化学反应摩尔焓变的测定
化学反应中的焓变与反应热的实验测定

化学反应中的焓变与反应热的实验测定在化学反应中,焓变与反应热是评估反应热力学性质的重要参数。
通过实验测定反应热,我们可以深入了解化学反应的能量变化和化学键的稳定性。
本文将介绍化学反应中焓变与反应热的实验测定方法。
一、实验方法介绍在实验测定焓变和反应热时,我们常常采用燃烧实验法或者热化学法。
其中燃烧实验法适用于能够燃烧的反应物,而热化学法则广泛适用于其他类型的反应。
燃烧实验法的基本步骤如下:1. 搭建一个密闭的反应容器,在容器内放入已知质量的反应物,并且确定反应物和容器的初始温度。
2. 使用点火器点燃反应物,观察反应过程,并且记录反应前后容器的温度变化。
3. 根据温度变化以及溶液特性和反应物的质量,计算反应热。
热化学实验法则包含以下几个步骤:1. 确定反应物的摩尔数和反应物溶液的浓度。
2. 将反应物溶液装入两个热化学容器中,其中一个容器加热至一定温度并保持稳定。
3. 在实验装置中将两个容器的反应物混合,观察反应过程,并记录温度变化。
4. 根据温度变化以及溶液特性和反应物摩尔数,计算反应热。
二、实验注意事项在进行焓变与反应热的实验测定过程中,需要注意以下几点:1. 实验环境:保持实验室内温度稳定,避免外部热源对实验结果的影响。
2. 仪器准确性:使用准确的温度计和天平等仪器,确保实验数据的准确性。
3. 实验容器:选择合适的实验容器,确保容器的密封性和热传导性。
4. 反应物的摩尔比例:确定反应物的摩尔比例,确保反应过程的完全进行。
三、实验数据处理与结果分析在实验的数据处理过程中,可以利用焓变的定律进行计算,其中最常用的是Hess定律和Kirchhoff定律。
Hess定律用于不同反应物组合而成的化学反应热的计算。
根据Hess 定律,反应焓等于反应物焓变的代数和。
通过测量不同反应过程中的热量变化,我们可以根据Hess定律计算出要研究的反应物的焓变。
Kirchhoff定律用于计算化学反应在不同温度下的反应焓变。
化学反应标准摩尔焓变

化学反应标准摩尔焓变在化学反应中,摩尔焓变是一个重要的物理量,它描述了化学反应过程中物质的热力学变化。
摩尔焓变是指在标准状态下,1摩尔物质参与化学反应时所吸收或释放的热量。
化学反应的摩尔焓变可以通过实验测定得到,也可以通过热力学计算得到。
本文将介绍化学反应的标准摩尔焓变的概念、计算方法以及其在化学领域中的重要意义。
化学反应的标准摩尔焓变是指在标准状态下,1摩尔物质参与化学反应时所吸收或释放的热量。
标准状态是指气体在1大气压下,液体和固体在1标准大气压下,温度为298K。
标准状态下的摩尔焓变用ΔH°表示。
ΔH°可以为正值,表示吸热反应,也可以为负值,表示放热反应。
化学反应的标准摩尔焓变可以通过实验测定得到。
实验测定的方法通常是在恒压条件下,将反应物加热至反应温度,然后测定反应前后的温度变化,根据热容和温度变化计算出反应热量。
实验测定得到的摩尔焓变可以用于热力学计算和工程实践中的应用。
化学反应的标准摩尔焓变也可以通过热力学计算得到。
热力学计算的方法通常是利用热力学数据和反应平衡常数,根据热力学定律和化学反应的热力学方程计算出摩尔焓变。
热力学计算得到的摩尔焓变可以用于预测化学反应的热力学性质和优化化学工艺。
化学反应的标准摩尔焓变在化学领域中具有重要的意义。
首先,它可以用于研究化学反应的热力学性质,包括反应热、反应焓、反应熵等。
其次,它可以用于设计和优化化学工艺,例如在工业生产中确定反应条件、提高反应产率、降低能耗等。
最后,它还可以用于研究新材料的合成和储能材料的设计,例如电池、催化剂等。
总之,化学反应的标准摩尔焓变是化学热力学的重要概念,它描述了化学反应过程中物质的热力学变化。
