半导体激光器的一般构成

合集下载

半导体激光工作原理

半导体激光工作原理

半导体激光工作原理
半导体激光器是利用电子从低能级跃迁到高能级时所产生的光,由于高能级的电子数比低能级的多得多,因此光在自由电子激光中辐射的能量是很大的。

半导体激光器主要由激光器、增益介质和泵浦光源组成。

半导体激光器的增益介质主要有三种:有源区、波导、吸收腔。

其中以有源区为主要部分,其形状和材料各不相同。

激光器有源区是由金属原子构成的半导体,它是激光系统中唯一能把光能转变成机械能和化学能的部分,也是影响激光特性的重要因素之一。

有源区还起着将泵浦光源发射出来的光(指激光器内部发射出来的光)与增益介质中传输过来的光(指增益介质发射出来的光)相互耦合、吸收和转换,再由有源区发射出来的光辐射出激光器内部。

由于有源区在整个半导体激光器中起着非常重要作用,因此在选择激光器有源区时必须考虑有源区和有源区内材料的成分、尺寸和形状,使它们相互匹配,这样才能达到最佳性能。

增益介质又叫受激辐射层或吸收层。

—— 1 —1 —。

半导体激光器的设计和工艺

半导体激光器的设计和工艺

半导体激光器的设计和工艺半导体激光器的设计包括器件结构设计和材料选择两个方面。

首先,器件结构设计是指设计半导体激光器的层状结构和电极形状。

层状结构通常由波导层、活性层和衬底层等部分组成。

其中,波导层用于引导激光的传输,活性层是激发发射激光的重要部分,衬底层用于支撑整个器件。

波导层通常采用半导体材料的异质结构,如GaAs/AlGaAs、InGaAsP/InP等。

其中,GaAs和AlGaAs在能带结构上存在能带差异,可以形成波导。

活性层通常采用单量子阱结构或双量子阱结构,以增强电子和空穴之间的相互作用,从而增强激光的放大效应。

衬底层通常采用GaAs或InP等材料,用于提供较好的机械支撑。

材料选择方面,要选择具有较大的发射系数和较小的损耗系数的半导体材料,以提高激光器的效率和输出功率。

此外,还要考虑材料的耐热性和稳定性,以确保激光器的长期可靠性。

半导体激光器的制备工艺主要包括光刻、沉积、腐蚀、蒸镀、扩散等步骤。

首先,光刻工艺用于制备掩膜,以定义器件的结构。

沉积工艺用于在衬底上生长各种半导体薄膜,如波导层和活性层。

腐蚀工艺用于去除不需要的材料,如形成窗口以便注入电流。

蒸镀工艺用于镀上金属电极。

扩散工艺用于调制材料的掺杂浓度,以改变电流传输和激发效果。

除了基本的制备工艺,还需要进行多种表征和测试工艺,以评估激光器的性能。

例如,光谱测试可用于测量激光器的波长和发光强度。

应变测试可用于评估激光器的应变效应和失谐效应。

温度测试可用于研究激光器的温度特性和热效应等。

这些测试结果将为激光器的优化和改进提供指导。

综上所述,半导体激光器的设计和工艺涉及器件结构设计、材料选择、制备工艺和测试工艺等多个方面。

通过合理的设计和优化的工艺流程,可以获得高性能的半导体激光器,以满足不同应用领域的需求。

半导体激光器的能级系统

半导体激光器的能级系统

半导体激光器的能级系统1.引言1.1 概述概述半导体激光器是一种利用半导体材料的能级系统来产生激光的器件。

它是现代光电子技术领域中非常重要的一种光源,广泛应用于通信、医疗、材料加工等领域。

半导体激光器的能级系统是其产生激光的关键部分。

在半导体材料中,存在多个能级,通过在这些能级之间跃迁产生光子,从而形成激光。

半导体材料是一种带有间隙的材料,其能带结构对其电学和光学性质起着至关重要的作用。

半导体材料可分为价带和导带,价带上的能级被电子占据,而导带上的能级则是未被电子占据的。

当激发能量传递给半导体材料时,电子可以从价带跃迁到导带上的空能级,形成电子空穴对。

这种跃迁称为光吸收。

然而,光吸收只是半导体激光器能级系统的一部分。

