水热法
第三章水热法

水热法的工艺参数控制
温度
水热反应温度是影响产物质量和产量的重要因素 ,需要精确控制。
时间
水热反应时间也是影响产物的重要因素,需要根 据实际反应情况确定。
压力
水热反应压力对产物的结构和形貌有影响,需要 合理控制。
浓度
原料的浓度对水热反应速度和产物也有影响,需 要适当控制。
04
水热法的应用实例
水热法在陶瓷行业的应用实例
第三章 水热法
xx年xx月xx日
目录
• 水热法的简介 • 水热法的原理和特点 • 水热法的工艺流程和设备 • 水热法的应用实例 • 水热法的未来发展趋势和挑战
01
水热法的简介
水热法的定义
定义
水热法是指在密闭的容器中,将水加热到 高温高压状态,形成高温高压水溶液,使 反应物质在这样的水溶液中完成化学反应 并形成结晶的一种方法。
水热法与计算化学结合
计算化学可以模拟和预测水热反应过程中物质的物理化学性质和演变规律, 有助于深入了解水热反应过程和优化制备工艺。
THANKS
感谢观看
2
水热法还具有环保性,因为它是在密闭的反应 器中进行的,避免了环境污染,同时也可以实 现工业废渣的资源化利用。
3
水热法可以制备出常规固相法难以制备的特殊 性能材料,如高熔点氧化物、高活性催化剂等 。
水热法与其他方法的比较
与固相法相比,水热法的制备温度和压力较低,制备周期 短,粉体材料粒度细且分布均匀,晶体发育完整。
05
水热法的未来发展趋势和挑战
水热法的未来发展趋势
应用领域的扩展
水热法有望在更多领域得到应用,如能源、环保、材料科学等领域。特别是在能源领域, 水热法可以用来制备太阳能电池、燃料电池等高性能能源材料。
水热法制备碳量子点步骤

水热法制备碳量子点步骤
水热法是一种常用的制备碳量子点的方法,下面我将从多个角度全面地回答这个问题。
首先,水热法制备碳量子点的步骤大致如下:
1. 制备前驱体溶液,通常选择含碳的前驱体物质,如葡萄糖、蔗糖等,溶解于水或有机溶剂中,形成前驱体溶液。
2. 水热反应,将前驱体溶液置于高温高压的水热反应釜中,在一定的温度和压力条件下进行水热反应。
通常反应温度在100-200摄氏度之间,反应时间在数小时到数十小时不等。
3. 萃取和纯化,待反应完成后,通过适当的方法(如离心、过滤等),将产生的碳量子点从溶液中分离出来。
4. 表征和分析,对所得的碳量子点进行表征分析,包括形貌、尺寸、结构、光学性质等方面的测试,以确定其性质和应用潜力。
从化学角度来看,水热法制备碳量子点的关键在于水热反应过
程中碳前驱体的分解和聚合,以及表面官能团的形成。
水热条件下,碳前驱体分子会发生裂解、缩合、氧化等反应,形成具有量子尺寸
效应的碳量子点。
从工艺角度来看,水热法制备碳量子点相对简单,操作条件温和,且无需昂贵的设备,因此受到广泛关注。
然而,该方法的控制
性较差,产物的尺寸和形貌分布较广,需要进一步优化。
从应用角度来看,碳量子点具有荧光性能、生物相容性等优良
特性,可用于生物成像、生物标记、光电器件等领域,因此制备方
法的优化和产物性能的调控对其应用具有重要意义。
综上所述,水热法制备碳量子点是一个重要且具有潜力的制备
方法,但仍需要进一步的研究和改进,以满足不同领域对碳量子点
的需求。
希望这些信息对你有所帮助。
水热法制备纳米材料3

水热法制备纳米材料3水热法制备纳米材料3水热法是一种常用的制备纳米材料的方法,其原理是在高温高压的水热条件下,利用水分子的特性,通过化学反应在溶液中制备纳米颗粒或纳米结构材料。
水热法的优点在于其操作简单,反应条件温和,可制备出高纯度、均匀分散的纳米材料。
此外,水热法还具有选择性、晶型可控、易于扩展等特点,因此在纳米材料研究领域得到广泛应用。
水热法制备纳米材料的过程可以分为两步:前处理和水热反应。