摩尔焓变可以通过实验测定和热力学计算得到,它在化学领域中具有重要的应用价值,对于理解化学反应的热力学性质、优化化学工艺、研究新材料等都具有重要意义。
希望本文对化学领域的研究和工程实践有所帮助。
化学反应焓变的测定

为焓变。为了有一个比较的统一标准,通常规定
100kPa 为标准态压力,记为 p 。把体系中各固体、
液体物质处于 p 下的纯物质,气体则在 p 下表现
出理想气体性质的纯气体状态称为热力学标准态。
在标准状态下化学反应的焓变称为化学反应的标准
焓变,用 表示rH,下标“ r ”表示一般的化学反应, 上标“ ”表示标准状态。在实际工作中,许多重要
• Δr Hmθ (298.15K)= - 218.66kJ ·mol -1
3.反应热的测量
• 测定化学反应热效应的仪器称为量热计。 对于一般溶液反应的摩尔焓变,可用图 所 示的“保温杯式”量热计来测定。
3.反应热的测量
• 在实验中,若忽略量热计的热容,则可根据已知 溶液的比热容、溶液的密度、浓度、实验中所取 溶液的体积和反应过程中 ( 反应前和反应后 ) 溶 液的温度变化,求得上述化学反应的摩尔焓变。 其计算公式如下: Cs-水的比热容,4.18J/g.k
还有残留在烧杯壁和玻璃棒上的氯化 钠未被转移。因此要用蒸馏水洗涤用 过的烧杯和玻璃棒。
5. 洗 涤
注意事项: 用少量蒸馏水洗涤2~3次,洗涤液要全部转移到 容量瓶中。
思考: 如果用量筒量取液体药品,量筒要洗涤吗?
如果用量筒量取液体药品,量筒不必洗涤。因为这是 量筒的“自然残留液”,若洗涤后转移到容量瓶中会 导致所配溶液浓度偏高。但是使用量筒时应注意选择 的量筒与量取液体的体积相匹配。
还需要玻璃棒。搅拌时沿着一定的方向,玻璃 棒不要碰烧杯底和烧杯壁,不要把玻璃棒放在 实验台上,以免弄脏。
思考:若量取的是浓硫酸需要稀释,应如何操 作才是正确的?
4. 转 移
注意事项: 由于容量瓶瓶颈较细,为避免液体洒在外面,应用 玻璃棒引流。
化学反应摩尔焓变的测定_实验的改进

万方数据
万方数据
万方数据
"化学反应摩尔焓变的测定"实验的改进
作者:李聚源, 谢娟, 孟梅
作者单位:西安石油大学化学化工系,陕西,西安,710065
刊名:
化学世界
英文刊名:CHEMICAL WORLD
年,卷(期):2003,44(8)
被引用次数:1次
1.华东理工大学分析化学教研组;成都科技大化学教研组分析化学 1998
2.杨桂荣工程化学实验 1993
3.徐甲强;孙淑香无机与分析化学实验 1999
4.甘孟瑜;郭铭模工科大学化学实验 1996
5.西北工业大学化学教研室大学化学实验 1995
6.浙江大学普通化学教研室普通化学实验 1996
7.王明华大学化学展望 2000
1.周萃文.白小春用氧弹量热计测定碳酸钙的分解焓[期刊论文]-应用化工 2006(9)本文链接:/Periodical_hxsj200308016.aspx。
化学反应的焓变测定

化学反应的焓变测定化学反应的焓变测定是研究化学反应过程中能量变化的一种方法。
焓变是指在化学反应中物质发生转化所伴随的能量变化。
测定焓变有助于研究反应的热力学特性和反应机理,对于工业生产、能源利用等领域具有重要意义。
一、测定化学反应焓变的原理在研究化学反应的焓变时,重点关注的是反应前后的能量差,即反应物的焓与生成物的焓之差。
根据热力学第一定律,能量守恒,反应前后系统的能量变化可用焓变表示。
焓的测定可以通过定压条件下的热量变化进行。
焓变测定常采用热量计进行,热量计包括容器和用于测量热量变化的计量装置。
通过在热量计中引入反应物和反应溶液,加入适量的试剂,观察反应过程中的温度变化并记录热量计读数,可以得到反应的焓变。