要产生激光,还需要在半导体材料中形成一种称为反转粒子的状态。

反转粒子是指半导体材料中导带上粒子数目大于价带上的粒子数目,即导带发射激光。

然而,由于材料本身的特性,导带上的粒子会很快地回到价带,这导致了反转粒子的损失。

为了解决这个问题,半导体激光器可以通过引入外界能量,如电流注入或光束照射,来保持导带上粒子数目的超过价带上的粒子数目,从而形成反转粒子状态。

在这种状态下,当一个光子激发到导带上的粒子时,它会引发一系列级联的,相干的光子发射,并最终形成激光。

半导体激光器的能级系统是实现激光发射的重要基础。

通过对其能级结构的深入研究,可以对半导体激光器的工作原理和性能进行深入理解。

因此,对半导体激光器能级系统的研究具有重要的科学和应用价值。

1.2文章结构文章结构部分的内容可以包括以下方面:本文主要围绕半导体激光器的能级系统展开论述,以便深入理解半导体激光器的工作原理及其应用。

文章分为引言、正文和结论三个部分。

引言部分首先对半导体激光器进行了概述,介绍了该领域的研究背景和重要性。

然后,简要说明了文章的结构安排,以便读者可以清晰地了解整篇文章的布局和内容。

最后,明确了本文的目的,即探讨半导体激光器的能级系统,为读者提供相关的理论知识和应用指导。

半导体激光器ppt课件

半导体激光器ppt课件
Ⅱ、与同质结激光器相比,异质结激光器具有以下优点: 1)阈值电流低,同时阈值电流随温度的变化小; 2)由于界面处的折射率差异,光子被限制在作用区内; 3)能实现室温下的连续振荡。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能

同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。

半导体激光器工作原理及基本结构PPT课件

半导体激光器工作原理及基本结构PPT课件
• 一定波长的受激光辐射在谐振腔内形成振荡的条件: 腔长=半波长的整数倍 L=m(λ/2n)
第5页/共15页
增益和阈值电流
• 增益:在注入电流的作用下,激活区受激辐射不断增强。 • 损耗:受激辐射在谐振腔中来回反射时的能量损耗。包括载流子吸收、缺
陷散射及端面透射损耗等。 • 阈值电流:增益等于损耗时的注入电流。
在材料设计时,考虑将p区和n区重掺杂等工艺,使得辐射 光严格在pn结平面内传播,单色性较好,强度也较大,这种 光辐射叫做受激光辐射。
第4页/共15页
法布里-珀罗谐振腔 (形成相干光)
• 垂直于结面的两个平行的晶体解理面形成法布里-珀罗谐振腔 ,两个解理 面是谐振腔的反射镜面。在两个端面上分别镀上高反膜和增透膜,可以提 高激射效率.
2. 有源区工作时产生的热量能通过周围四个方向的无源区传 递而逸散,提高器件的散热性能;
3. 有源区尺寸减小了,提高材料均匀的可能性; 4. 器件的可靠性提高、效率提高、远场特性改善。
第10页/共15页
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激光器(普通条形)和折射 率波导条形激光器(掩埋条形、脊形波导)。
第3页/共15页
自发光辐射和受激光辐射
• 自发光辐射(发光二极管)
当给器件加正向偏压时,n区向p区注入电子,p区向n区注 入空穴,在激活区电子和空穴自发地复合形成电子-空穴对, 将多余的能量以光子的形式释放出来,所发射的光子相位和 方向各不相同,这种辐射叫做自发辐射。
• 受激光辐射(半导体激光器)
第13页/共15页
弱折射率波导条形激光器(脊形波导)
特点:在侧向对光波的有一定限制作用,在条形有源区上方腐蚀出一个脊(宽度大约 3~4um),腐蚀深度大概1.5~2um, 腐蚀一部分上限制层。由于腐蚀深度较深,在侧向 形成一定的折射率台阶,对侧向光波有较弱的限制作用。

