23B.12C.25D.13解:因为椭圆的右焦点为F()2,0,所以c=2,因为P为椭圆的左顶点,所以||PF=a+c=a+2=5,解得a=3,所以椭圆C的离心率为e=ca=23.故选A.我们首先根据题意可以确定c的值;然后根据P点的位置,确定a的值,即可根据椭圆离心率的公式求得问题的答案.二、几何性质法几何性质法是指利用平面几何图形的性质解题.在求椭圆的离心率时,我们可以根据题意画出几何图形,将椭圆参数方程中的a视为长半轴长、b视为短半轴长、c视为焦半径,根据椭圆、三角形、平行四边形、梯形的性质来求得椭圆的长半轴长、短半轴长、焦半径,或建立三者之间的关系式.例3.已知椭圆C:x2a2+y2b2=1()a>b>0的左右焦点分别为F1,F2,点M是椭圆C上第一象限的点,若||MF1=||F1F2,直线F1M与y轴交于点A,且F2A是∠MF2F1的角平分线,则椭圆C的离心率为_______.解:由题意得||MF1=||F1F2=2c,由椭圆的定义得||MF2=2a-2c,记∠MF1F2=θ,则∠AF2F1=∠MF2A=θ,∠F1F2M=∠F1MF2=∠MAF2=2θ,则||AF2=||AF1=2a-2c,所以||AM=4c-2a,故ΔMF1F2∽ΔMF2A,则||MF2||F1F2=||AM||MF2,则2a-2c2c=4c-2a2a-2c,可得e2+e-1=0,解得e=5-12或e=-5-12(舍).解答本题,需运用相似三角形的性质建立关于||MF1、||F1F2||AM、||MF2的关系式,并根据椭圆的定义,即在平面内到两个定点的距离之和为定值的点的轨迹,确定||MF1、||F1F2||AM、||MF2与a、c之间的关系,从而使问题获解.例4.如图1,已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0),点M()x0,y0()x0>c是C上的一点,点A是直线MF2与y轴的交点,ΔAMF1的内切圆与MF1相切于点N,若|MN|=2||F1F2,则椭圆C的离心率e=______.解:设内切圆与AM切于Q,与AF1切于P,所以||MN=||MQ=2||F1F2=22c,||F1N=||F1P,||AP=||AQ,图141由圆的对称性知||AF 1=||AF 2,所以||PF 1=||QF 2,即||NF 1=||QF 2,所以2a=||MF 2+||MF 1=()||MQ -||QF 2+()||MN +||NF 1=||MQ +||MN =42所以e =c a =242我们先结合图形明确点、圆、椭圆之间的位置关系;然后根据椭圆的定义将问题转化为线段问题,即可根据圆的对称性、圆与切线的位置关系建立线段||MF 2、||MF 1、||MQ 、||QF 2、||MN 、||NF 1之间的关系,得到关于a 、c 的关系式,进而求出椭圆的离心率.用几何性质法解题的计算量较小,有利于提升解题的效率.三、构造齐次式在求椭圆的离心率时,若不易求出a 、c 的值或比值,则可考虑根据题目中的条件与椭圆的方程,建立关于a 、b 、c 的二次齐次式,即可根据离心率公式e =ca,得到关于e 的二次方程,进而通过解方程求得离心率e 的值.例5.如图2,已知椭圆的方程为:x 2a 2+y 2b2=1()a >b >0,过原点的直线交椭圆于M ,N 两点,点P 在x 轴上,其横坐标是点M 横坐标的3倍,直线NP 交椭圆于点Q .若直线QM 恰好是以MN 为直径的圆的切线,求椭圆的离心率.解:设M ()x 1,y 1,Q ()x 2,y 2,则N ()-x 1,-y 1,P ()3x 1,0,设直线MN 、QM 、NP 的斜率分别为k 1、k 2、k 3,则k 1=y 1x 1,k 2=y 2-y 1x 2-x 1,k 3=0+y 13x 1-()-x 1=y 14x 1=14k 1,因为直线QM 是圆的切线,所以QM ⊥MN ,k 1k 2=-1,所以k 2k 3=-14,又Q 在直线NP 上,所以k 3=y 2+y 1x 2+x 1,因为M 、Q 在椭圆x 2a 2+y 2b 2=1()a >b >0上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,将上述两式相减得x 21-x 22a 2+y 21-y 22b 2=0,整理得y 2+y 1x 2+x 1⋅y 2-y 1x 2-x 1=-b 2a 2,故k 2k 3=-b 2a 2=-14,即b 2a 2=14,可得a 2-c 2a 2=34,即a2-c 2a 2=1-e 2=14,解得e 我们先根据三条直线与圆、椭圆的位置关系建立关于a 、c 的二次齐次式a 2-c 2a 2=34;再根据离心率公式e=c a ,建立关于e 的方程,即可求得e 的值.在求得e 的值后,一定要注意检验所得的值是否在(0,1)内,以确保得到的答案是正确的.图2图3例6.如图3,已知AB 直线过椭圆x 2a 2+y 2b2=1()a >b >0的左焦点F ()-2,0,且与椭圆交于A 、B 两点,与y 轴交于点C ,若点C ,F 分别是线段AB 的三等分点,则该椭圆的离心率为_______.解:因为点C 、F 是线段AB 的三等分点,由图3可知C 为AF 的中点,右焦点为F 2,所以AF 2//OC ,所以AF 2⊥x 轴,由椭圆的方程得A 点的坐标为()c ,b 2a ,C ()0,b 22a,因为C ,B 关于F 对称,所以B 点的坐标为()-2c ,-b 22a ,将其代入椭圆的方程x 2a 2+y 2b2=1()a >b >0中得:4c 2a 2+b 24a2=1,即16c 2+b 2=4a 2,得a 2=5c 2,所以离心率为e =c a 先由点C 、F 是线段AB 的三等分点可得AF 2//OC ;再根据线段的对称性可求得B 点的坐标;最后将其代入椭圆中,即可建立关于a 、b 、c 的二次齐次式,进而得到关于椭圆离心率e 的方程.无论采用哪种方法求椭圆的离心率,我们需明确解题的目的有两个:一是通过计算求得c 与a 的值;二是利用已知条件建立关于c 与a 的齐次式,进一步将其转化为关于ca的方程.(作者单位:四川省内江市威远中学校)42。