前处理包括各种表面活性剂处理、溶解剂选择、PH值调节等。
水热反应的条件包括温度、压力、反应时间等。
下面以制备纳米氧化物为例,介绍水热法的具体操作步骤。
首先,准备所需的原料,例如钛酸四丁酯和乙二醇,同时在实验器具上进行清洗和干燥处理。
随后,将所需的乙二醇加入容器中,并加热至80℃左右,将钛酸四丁酯缓慢地滴加到乙二醇中,同时通过磁力搅拌使其混合均匀。
接下来,调整溶液的PH值,一般采用氨水或盐酸进行调节。
通过控制PH值,可以调节溶液中金属离子的浓度和颗粒的尺寸。
然后,将反应容器密封,加热至所需的温度,并保持一定的压力。
水热反应一般需要较高的温度和压力,因此需要采用特殊的反应器具进行操作。
在反应过程中,要注意保持溶液的温度和压力稳定,并定时采样进行分析。
最后,将反应产物进行分离和洗涤处理。
一般通过离心和洗涤的方法,将纳米颗粒或纳米结构材料从溶液中分离出来,并利用特殊仪器对其进行表征和分析,例如透射电镜、扫描电镜和X射线衍射等。
综上所述,水热法是一种常用的制备纳米材料的方法,其操作简单、条件温和,可以制备出高纯度、均匀分散的纳米材料。
随着纳米材料研究的不断深入,水热法的应用也会越来越广泛,对于制备各种功能性纳米材料具有重要的意义。
水热法ppt课件

Zr(OH)2为前驱体,水热反应制备 ZrO2粉体
9
TiO2与Ba(OH)2· H2O水热反应制备 钛酸钡粉体
10
3 晶粒的聚集生长 水热条件下晶粒的聚集生长分为两种类型: 第一类聚集生长和第二类聚集生长。 第一类聚集生长:物料从小尺寸晶粒向大 尺寸晶粒运输的重结晶过程; 第二类聚集生长:聚集的小晶粒之间由于 暴露的晶面结构相容而在一定条件下配向 生长的过程。 它们的热力学驱动力都是晶粒平均粒度的 增大降低了体系的总表面自由能。
2 为什么要采用水热法?
• 中低温实现晶体的形成和生长,避免高温处理带 来的种种缺陷; • 应用一些溶解度低的原料,也降低了原料成本; • 具有比其他液相方法更快的晶体生长速率; • 可以生长产生各种不同的晶体形貌; • 反应温度相对较低,可以得到一些低温同质异构 体; • 可以方便地控制反应器内的反应气氛。
水热法
1 什么是水热法? 2 为什么要采用水热法? 3 应用中出现的一些现象的解释 4 水热法应用 5 水热法的缺陷 6 几个例子
2
1 什么是水热法
• 在特制的密闭反应容器里,采用水溶液作 为反应介质,通过对反应容器加热,创造 出一个高温、高压反应环境,使通常难溶 或不溶的物质溶解并且重结晶。
3
11
12
13
2.2 前驱体的溶解
化合物在水热溶液里的溶解度的温度特性分 三种情况: 1 正温度系数 2 负温度系数 3 部分温度范围内正温度系数,部分温度范 围内负温度系数。
14
负温度系数化合物
磷酸铝在磷酸 水溶液中的溶 解: 随着温度升高, 和压力降低, 溶解度降低。
15
变温度系数化合物
17
一般的矿化剂可以分为下面5类: 1 金属及铵的卤化物 2 碱金属的氢氧化物 3 弱酸与碱金属形成的盐类 4 强酸的盐类 5 酸类(一般为无机酸)
课件:水热法

水热法生长祖母绿的鉴别
(1)折射率、双折射率和相对密度:水热法合成祖母 绿与天然祖母绿相同。
(2)查尔斯滤色镜:通常显强红色,但也有些变色效 应较弱,如俄罗斯的呈弱红色。
水热法合成祖母绿
水热法生长红色绿柱石的鉴别 吸收光谱
合成红色绿柱石为钴(Co²+)谱与天然红色绿 柱石明显不同,即530-590nm之间几个模糊到清晰 的吸收带。而天然红色绿柱石是Mn致色,为 450nm以下和540-580nm之间的宽的吸收。
强红色荧光,滤色镜下强红色 黑色底衬下,强光照射会出现红色
如何鉴别? 4. 水热法生长宝石晶体的鉴定特征? 5. 影响水热法生长宝石晶体的因素是什么?
