平面集成光波导器件综述
(集成光电子学导论)第六章常见光波导材料与结构

1 cm = 10 000 微米
1、空气净化
From Intel Museum
三道防线: ✓环境净化(clean room) ✓材料清洗(wafer cleaning) ✓吸杂(gettering)
光电所
• 投资4000万元的光电子学研究所实验大楼坐落在深圳大学文山湖畔。这是 一座设施先进、功能完善、配套齐全、专业化水准高的现代化实验大楼,总 面积8200平方米,其中有1200平方米的百级和万级净化实验室,有电子级超 纯水制备系统、各种特殊气体的供送系统以及相应的安全保障和环保设施等。 投资6000万元购置的先进科研仪器设备,构建了显微分析、光谱分析、超快 诊断技术、光电子材料、生物光子学、等离子体显示、应用光学、电子学等 10多个测试实验室和真空光电子器件、半导体光电子材料与器件、平板显示 器件、有机电致发光材料、纳米光电子材料等10多个工艺实验室。主要大型 仪器设备有:金属有机化合物气相沉积(MOCVD)系统、微波等离子体增 强化学气相沉积(MPECVD)系统、等离子体增强化学气相沉积(PECVD) 系统、磁控溅射系统、反应离子刻蚀机、光刻机、高精度丝网印刷机、大型 高精度点胶机、高精度喷砂机、多功能镀膜机、扫描探针显微镜、扫描电子 显微镜、台阶轮廓测试仪、三维视频显微镜、真空紫外单色仪、紫外/可见/近 红外光谱仪、飞秒激光器、皮秒激光器、荧光光谱测试仪、激光拉曼谱仪、 高分辨X射线衍射仪、变磁场霍尔测试仪、多光子激发荧光显微成像系统、高 速示波器、逻辑分析仪和数字电路开发系统等,以及光学设计分析、多物理 场分析等大型软件。这些硬件条件,为建设一流的光电子学研究所奠定了坚 实的基础。
半导体激光器,探测器,放大器, 电光调制器
目前最好的电光调制器,声光调制 器
集成光波导

Pin/2
23
Multiport splitters can be constructed by cascading 2-port couplers as indicated schematically below:
1 x 8 Coupler
24
4.6.2 有源器件
▪ 有源器件按其功能可分为两类:
21
For the ideal coupler, the coupling to port 4 (the isolated port) is zero. Thus,
10 log P4/P1 = 10 log 0 = -
22
An integrated optic power splitter is constructed with the waveguide pattern indicated below:
图4.5 对称平板波导的
模
式
图
1
4.5.1 波导色散
▪ 随波长的变化,有效折射率neff与折射率n一样会导致脉冲展
宽。在通常情况下,材料是色散的,因此波导色散与材料色 散会同时存在。
图4.5 对称平板波 导的模式图 (n1=3.6,n2=3.5 5)
2
4.5.1 波导色散
▪ 由波导色散所引起的脉冲展宽幅度与材料色散所导致的脉冲
图4.24 电光开关
26
As in the passive coupler, the power distribution is given by:
P2/P1 = cos2 (pL/2Lc) P3/P1 = sin2 (pL/2Lc) L is the interaction length and Lc is the coupling length.