根据反应的种类和实验条件的不同,焓变的测定方法也存在多种。
以下将介绍常用的测定方法。
二、测定常压条件下的焓变在恒压条件下,焓变等于热量变化,测定热量变化可以得到焓变的数值。
实验中,可以采用热量溶解法、燃烧法和中和反应法等方法进行测定。
1. 热量溶解法热量溶解法适用于测定溶解反应的焓变。
实验中,将固态物质加入恒定温度的溶液中,并记录溶液的温度变化。
通过测定溶解过程中系统的热量变化,可以计算出反应的焓变。
2. 燃烧法燃烧法适用于测定物质的燃烧反应的焓变。
实验中,将待测物质燃烧,并测量产生的热量。
通过计算燃烧前后系统的热量变化,可以得到反应的焓变。
3. 中和反应法中和反应法适用于酸碱中和反应的焓变测定。
实验中,将酸和碱按一定的摩尔比例混合,测量反应过程中产生的热量。
根据反应溶液的体积、浓度和温度等信息,可以计算出反应的焓变。
三、测定压力条件下的焓变在恒压条件下,焓变与热量变化之间存在关系,测定焓变可以通过测定气体反应的温度变化和压力变化来实现。
实验中,常用的方法有恒压热容法和恒压热量法。
1. 恒压热容法恒压热容法适用于气体反应的焓变测定。
实验中,通过保持反应过程中的恒定压力,并测量反应物和产物的温度变化,观察气体反应的焓变。
化学反应焓变的测定实验报告

化学反应焓变的测定实验报告一、实验目的。
本实验旨在通过测定化学反应焓变的实验方法,掌握热化学基本概念,理解焓的概念和测定焓变的方法,加深对热化学实验原理的理解。
二、实验原理。
1. 化学反应焓变的定义。
化学反应焓变指的是在一定条件下,反应物转变为生成物时所伴随的热量变化。
根据热力学第一定律,焓变等于系统吸收或释放的热量。
2. 热量计的原理。
实验中通常使用热量计来测定反应过程中的热量变化。
热量计是一种用来测定热量变化的仪器,通过测定反应前后水的温度变化来计算反应过程中释放或吸收的热量。
三、实验步骤。
1. 实验前准备。
将热量计清洗干净,准备好实验所需的试剂和仪器设备。
2. 实验操作。
(1)将一定质量的反应物加入热量计中。
(2)记录反应前水的初始温度。
(3)向热量计中加入一定体积的溶液,开始化学反应。
(4)观察反应过程中水温的变化,并记录下最终的水温。
3. 数据处理。
根据实验数据,利用热化学计算方法,计算出反应过程中吸热或放热的热量变化。
四、实验结果与分析。
通过实验数据处理,得出了反应过程中的焓变值。
根据实验结果,我们可以得出反应是吸热反应还是放热反应,并计算出相应的焓变值。
五、实验结论。
通过本次实验,我们成功测定了化学反应的焓变值,掌握了热化学实验的基本方法和数据处理技巧。
同时,也加深了对焓变概念和热量计的原理的理解。
六、实验注意事项。
1. 在实验操作中要小心谨慎,避免发生意外。
2. 实验后要及时清洗干净实验仪器,保持实验台面整洁。
七、参考文献。
1. 《物理化学实验指导》,XXX,XXX出版社,200X年。
2. 《热化学实验原理与方法》,XXX,XXX出版社,200X年。
八、致谢。
感谢实验指导老师的悉心指导,让我们顺利完成了本次实验。
以上就是本次化学反应焓变的测定实验报告的全部内容。
化学反应焓变的测定实验报告正文

化学反应焓变的测定实验报告正文本实验旨在测定化学反应的焓变,通过测量反应前后的热量变化来求得焓变的值。
实验使用的反应为硫酸和钠羧甲基纤维素的水解反应。
实验中使用了热量计器和恒压卡计等仪器进行测量和计算。
实验结果表明,该反应的焓变为-34.8 kJ/mol。
1. 实验原理焓是热力学量,它表示系统与环境之间交换的热能,在一个定压条件下,当化学反应发生时,系统的焓变可以表示为反应前后内能的差。
化学反应焓变的计算方法为:$ΔH = q / n$,其中$q$是反应时释放或吸收的热量,$n$是反应物的摩尔数。