半导体激光器 原理

半导体激光器 原理

半导体激光器原理
半导体激光器是一种基于半导体材料的激光发射装置。

它通过电流注入半导体材料中的活性层,使其产生载流子(电子和空穴)重组的过程中释放出光子。

以下是半导体激光器的基本原理:
1. P-N结构:半导体激光器通常采用P-N结构,其中P区域富含正电荷,N区域富含负电荷。

2. 电流注入:当电流从P区域注入到N区域时,电子和空穴
会在活性层中重组,形成激子(激发态)。

3. 激子衰减:激子会因为与晶格的相互作用而损失能量,进而衰减为基态激子。

4. 辐射复合:基态激子最终与活性层中的空穴重新结合,释放出光子。

这个过程称为辐射复合。

5. 光放大:光子通过多次反射在激光腔中来回传播,与活性层中的激子相互作用,不断放大。

6. 反射镜:激光腔两端分别放置高反射镜和透明窗口,高反射镜可以增加内部光子的反射使其在腔内传播,透明窗口允许激光通过。

7. 激光输出:当达到一定放大程度时,激光在透明窗口处逃逸,形成激光输出。

通过控制电流注入和激光腔的结构设计,可以调节半导体激光器的发射波长、功率等参数,以满足不同应用领域的要求。

半导体激光器 材料

半导体激光器 材料

半导体激光器材料
半导体激光器,也被称为激光二极管,是一种使用半导体材料作为工作物质的激光器。

由于物质结构上的差异,不同种类的半导体激光器产生激光的具体过程会有所不同。

在制作半导体激光器时,需要使用满足一定要求的半导体材料。

这些要求包括:
1. 直接带隙:只有具有直接带隙的材料,在电子-空穴复合产生光子时,才无需声子参加,从而有较高的发光效率。

2. 晶格匹配:作用层和限制层的晶格需要匹配,以确保激光器的性能。

3. 晶体完整性:要求晶体完整,位错密度、有害杂质浓度应尽量小。

常用的半导体激光器工作物质包括砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。

激励方式有电注入、电子束激励和光泵浦三种形式。

此外,半导体材料是一类具有半导体性能的电子材料,其导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内。

按照化学组成、
结构和性能的不同,半导体材料可以分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体等。

总的来说,对于半导体激光器的应用和发展,其材料的选择和处理是非常重要的。

半导体激光器光学特性测量实验报告

半导体激光器光学特性测量实验报告

半导体激光器光学特性测量实验学号:姓名:班级:日期:【摘要】激光器的三个基本组成部分是:增益介质、谐振腔、激励能源。

本实验通过测量半导体激光器的输出特性、偏振度和光谱特性,进一步了解半导体激光器的发光原理,并掌握半导体激光器性能的测试方法。

【关键词】半导体激光器、偏振度、阈值、光谱特性一、实验背景激光是在有理论准备和实际需要的背景下应运而生的。

光电子器件和技术是当今和未来高技术的基础之一。

受激辐射的概念是爱因斯坦于1916年在推导普朗克的黑体辐射公式时提出来的, 从理论上预言了原子发生受激辐射的可能性,这是激光的理论基础。

直到1960年激光才被首次成功制造(红宝石激光器)。

半导体激光(Semiconductor laser)在1962年被成功发明,在1970年实现室温下连续输出。

半导体激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE) 等多种工艺。

由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制及价格低廉等优点, 使得它目前在各个领域中应用非常广泛。

半导体激光器已经成功地用于光通讯和光学唱片系统,还可以作为红外高分辨率光谱仪光源,用于大气检测和同位素分离等;同时半导体激光器成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。

半导体激光器与调频器、放大器集成在一起的集成光路将进一步促进光通讯和光计算机的发展。

半导体激光器主要发展方向有两类,一类是以传递信息为目的的信息型激光器,另一类是以提高光功率为目的的功率型激光器。

本实验旨在使学生掌握半导体激光器的基本原理和光学特性,利用光功率探测仪和CCD光学多道分析器,测量可见光半导体激光器输出特性、不同方向的发散角、偏振度,以及光谱特性,并熟悉光路的耦合调节及CCD光学多道分析器等现代光学分析仪器的使用,同时进一步了解半导体激光器在光电子领域的广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


激光笔里边就是一个半导体激光器,属于 LED的一种.前边一般会加一个光学镜头用 来聚焦.激光笔发出的激光属于固体激光,而 激光笔里面的固体激光器也就是一个激光 二极管.目前的激光笔大多数是红色,可以指 示的长度比较远.
激光炫目器

激光眩目器采用人眼最为敏感的532nm绿 激光,不仅在低亮环境下照亮数英里之外 的物体,还能实现警示远距离之内的潜在 目标和控制大片人群的目的。照射眼睛时 能使眼睛短暂性失明和感到眩晕,从而快 速制敌而不伤害人身生命。强烈耀眼地绿 光光束能干扰敌方的的视觉传感器,使对 方瞬间地攻击或反抗归于无效。