水热法
水热法是利用高温高压的水溶液溶解矿物质, 控制高压釜内溶液的温差产生对流和形成过 饱和状态,使溶解在溶液中的矿物质在种晶 上析出,生长成较大的晶体。 自然界热液成矿就是在一定的温度和压力下, 成矿热液中成矿物质从溶液中析出的过程。 水热法合成宝石就是模拟自然界热液成矿过 程中晶体的生长。
⑤ 面包屑状包裹体:在暗域下呈白色,形态上 与面包屑相似的包裹体,较小而且通常数量不 多。 ⑥ 尘埃状包裹体和种晶残余:尘埃状包裹体成 片地分布在无色种晶片与橙红色部分的交界面 上。
§5 水热法生长祖母绿晶体与鉴别
1960年澳大利亚人约翰.莱奇特纳首次获得 成功,后被林德公司购买了销售权
1969-1970年达高峰期,年产量2万克拉 我国1987年开始研究,1989年获得成功,
色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 因此,水热法合成的宝石品种有:
水热法

1.1试剂与zno纳米棒制备所用试剂醋酸锌(Zn( CH3C00)2 " 2H20),硝酸钵(Ce(N03)3.6玩。
),氢氧化钠(NaOH ),无水乙醇(C珑CH20H)均为分析纯.首先将醋酸锌和硝酸饰按一定的配比溶子无水乙醇中,再将溶解氢氧化钠的无水乙醇溶液倒人其中,混合搅拌10 min后倒人高压反应釜中,将密封好的高压反应釜放人反应炉中150℃条件下反应24 h后取出.晾至室温后,将生成的沉淀用去离子水和无水乙醇反复离心清洗,置于反应炉中印℃干燥即可.实验中所用到的试剂均为分析纯,未经进一步提纯.实验用水为一次去离子水.样品制备是结合文献D }l的水热过程,将0.005 mol"L-‘的NaOH 乙醇溶液缓慢滴加到含有0.005 mol " L-‘的Zn (N03)= " 6H=O乙醇溶液中.将混合溶液转移至高压反应釜中,在130 0C卜反应12h,将反应产物经一次去离子水、乙醇等洗涤后,在130 0C卜干燥,即可获得纯Zn0纳米棒.为了得到ZnO:Co纳米棒,将一定量的Co (N03)=6H,0加入到Zn(N03)=" 6H=O乙醇溶液中分散均匀,其余制备过程与纯Zn0纳米棒制备过程相同.所用试剂均为分析纯且在使用时未作进一步提纯,实验用水为自制去离子水。
固定每次所配混合溶液的Zn2+浓度为0. 5 mol/L。
称取计算量的ZnCI:和SnC14 " SH20与去离子水配成n( Sn4+):n ( Zn2 +)=1: 100,2: 100的混合溶液,在溶解过程中,滴人几滴盐酸。
取10 mL配制的上述溶液于烧杯中,加人35 mL去离子水,在50 ℃恒温水浴和磁力搅拌条件下缓慢滴加2 mol/L 氢氧化钠至溶液pH值约为9.0(前驱液),继续搅拌陈化0.5 h,然后超声分散10 min后立即移人聚四氟乙烯衬里的反应釜,填充度为80%。
(陶瓷科学与工艺学)第四章6粉体制备---水热法

(a) 温度和反应物浓度
通常升温引起的晶体生长速度变化要比成核速度变化大得 多。因此,高温下易得到大晶体。此外温度也会影响晶体 的形貌,因为不同的生长面有不同的活化能,温度对其影 响不一样。
与其它影响因素相比,通常水量的变化对合成影响不大, 稀释降低晶化速度,生长快于成核,有利于大晶体生成。但 对沸石合成来说,H2O/Si变化过大时(几十倍甚至几百倍)会影 响各种物种在溶液中的聚合态和浓度,从而影响反应速度和 产物结构,甚至影响晶化机理。
(c)水热与溶剂热合成的介质选择
溶剂的选择更是至关重要的,溶剂种类繁多,反应溶剂的溶 剂化性质的最主要参数为溶剂极性,其定义为所有与溶剂-溶 质相互作用有关的分子性质的总和(如:库仑力、诱导力、 色散力、氢键、和电荷迁移力等)。同时溶剂的一些物理性 质,在很大的程度上决定它的适合范围。这些性质主要有熔 点、沸点、熔化热、汽化热,介电常数和粘度等。
(b) 前驱物选择