集成光波导

集成光波导型(AWG )以光集成技术为基础的平面波导型波分复用器件,具有一切平面波导的优点,如几何尺寸小、重复性好(可批量生产)、可在掩膜过程中实现复杂的支路结构、与光纤容易对准等。
目前集成波导型的波分复用器件有多种实现方案,其中以龙骨型的平面波导应用最多。
它由二个星形耦合器与M 个非耦合波导构成,不等长的耦合波导形成光栅而具分光作用,两端的星形耦合器由平面设置的二个共焦阵列波导组成。
如图3.2.2所示。
(1).AWG 的优点 ①.分辨率较高。
②.高隔离度 ③.易大批量生产。
因为具有高分辨率和高隔离度,所以复用通道的数量达32个以上;再加上便于大批量生产,所以AWG 型的波分复用器件在16通道以上的WDM 系统中得到了非常广泛的应用。
(2).AWG 的缺点插入衰耗较大,一般为6~11dB 。
带内的响应度不够平坦。
4.光栅型光栅型波分复用器件属于角色散器件。
当光入射到光栅上,由于光栅的角色散作用可以使不同波长的光信号以不同的角度出射,[url=/]魔兽sf[/url]然后可再用自聚焦透镜把光信号会聚到不同的光纤中输出,如图3.2.3所示。
(1).光栅型波分复用器件优点 ①.高分辨率3.2.2图:AWG 波分复用器件其通道间隔可以达到30GH Z以下。
②.高隔离度其相邻复用光通道的隔离度可大于40 dB。
③.插入衰耗低大批量生产可达到3~6dB,且不随复用通道数量的增加而增加。
④.具有双向功能,即用一个光栅可以实现分波与合波功能。
因此它可以用于单纤双向的WDM系统之中。
正因为具有很高的分辨率和隔离度,所以它允许复用通道的数量达132个之多,故光栅型的波分复用器件在16通道以上的WDM系统中得到了应用。
(2).光栅型波分复用器件的缺点①.温度特性欠佳其温度系数约为14pm /°C。
因此要想保证它的中心工作波长稳定,在实际应用中必须加温度控制措施。
②.制造工艺复杂,价格较贵。
5.光纤布喇格光栅型(FBG)利用紫外线光干涉的方法可以在光纤芯中形成所谓布喇格光栅。
平面光波导(PLC, planar Lightwave circuit)技术

平面光波导(PLC, planar Lightwave circuit)技术平面光波导(PLC, planar Lightwave circuit)技术随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。
1.平面光波导材料PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。
图1. PLC光波导常用材料铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。
InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。
二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。
SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,波导结构为脊形。
聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。
玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。
表1. PLC光波导常用材料特性2. 平面光波导工艺以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。
二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步:1)采用火焰水解法(FHD)或者化学气相淀积工艺(CVD),在硅片上生长一层SiO2,其中掺杂磷、硼离子,作为波导下包层,如图2(b)所示;2)采用FHD或者CVD工艺,在下包层上再生长一层SiO2,作为波导芯层,其中掺杂锗离子,获得需要的折射率差,如图2(c)所示;3)通过退火硬化工艺,使前面生长的两层SiO2变得致密均匀,如图2(d)所示。
光集成(PIC)技术概述

光子集成技术概论摘要:本文以光子学为基础,详细介绍了光子技术和光子集成的概念、主要应用领域、目前的研究热点及以光波导集成为基础的光子集成器件的研究进展。
关键词:光子光子晶体光子技术光子集成光波导光子集成(Photonic Integrated Circuit,PIC),也叫光子集成电路。
以介质波导为中心集成光器件的光波导型集成回路,即将若干光器件集成在一片基片上,构成一个整体,器件之间以半导体光波导连接,使其具有某些功能的光路。