本实验采用的是常压下恒压量热法,也就是用热量计器测量反应前后的温度变化和所释放或吸收的热量。
在该法中,反应物和水混合后,温度上升或下降,热量计器就会记录下这个变化,从而求得反应的焓变。
2. 实验步骤2.1 前期准备(1)将硫酸稀释为0.5 mol/L的溶液;(2)将钠羧甲基纤维素溶解在水中,生成10 mg/mL的浓度溶液;(3)将相应的试剂倒入反应瓶中,用恒压卡计量出反应前的体积。
(2)将15 mL的钠羧甲基纤维素溶液加入硫酸兑一个静止不动的液面;(3)立即开始记录温度变化,每10秒记录一次,记录5分钟;(4)测量反应前后溶液的体积,用常压秤量出反应瓶的重量,根据密度计算反应体积。
3. 实验结果与分析实验数据如下表所示:| 反应前-后温度变化 | 剩余反应体积/mL | 反应焓变/kJ/mol || ------------------ | ---------------- | --------------- || 4.4°C | 30.00 | -34.8 |反应前后温度的变化为4.4°C,说明产生了放热反应。
根据公式$ΔH = q / n$,反应焓变为-34.8 kJ/mol。
反应前后的体积变化非常微小,体积变化不会对实验结果产生较大的影响。
4. 结论。
化学反应的摩尔焓变的测定

实验二 化学反应的摩尔焓变的测定一﹑目的与要求1.了解测定反应的摩尔焓变的原理和方法;2.学习分析天平称量﹑溶液配制和移液管的基本操作;3.学习实验数据的作图法处理。
二、实验原理化学反应通常是在恒压条件下进行的,反应的热效应一般指的就是等压效应Q p , 化学热力学中反应的摩尔焓变r m H ∆数值上等于Q p ,因此,通常可用量热的方法测定反应的摩尔焓变。
对于一般溶液反应(放热反应)的摩尔焓变,可用简易热量计测定。
热量计都具有一定的绝热作用,同时附有温度测量和搅拌装置。
如图图2-2 简易热量计示意图本实验测定CuSO 4溶液与Zn 粉反应的摩尔焓变:22()()()()Cu aq Zn s Cu s Zn aq +++=+为了使反应完全,应使用过量的Zn 粉。
反应的摩尔焓变或反应热效应的测定原理是:设法使反应(CuSO 4溶液和Zn 粉)在绝热条件下,于热量计中发生反应,即反应系统不与热量计外的环境发生热量交换,这样,热量计及其盛装物质的温度就会改变。
从反应系统前后的温度变化及有关物质的热容,就可计算出该反应系统放出的热量。
但由于热量计并非严格绝热,在实验时间内,热量计不可避免地会与环境发生少量热交换;采用作图外推的方法(参见2-3),可适当地消除这一影响。
若不考虑热量计吸收的热量,则反应放出的热量等于系统中溶液吸收的热量:'p s s s s s q m c T V p c T =∆=∆ (1)式中,'p q 反应中溶液吸收的热量1()J g -⋅; s m反应后溶液的质量(g );s c 反应后溶液的比热容11()J g K --⋅⋅;T ∆ 反应前后溶液的温度升高(K ),由作图外推法确定; S V 反应后溶液的体积()ml s p反应后溶液的密度(/)g ml 。
设反应前溶液中4CuSO 的物质的量为n mol ,则反应的摩尔焓变以1kJ mol -⋅计为/1000r m s s s H V p c T n ∆=-∆ (2)设反应前后溶液的体积不变,则 4()/1000S n c CuSO V =⋅ 式中,4()c CuSO反应前溶液中4CuSO 的浓度(/)mol l 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 化学反应摩尔焓变的测定
一. 实验目的
1. 了解测定化学反应摩尔焓变的原理和方法;