水热反应所用前驱物必须满足有利于水热合成、尽量减少 杂质的污染和保证化学计量比等要求。水热法制备陶瓷粉 体时所选用的前驱物主要有:
✓可溶性金属盐溶液
✓固体粉末,即制备多元氧化物粉体时,可直接选用相应 的金属氧化物和氢氧化物固体粉末作为前驱物
✓胶体,即制备金属氧化物粉体时,在相应的金属可溶性 盐溶液中加入过量的碱得到氢氧化物胶体,经反复洗涤除 去阴离子后作为前驱物
✓胶体和固体粉末混合物
(b) 前驱物选择
前驱物的选择关系到最终粉体的质量以及制备工艺 的复杂程度,影响到粉体晶粒的合成机制。水热法 制备粉体所选的前驱物与最终产物在水热溶液中应 有一定的溶解度差,以推动反应向粉体生成的方向 进行;前驱物不与衬底反应,且前驱物所引入的其 它元素及杂质,不参与反应或仍停留在水热溶液 中,而不进入粉体成分,以保证粉体的纯度,另 外,还应考虑制备工艺因素。
水热法

水热法的分类
按研究对象和目的的不同
水热法可分为水热晶体生长、水热粉体制备、水 热薄膜制备、水热处理、水热烧结等等,分别用 来生长各种单晶,制备超细、无团聚或少团聚、 结晶完好的陶瓷粉体,完成某些有机反应或对一 些危害人类生存环境的有机废弃物质进行处理, 以及在相对较低的温度下完成某些陶瓷材料的烧 结等。
按设备的差异进行分类
水热法又可分为“普通水 热法”和“特殊水热法”。
所谓“特殊水热法”指在 水热条件反应体系上再添 加其他作用力场,如直流 电场、磁场(采用非铁电材 料制作的高压釜)、微波电 磁场等
水热法的特点
(1)设备和过程简单,反应条件容易控制。 (2)在相对低的反应温度下可直接获得结晶态
水热反应的影响因素
温度的影响 压强的影响 PH值的影响
前驱物浓度的影 响
水热反应的影响因素
反应时间的影响
杂质的影响
水热反应发展存在的问题
1
2பைடு நூலகம்
无法观 察生长 过程, 不直观
设备要 求高
反应机理问题
缺点 反应安全性问题
成本高
技术难 度大
安全性 能差
水热反应的应用
制备纳米金属氧化物
制备碳纳米材料
制备纳米金属材料
(6)水热过程中的反应温度、压强、处理时间 以及溶媒的成分、pH 值、所用前驱物的种类 及浓度等对反应速率、生成物的晶型,颗粒尺 寸和形貌等有很大影响,可以通过控制上述实 验参数达到对产物性能的“剪裁”。
水热反应合成晶体材料的一般程序
(1)按设汁要求选择反应物料并确定配方; (2)摸索配料次序,混料搅拌。 (3)装釜,封釜,加压(至指定压力); (4)确定反应温度、时间、状态(静止或动态 晶化); ⑸取釜,冷却(空气冷、水冷); (6)开釜取样; (7)洗涤、干燥; (8)样品检测(包括进行形貌、大小、结构、 比表面积和晶形检测)及化学组成分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按设备的差异进行分类 水热法又可分为“普通水 热法”和“特殊水热法”。 所谓“特殊水热法”指在 水热条件反应体系上再添 加其他作用力场,如直流 电场、磁场(采用非铁电材 料制作的高压釜)、微波电 磁场等
水热法的特点
ห้องสมุดไป่ตู้
(1)设备和过程简单,反应条件容易控制。 (2)在相对低的反应温度下可直接获得结晶态 产物,不必使用煅烧的方法使无定型产物转 化为结晶态,有利于减少颗粒的团聚。 (3)水热法可以制备其他方法难以制备的某些 含羟基物相的物质,如黏土、分子筛、云母 等,或者某些氢氧化物等,由于水是它们的 组分,所以只能选用水热法进行制备。
水热反应的影响因素
前驱物浓度的影 响
温度的影响
压强的影响
水热反应的影响因素
反应时间的影响
PH值的影响
杂质的影响
水热反应发展存在的问题
1 2
无法观 察生长 过程, 不直观
设备要 求高
反应机理问题
反应安全性问题
缺点
成本高
技术难 度大
安全性 能差
水热反应的应用
制备纳米金属氧化物 制备碳纳米材料
制备纳米金属材料