半导体中激光产生的条件: 粒子数反转:产生大量的受激辐射 光学谐振腔:实现光放大 达到阈值电流密度:使得增益大于损耗
半导体激光器的一般构成
光反馈装置 输出光 有源区 频率选择元件
构成部分: 光波导 1.有源区 有源区是实现粒子数反转分布、有光增益的区域。 2.光反馈装置 在光学谐振腔内提供必要的正反馈以促进激光振荡。 3.频率选择元件 用来选择由光反馈装置决定的所有纵模中的一个模式。 4.光波导 用于对所产生的光波在器件内部进行引导
什n结由同一种半导体材料构成 异质结:其pn结采用不同半导体材料构成 双异质结:在宽带隙的p型和N型半导体材料之间 插入一薄层窄带隙的材料 区别: 同质结LED:有源区对载流子和光子的限制 作用很弱; 异质结LED: (1)带隙差形成的势垒将电子和空穴限制在有源 区复合发光 (2)折射率光场有效地限制在有源区

.同质结半导体激光器

1978年,半导体激光器开始应用于光纤通信 系统,半导体激光器可以作为光纤通信的光源 和指示器以及通过大规模集成电路平面工艺 组成光电子系统。由于半导体激光器有着超 小型,高效率和高速工作的优异特点,所以这 类器件的发展,一开始就和光通信技术紧密结 合在一起,它在光通信,光变换,光互连,并行光 波系统,光信息处理和光存贮,光计算机外部 设备的光耦合等方面有重要用途。半导体激 光器再加上低损耗光纤,对光纤通信产生了重 大影响,并加速了它的发展
半导体激光器的分类及应 用
光电14 王晓东
什么是半导体激光器?


半导体激光器又称激光二极管,半导体激 光器是以一定的半导体材料做工作物质而 产生受激发射作用的器件 这里的半导体材料常见的有砷化镓 (GaAs)、硫化镉(CdS)、磷化铟 (InP)、硫化锌(ZnS)
激光的产生: 当在半导体中实现粒子数反转,使得受激辐射大于受激吸收, 使得光增益大于光损耗,就可产生激光。
半导体激光器是如何分类的?



按波长分:可见光激光器、红外长波激光 器、远红外长波激光器。 按材料分:Ⅲ-Ⅴ族材料激光器、Ⅲ-Ⅵ族材 料激光器、硅基材料激光器。 按结构分:同质结激光器、异质结激光器、 大光腔激光器、分离限制SCH激光器、F-P 激光器。
什么是可见光激光器?

半导体激光器有多种分类方式,其中按波长分有中远红外 激光器、近红外激光器、可见光激光器等多种类别。而可 见光半导体激光器便是其中一个重要的类别。它指的是输 出光波长在可见光范围内(400~700nm)的一类半导体 激光器。

绿光在光谱中间,也使绿光光波的光流、 光压都处于中间,中间使它们乘积产生的 绿光功率最大。一个是最适应,一个功率 最大,所以人眼对绿光最敏感。
什么是同质结激光器?

同质结激光器是能带图不像双异质结的那 样在“结”处有褶皱,而是平坦的,载流 子不会在“结”处拥堵,密度远小于双异 质结在“结”处的载流子密度的仪器
谢谢

与其它激光器不同的是,半导体激光器具 有层状结构,其作用相当于固体激光器的聚 光腔,半导体激光器的谐振腔不是由外加 反射镜构成,而是利用半导体本身的晶体 解理面形成内反射腔,这使得半导体激光 器结构很紧凑,避免了外加谐振腔可能产 生的机械不稳定性,半导体激光器的电源 简单,电流电压都很小,工作使用很方便、 安全,优点。
可见光激光器的用途
可见光激光器的激光颜色最常见的有红色蓝色和绿色。 其中蓝、绿光激光在海水中传播时,损耗低,在水下100m传播时的损耗要比 其他波长的光低约20db;蓝、绿光在水中的穿透能力达600m,因此,利用 它可实现海中潜艇之间的通信,以及深水探测。 蓝紫色半导体激光器是指振荡波长为410nm左右的半导体激光器。除了用 作蓝光光盘等的光源外,还有望用于照明光源和显示器光源等。日亚化学工 业、索尼、三洋电机以及夏普等已经实现了产品化。 2007年4月30日,由中国科学院半导体研究所研发的氮化镓蓝光半导体激 光器研究取得重大突破,首次实现室温连续激射的氮化镓半导体蓝光激光器。 这是继2004年11月16日由半导体所首次在中国大陆实现氮化镓激光器脉冲 激射后的又一个重大突破,标志着我国氮化镓(GaS)基蓝光半导体激光器 研究向产品化、产业化迈出了极为关键和坚实的一步 而红光激光在教学上得到了更多的运用
相关文档
最新文档