2. 学习物质称量、溶液配制和溶液移取等基本操作;
3. 学习外推法处理实验数据的原理和方法。
二. 背景知识及实验原理
化学反应过程中,除物质发生变化外,还伴有能量变化。
这种能量变化通常表现为化学反应的热效应(简称为化学反应热)。
化学反应通常是在等温、等压、不做非体积功的条件下进行的,此时反应热效应亦称作等压热效应,用Q p表示。
化学反应的等压热效应(Q p)在数值上等于化学反应的摩尔反应焓变(△r H m)(热力学规定放热反应为负值,吸热反应为正值)。
在标准状态下,化学反应的摩尔反应焓变称为化学反应的标准摩尔焓变,用△r H mθ表示。
化学反应焓变或化学反应热效应的测定原理是:在绝热条件下(反应系统不与量热计外的环境发生热量交换),使反应物仅在量热计中发生反应,并使量热计及其内物质的温度发生改变。
通过反应系统在反应前后的温度变化,以及有关物质的质量和比热,可以计算出反应的热效应值。
实验中溶液反应的焓变值测定采用如图1所示的简易量热计进行测定,通过测定CuSO4溶液与Zn粉的反应进行焓变值的获取。
图1保温杯式量热计
CuSO4溶液与Zn粉的反应式为:
Cu2+(aq) + Zn(s) = Cu(s) + Zn2+(aq)
由于该反应速率较快,且能进行得相当完全。
实验中若使用过量Zn粉,则CuSO4溶液中Cu2+可认为完全转化为Cu。
系统中反应放出的热量等于溶液所吸收的热量。
在简易量热计中,反应后溶液所吸收的热量为:
Q p =m • c• ∆T =V • ρ• c • ∆T
式中: m —反应后溶液的质量(g );
c —反应后溶液的质量热容(J • g -1•K -1)
∆T —为反应前后溶液的温度之差(K ),经温度计测量后由作图外推法确定; V —反应后溶液的体积(mL )
ρ—反应后溶液的密度(g •m L -1)
设反应前溶液中CuSO 4的物质的量为n mol ,则反应的焓变为:
111000
1--∙∙∆∙∙∙-=∙∆∙∙-=∆mol kJ n T c V mol J n T c m H ρ (1) 设反应前后溶液的体积不变,则 mol V c n CuSO 10004∙
= 式中,C CuSO4——反应前溶液中CuSO 4的浓度(mol •.L -1)
将上式代入式(1)中,可得
114
4100011000
--∙∆∙∙-=∙∙∙∆∙∙∙-=∆mol kJ c T c mol kJ V c T c V H CuSO CuSO ρρ (2)
由于此系统非严格绝热体系,因而在反应液温度升高的同时,量热计的温度也相应提高,而计算时忽略此项内容,故会造成温差的偏差。
故在处理数据时可采用外推法,按图2中虚线外推至反应开始的时间,图解求得反应系统的最大温升值T ,这样则可较客观地反映出由反应热效应引起的真实温度变化值。
在图2中,线段bc 表明量热计热量散失的程度。
考虑到散热从反应一开始就发生,因此应将该线段延长,使与反应开始时的纵坐标相交于d 点。
图中ddˊ所示的纵坐标值,即为外推法补偿的由热量散失造成的温度差。
为获得准确的外推值,温度下降后的实验点应足够多。
T 2与T 1的差值即为所求的∆T 。
图2 温度校准曲线
三. 实验仪器和药品
1. 仪器
电子天平、烧杯(100mL)、试管、滴管、移液管(50mL)、容量瓶(250mL)、洗瓶、玻璃棒、滤纸、精密温度计(0~50℃,具有0.1℃分度)、放大镜、秒表、量热计(杯口橡皮塞中开一个插温度计的孔,搅拌方式可采用磁力搅拌器或手握保温杯震荡)。
2. 药品
硫酸铜(CuSO4·5H2O,固体、分析纯)、锌粉(化学纯)、硫化钠(Na2S,0.1mol ·L-1)。
四. 实验内容与操作
1.配制硫酸铜溶液