如集成外腔单稳频激光器,光子开关阵列,光外差接收机和光发射机等。
一、光子集成(PIC)的理论基础光子集成技术的理论基础是光子学。
当前,支撑信息社会的两大微观信息载体是电子和光子,它们都是微观粒子。
光子是波色子,不带电、传播速度快,光束可互相穿越而不互相干扰,因而可大规模互联和并行传输,具有独特的优越性。
目前已研究开发和正在开发的光子技术主要领域有:激光技术和、光子计算机、光存储技术、光通信和全息光技术等。
与电子学器件相比,光子学器件中光子的运用不受回路分布延迟的影响(一般为10-9s),光在固体中传输速度为10-12cm/s左右,光子学器件的时间响应和容量要比电子学器件高得多。
目前实验室已能获得十几个飞秒的光子脉冲。
光子信息系统的运算速度要大大超出现有的电子信息系统。
光子信息系统的空间带宽和频率带宽都很大,光子学与光子技术使光纤通信的容量从原理上讲比微波通信大1万倍到10万倍以上,一路微波通道可以传送一路彩色电视或1千多路数字电话信号,而一根光纤则可以同时传送1千多万甚至1亿路电话。
目前已完成了从第一代0.85μm波段与多模光纤,到第二代1.3μm波段零色散与单模光纤,再到第三代1.55μm波段与低损耗色散位移单模光纤的换代发展。
利用光子学方式可以实现三维立体存储。
光存储信息容量大,可靠性强,存取速度快,成本低且应用范围广。
光盘、光卡的存储容量比磁盘、磁卡要高出200至20000倍,且不易磨损,不受外界磁场、温度影响,可靠性强。
集成光学器件

一、光纤陀螺用集成光学芯片(Y波导调制器)1.1 芯片结构:1.2 工作原理:光纤陀螺用Y波导集成光学器件在光纤陀螺系统中作信号处理用,经光源发出的光由器件的Y分支波导分成两束光,分别沿顺时针和逆时针方向通过光纤线圈后,又由Y分支波导合束为一束光,最后达光电探测器。
当线圈静止不动时,两束光到达Y 分支合束器时的光相位相等,当线圈转动时,两束光之间将产生一个与线圈转速成比例的相位差,即塞格纳克效应。
在推挽电极上上施加调制电压,利用衬底材料的电光效应改变光波导的折射率,从而改变两束光在光波导中传播的光程,引入一个相位差,补偿效应,于是通过外加调制信号可以检测相位差,从而检测光纤线圈的转速。
1.3 应用领域:用于飞机、轮船、导弹、汽车等运动物体姿态控制的光纤陀螺系统中;电流传感系统中,利用法拉第效应测量通过光纤环路的电流大小。
1.5 产品实物图与外形尺寸:1.6 使用方法与注意事项a 该器件工作于单偏振状态,入光的偏振态必须与器件保持一致。
b为了防止器件的电损伤,调制器的电极电压应低于30V。
c 注意事项d 光纤施力过大易断裂,不宜拉扯,扭折,弯曲半径不得小于30mm。
e 管壳与光纤间不允许施加过大应力。
使用时,应同时拿起管壳与光纤,切勿使管壳与光纤交接处发生弯曲,以防光纤断裂影响器件性能。
f 存储器件环境湿度低于50%,且不含有对器件有害的材料。
g 应避免使器件承受强烈的热冲击,避免使器件受热不均匀。
h 光纤连接回路的连接处应避免施加应力。
1.7 发展方向:进一步降低损耗(≤4dB(典型值3.5dB),拓宽工作温度到-65︒C~+85︒C,提高批量化生产能力达5000只/年。
提高集成度:在同一芯片上整理多个Y波导调制器。
1.8 特点:低损耗、低电压、单偏振、宽工作温度范围、高稳定性。
二、光通信用集成光学强度调制器2.1 芯片结构:2.2工作原理:集成光学强度调制器在LiNbO3衬底上利用质子交换与退火工艺制备“M-Z”干涉型光波导,然后在“M-Z”光波导的分支两臂上制备行波调电调极,采用稳定可靠的耦合技术将光波导和光纤耦合而成。
平板光波导综述

1.普通介质平板光波导 2.表面等离子体平板波导
1
光纤是一种很常见的介质光波导,其截面为圆形 ,但在集成光学中,人们更感兴趣的是在芯片上 集成平面光波导
图1.1 平板波导结构示意图 (由 覆盖层,导波层,衬底组成)
图1.2 条形波导结构示意图
2
平板波导由三层介质组成,中间层介质折射率最 大,称为导波层。上下两层折射率较低,分别称 为覆盖层和衬底层。 当衬底层和覆盖层材料折射率相等时,称其为对 称平板波导。
x
类似的,亥姆赫兹方程组的试探解可以写为:
A c e p ( x a ) , x a
E y A f cos(hx ),a x a
p 2 2 k02 nc2 q 2 2 k02 ns2
2 h 2 k02 n 2 f
As e
由于亥姆赫兹方程和薛定谔方程具有相同的形式,先回顾一维对称 有限深势阱中电子的波函数:
对于有限深势阱的方程,其解不容易求出,但是其试探解的形式则相 对简单。 x
( x ) Ae ( x 0) ( x) C cos(kx) / D sin(kx)(0 x a)
12