水热法始于1845 年,发展至今已经有近两百 年的历史。
水热法的分类
按研究对象和目的的不同
水热法可分为水热晶体生长、水热粉体制备、水 热薄膜制备、水热处理、水热烧结等等,分别用 来生长各种单晶,制备超细、无团聚或少团聚、 结晶完好的陶瓷粉体,完成某些有机反应或对一 些危害人类生存环境的有机废弃物质进行处理, 以及在相对较低的温度下完成某些陶瓷材料的烧 结等。
纳米陶瓷粉体的制备技 术——水热法简介
目前,制备纳米粉体的方法可分为三大类:物 理方法、化学方法和物理化学综合法。化学方 法主要包括水解法、水热法、溶融法和溶胶凝胶法等。其中,用水热法制备纳米粉体技术 越来越引起人们的关注。这次,我将主要对水 热法作一概要介绍。
水热法的原理
水热法,是指在特制的密闭反应器中,采用水 溶液作为反应体系,通过对反应体系加热、加 压(或自生蒸汽压),创造一个相对高温、高压 的反应环境,使得通常难溶或不溶的物质溶解 并重结晶而进行无机合成与材料处理的一种有 效方法。
水热反应合成晶体材料的一般程序
(1)按设汁要求选择反应物料并确定配方; (2)摸索配料次序,混料搅拌。
(3)装釜,封釜,加压(至指定压力); (4)确定反应温度、时间、状态(静止或动态 晶化); ⑸取釜,冷却(空气冷、水冷); (6)开釜取样;
(7)洗涤、干燥;
(8)样品检测(包括进行形貌、大小、结构、 比表面积和晶形检测)及化学组成分析。
Thank
you for your appreciation!
(4)在水热体系中发生的化学反应具有更快的 反应速率。 (5)水热法工艺较为简单,不需要高温灼烧处 理,可直接得到结晶完好、粒度分布窄的粉体, 且产物分散性良好,无须研磨,避免了由研磨 而造成的结构缺陷和引入的杂质。 (6)水热过程中的反应温度、压强、处理时间 以及溶媒的成分、pH 值、所用前驱物的种类 及浓度等对反应速率、生成物的晶型,颗粒尺 寸和形貌等有很大影响,可以通过控制上述实 验参数达到对产物性能的“剪裁”。
制备纳米陶瓷粉体
水热法制备陶瓷粉体技术
生物陶瓷粉体一羟基磷灰石
羟基磷灰石简称HA或HAP,它具有与人体硬组织相似 的化学成分和结构,可以作为理想的硬组织替代和修 复材料
电子陶瓷粉体—钛酸钡
钛酸钡是一种性能优异的强介电和铁电材料,实现钛酸钡粉体的高纯, 四方相和纳米化是提高钛酸钡电子元件性能的有效措施之一
按反应温度进行分类
水热反应则可分为低温水热法和超临界水热法。低温 水热法所用温度范围一般在100-250℃。相比较而言, 这类低温水热合成反应更加受到人们的青睐,一方面 因为可以得到处于非热力学平衡状态的亚稳相物质; 另一方面,由于反应温度较低,更适合于工业化生产 和实验室操作。超临界水热合成是指利用作为反应介 质的水在超临界状态(即临界温度374℃,临界压强 22.1MPa 以上条件时)下的性质和反应物在高温高压 水热条件下的特殊性质进行合成反应。
氧化物陶瓷粉体—氧化镁
杜宝安等人以硫酸镁为原料,利用溶度积原理和水热合 成反应制备了高纯度氧化镁,实验发现,在钙镁分离 过程中,水热合成法是一种非常有效的分离方法
应用与展望
粉体技术的发展几乎涉及所有的前沿学科,而其应用与推广又 渗透到各个学科及技术领域。水热法是制备高质量陶瓷粉体极有 应用前景的方法,其在不同温度、压力、溶媒和矿化剂下实现了 不同成分、粒径的陶瓷粉体制备.这些粉体主要用于电子材料、 磁性材料、生物材料、结构陶瓷材料、催化剂和吸附材料、色剂 和染剂、低膨胀材料、化妆品和填料以及农业、核工业用材料。 当前,国际上水热技术与粉体技术的研究相当活跃。随着高温 高压水热条件下反应机理,包括相平衡和化学平衡热力学、反应 动力学、晶化机理等基础理论的深入发展和完善,其将得到更迅 速、更广泛、更深入的发展和应用。随着各种新技术、新设备在 水热法中的应用, 可以预见, 水热技术会不断地推陈出新, 迎来 一个全新的发展时期。