计算配制250mL 0.200 mol• L-1 CuSO4溶液所需CuSO4·5H2O的质量(要求三位有效数字),并在电子天平上称取所需的CuSO4·5H2O晶体。
然后将其倒入烧杯中,加入少量去离子水,用玻璃棒搅拌,待硫酸铜完全溶解后,将该溶液沿玻璃棒注入洁净的250mL容量瓶中;再用少量去离子水淋洗烧杯和玻璃棒数次,连同洗涤液一起注入容量瓶中,最后加水至刻度。
旋紧瓶塞,将瓶内溶液混合均匀。
2.化学反应焓变的测定
(1) 称取3g锌粉。
(2) 洗净并擦干用作量热计的保温杯。
用移液管移取100mL配制好的硫酸铜溶液于量热计中。
同时注意调节量热计中温度计安插的高度,使其水银球能浸入溶液中,又不触及容器底部。
将洁净干燥的搅拌子放入量热计中,然后盖上量热计盖子。
(3) 采用磁力搅拌器进行搅拌。
用秒表每隔30s记录一次读数。
直至溶液与量热计达到热平衡,而温度保持恒定(约需2min)。
(4) 迅速往溶液中加入称好的锌粉,并立即盖紧量热计的盖子。
同时记录开始反应的时间,继续不断摇荡或搅拌,并每隔15-20s记录一次读数(应读至0.01℃,第二位小数是估计值);为了便于观察温度计读数,可使用放大镜。
直至温度上升到最高温度读数后,再每隔30s继续测定5~6min。
(5) 实验结束后,打开量热计的盖子,注意动作不宜过猛,要边旋转边慢慢打开,以免将温度计折断。
(6) 取少量反应后的澄清溶液置于一试管中,观察溶液的颜色(蓝色是否消失),随后加入1~2滴0.1mol·l-1Na2S溶液,看是否有黑色沉淀物产生,以此检验Zn与CuSO4溶液反应进行的程度。
五. 数据处理
1. 数据记录
室温: K ;
CuSO 4·5H 2O 晶体的质量O H CuSO m 245⋅: g ;
CuSO 4溶液的浓度⋅4CuSO c : mol • L -1;
CuSO 4溶液的温度:________K ;
V mL 溶液中CuSO 4的物质的量(或生成铜的物质的量)n :_________ mol ; 温度随实验时间的变化:
2.数据处理:
用作图纸作图或电脑绘图,横坐标表示时间,每隔20s 用1cm ;纵坐标表示温度,每度用1cm 。
求出T ∆。
计算结果:从曲线上测得的∆T________K 。
3.反应焓变实验值的求算与实验误差计算
(1) 根据式(1)或式(2)计算反应的焓变,反应后溶液的比热容c ,可近似地用水的比热容代替,为4.18 J •g -1•K -1
反应后溶液的密度ρ可取为1.03g •m L -1,量热计自身所吸收的热量可忽略不计。
计算结果:生成1mol 铜所放出的热量∆H 实验值 _________ kJ•mol -1
(2)计算实验的百分误差,并分析产生误差的原因。
误差计算公式如下:
百分误差(%)=%-理论值理论值
实验值100⨯∆∆∆H H H
式中,理论指H ∆ = -217.23kJ •mol -1
计算结果:百分误差 ________ %。
六. 注意事项
1. 硫酸铜称量要精确;
2. 锌粉加入要迅速,立即塞紧塞子;
3. 计时、计温要准确;
4. 采用外推法求T ∆,以减少误差。
七. 思考题
1. 配制250mL 的0.100mol·L -1CuSO 4溶液的方法和操作时的注意事项有哪些?计算所需CuSO 4·5H 2O 晶体的质量。
2. 根据298.15K 时单质和水合离子的标准摩尔生成焓的数值,计算本实验反应的标准摩尔焓变,并用∆r H Θ (298.15)估算本实验的∆T (K)。
3. 所用的量热计是否允许有残留的水滴?为什么?
4. 为什么不取反应物混合后溶液的最高温度与刚混合时的温度之差,作为实验中测定的∆T 数值,而要采用作图外推的方法求得?作图与外推中有哪些应注意之处?。