( x) Be ( x a)
H y ( x)
H y , Ez 分量连续 然后,根据边界条件,x=a,-a处,
n2 f q tan(ha ) 2 ns h n2 f p tan(ha ) 2 nc h
n2 n2 f q f p 2ha m arctan( 2 ) arctan( 2 ) ns h nc h 这就是TM模的特征方程
H y ( x)
A sinh(k1 x),| x | a A sinh(k1a )e k 2 ( x a ) , x a
光集成(PIC)技术概述

光子集成技术概论摘要:本文以光子学为基础,详细介绍了光子技术和光子集成的概念、主要应用领域、目前的研究热点及以光波导集成为基础的光子集成器件的研究进展。
关键词:光子光子晶体光子技术光子集成光波导光子集成(Photonic Integrated Circuit,PIC),也叫光子集成电路。
以介质波导为中心集成光器件的光波导型集成回路,即将若干光器件集成在一片基片上,构成一个整体,器件之间以半导体光波导连接,使其具有某些功能的光路。
如集成外腔单稳频激光器,光子开关阵列,光外差接收机和光发射机等。
一、光子集成(PIC)的理论基础光子集成技术的理论基础是光子学。
当前,支撑信息社会的两大微观信息载体是电子和光子,它们都是微观粒子。
光子是波色子,不带电、传播速度快,光束可互相穿越而不互相干扰,因而可大规模互联和并行传输,具有独特的优越性。
目前已研究开发和正在开发的光子技术主要领域有:激光技术和、光子计算机、光存储技术、光通信和全息光技术等。
与电子学器件相比,光子学器件中光子的运用不受回路分布延迟的影响(一般为10-9s),光在固体中传输速度为10-12cm/s左右,光子学器件的时间响应和容量要比电子学器件高得多。
目前实验室已能获得十几个飞秒的光子脉冲。
光子信息系统的运算速度要大大超出现有的电子信息系统。
光子信息系统的空间带宽和频率带宽都很大,光子学与光子技术使光纤通信的容量从原理上讲比微波通信大1万倍到10万倍以上,一路微波通道可以传送一路彩色电视或1千多路数字电话信号,而一根光纤则可以同时传送1千多万甚至1亿路电话。
目前已完成了从第一代0.85μm波段与多模光纤,到第二代1.3μm波段零色散与单模光纤,再到第三代1.55μm波段与低损耗色散位移单模光纤的换代发展。
利用光子学方式可以实现三维立体存储。
光存储信息容量大,可靠性强,存取速度快,成本低且应用范围广。
光盘、光卡的存储容量比磁盘、磁卡要高出200至20000倍,且不易磨损,不受外界磁场、温度影响,可靠性强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面集成光波导器件综述
1 引言】
光纤通信网络中使用了多种光器件和光电器件.这些器件中的光学部分通常为三种结构:微光学结构、纤维光学结构和集成光学结构。
1969年ler首先提出集成光学器件的设想,即在一个细小的基片上实现光发射、光探测、光耦合、光分支、光波分复用、光滤波、光开关等一种和几种功能,达到器件的微型化和实现高功能密度。
平面光波导技术和平面微制造技术的成功结合使这一设想变为现实。
历经三十年的研究开发,目前已有一些平面集成光波导器件达到了商用化。
【2 制作器件的主要材料】
制备这些光器件和光电器件的主要材料有:InGaAsP/InP、SiO2、Si、LiNbO3和某些聚合物材料。
表1
给出这几种材料的基本特性。
InGaAsP/InP是其中唯一的兼有有源和无源功能的材料,因而一直是单片集成光/光电器件研究开发的首选对象。
以Si光波导为基础的混合集成收发信机已商品化。
Si波导除了有很好的无源光学特性外,还具备载流子控制型的光电调制特点。
聚合物材料波导光开关已产品化,聚合物材料波导无源器件也已取得重大进展。
SiO2波导可用于制作性能优良的无源器件,由于制备器件所必须的理论设计、技术设备、工艺水平、材料来源等均已成熟或基本成熟,因而已形成以SiO2波导平面光波导线路(PLC)为基础的光集成器件规模生产。
同时SiO2波导可以实现与有源器件的混合集成。
SiO2 PLC的应用价值越来越受到关注,下面主要就SiO2 PLC器件和制造方法作一些基本介绍。
【3 二氧化硅波导基本工艺】
有几种代表性的二氧化硅波导制备技术,分别是:火焰水解(FHD)+反应离子刻蚀(RIE),化学气相沉积(CVD)+RIE,物理气相沉积(PVD)+RIE。
其中FHD采用SiCl4、GeCl4为主要原料,通过氢氧焰提供的高温,与氧反应生成SiO2、GeO2微细粉末层,而后在1300℃左右的高温中退火形成光学薄膜,其中GeO2等作为掺杂物质控制导波的折射率。
CVD采用硅烷、锗烷或SiCl4、GeCl4,通过射频源激活与氧在等离子体状态下反应形成光学薄膜。
PVD以电子束蒸发或溅射方法沉积SiO2光学薄膜。
RIE 对波导膜进行导波线路的刻制。
薄膜必须具有高的光学质量,因为光波是平行于薄膜表面传播的,路径通常有几厘米。
薄膜尤其要有很好的折射率均匀性,因为控制光传输方向的导波层折射率n+苙与覆盖层(n)的折射率的差(苙)是很小的,苙/n在一定范围是单模条件所要求的,如n=1.46, 苙=0.0037,由此可知,
折射率均匀性要高,否则波导的质量无法保证。
【4 二氧化硅光波导器件】
4.1 SiO2 PLC的基本单元
平面波导器件的线路可以设计得很复杂,但基本上是由以下的基本单元构成的(图1)。
直条、分支、弯曲、交叉是最简单和常用的。
间隙是指在波导路径上刻出一段10祄左右的空间,插入滤波片等微小元件,以提高器件的指标。
耦合是相距几祄的两波导间通过模场的相互作用,使光传输路径或强度发生改变。
相移单元是利用SiO2折射率的热敏特性n(T),通过局部加热电极使n改变从而改变光的有效光程也即改变相位,热光开关就是根据这一原理制作的,例如dn/dT=1×10-5时,10mm长的波导升温6.5℃,即产生180度相移(1.55祄)。
应力单元是指在一波导的附近刻出沟槽或镀膜,使该波导局部所受应力发
生变化,从而调节器件的性能。
4.2几种典型的PLC器件
(1)光功率分配器件
由上述的直条波导的Y形分支集成在一起可以构成1×N的光功率分配器(N=2,4,8,16,32)这是PLC中最基本的器件。
例如波导构成1×8的分配器,最大插入损耗为10.3dB,8路输出的均匀性优于1.0dB。
偏振相关损耗小于0.3dB。
工作波长在1.26~1.6祄。
多路数的光功率分配器将大量应用在光接入
网和CATV。
光集成的功率分配器性能优良,且体积很小,实际应用中受到欢迎。
(2)Mach-Zehnder干涉仪(MZ干涉仪)
最简单的MZ干涉仪由两个3dB耦合器通过两条波导相连构成。
两波导有确定的长度差芁。
通常用MZ 干涉仪来实现1.31/1.55祄WDM和波长无关耦合器(WIC)。
利用光刻和RIE技术可以使得芁达到亚祄的精度,从而提高干涉仪的技术指标。
为了提高隔离度,通过波导间隙在输出端口可装上微形滤波片。
1.3/1.55祄WDM的隔离度大于45dB,插入损耗小于1.3dB。
这种WDM是单纤双向收发信机中的重要部分。
WIC 在宽的波长范围内(1.25~1.56祄),两输出端的功率比与波长无关。
这种功能器件可用于测试系统;与Y分支结合可形成2×N的功率分配器,其每路插入损耗与1×N器件相近。
两个输入端口扩大了应用范
围。
(3)热光开关(TO Switch)
这种器件利用SiO2的热光效应制成。
最简单的2×2开关结构与MZ干涉仪相近,所不同的是,连结两个3dB耦合器的波道臂上具有热光相移单元,因此干涉特性是外界可调的,当输出耦合比从1∶0变为0∶1时,即实现了光在两输出端的转换。
PIRI公司(美国)生产的2×2单模热光开关的隔离度大于15dB,速度快于2ms,插损低于1.5dB。
多级串连可显著提高隔离度,但加大了器件尺寸和插入损耗。
例如NEL 公司(日本)的8×8开关阵的隔离度大于40dB,插入损耗近10dB。
(4)阵列波导光栅(AWG)DWDM
AWG波导芯片由N个输入条形波导、N个输出条形波导、两个片状波导(一个输入,一个输出)和一个阵列波导光栅所构成,阵列波导光栅中有数百条光波导。
片状波导周围的条状波导的位置是基于凹面反射式衍射单色仪的原理确定的。
阵列波导中相邻的波导条的长度差是相同的,产生一致的光波位相差。
波导间隙中插入半波片用来提高偏振无关特性。
AWG已有系列化的产品,具有不同的波长间隔,不同的通道数,满足ITU标准。
例如NEL公司0.8nm波长间距、32通道数的AWG,串扰小于-28dB,插损为4.5dB,温度灵敏度为0.011nm/℃。
AWG封装采用温度自控,以提高温度稳定性。
封装尺寸为100×56×16mm。
集成的M×N AWG波分复用器是波分复用光传输系统中的有效器件。
(5)混合光集成PLC平台
目前最著名的混合光集成器件是单纤双向收发机。
在硅衬底上制备SiO2波导1.3/1.55祄WDM,同时用RIE刻出LD和PD的位置。
为了提高耦合效率,采用光斑尺寸变换激光器和波导光二极管探测器。
这种单纤双向收发机的规模化生产可显著降低其价格,使得FTTH成为现实。
NEL生产的这种收发机采用塑料外封装。
出纤功率为-3dBm,跟踪误差0.5dB,响应灵敏度0.35A/W。
二氧化硅光波导技术还在不断的发展中。
如掺铒波导、超低损耗波导、非线性特性、耦合封装工艺简化等等。
随着技术不断改进,器件的尺寸将会更小,功能更密集。