2020中考数学(选择题难题突破)(含答案)
2020中考数学复习难题突破专题六:平行四边形存在性问题

难题突破专题六平行四边形存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年各地中考的“热点”.解这类题目的一般思路是:假设存在→推理论证→得出结论.若能导出合理的结果,就做出“存在”的判断;若导出矛盾,就做出不存在的判断.类型1 已知三定点,探究第四个点,使之构成平行四边形1 如图Z6-1,在平面直角坐标系中,已知点A(-3,4),B(-6,-2),C(6,-2),若以点A,B,C为顶点作一个平行四边形,试写出第四个顶点D的坐标,你的答案唯一吗?图Z6-1例题分层分析(1)符合条件的点D有________个.(2)如何进行分类?2 如图Z6-2,抛物线y=x2-2x-3与x轴的负半轴交于A点,与y轴交于C点,顶点是M,经过C,M两点作直线与x轴交于点N.图Z6-2(1)直接写出点A,C,N的坐标.(2)在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.例题分层分析(1)分别令________和________即可求得A,C两点的坐标,由抛物线的函数表达式即可求得顶点M的坐标,然后求出直线CM直线的函数表达式便可求得点N的坐标.(2)根据例1的方法,先求出使得以点P,A,C,N为顶点的四边形为平行四边形的点P的坐标,然后逐一代入抛物线的函数表达式验证得符合条件的点P.解题方法点析已知三定点,探求第四个点,使之构成平行四边形,可以按对角线进行分类,然后利用中点坐标公式求出点的坐标,再验证是否符合限制条件.类型2 已知两个定点,探求限定条件下的另两个动点,使之构成平行四边形3 如图Z6-3,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC =3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.图Z6-3(1)求抛物线的函数表达式.(2)求点D的坐标.(3)若点M在抛物线上,点N在x轴上,是否存在以点A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.例题分层分析(1)由OA的长度确定出点A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式____________,将________的坐标代入求出a的值,即可确定出抛物线的函数表达式.(2)设直线AC的函数表达式为y=kx+b,将点A,C的坐标代入求出k与b的值,确定出直线AC的函数表达式,与____________联立即可求出点D的坐标.(3)存在,分两种情况考虑:①若AD为平行四边形的对角线,则有MD∥________,MD=________;②若AD为平行四边形的一边,则MN∥________,MN=________,此时通过画图可知有两种情况.4 如图Z6-4,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的函数表达式.(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17?若存在,求出点F 的坐标;若不存在,请说明理由.图Z6-4(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以点D,E,P,Q为顶点的四边形是平行四边形,求点P的坐标.例题分层分析(1)由C(0,4),A(-2,0)和对称轴x=1可得三个关系式,分别是①__________,②__________,③________,然后联立①②③,即可求得a,b,c,从而得到函数表达式.(2)假设存在满足条件的点F,连结BF,CF,OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的横坐标为t,则点F的坐标可表示为________,然后分别用t表示出△OBF,△OFC的面积,而△AOC的面积为________,然后根据四边形的面积为17,得到关于t的方程,解该方程即可判断是否存在符合条件的点F.(3)先运用待定系数法求出直线BC的函数表达式为________,再求出抛物线的顶点坐标为________,由点E在直线BC上,得到点E的坐标为________,从而求得DE=________.若以点D,E,P,Q为顶点的四边形是平行四边形,因为DE∥PQ,所以只需DE=PQ.设点P的横坐标是m,则可表示出点P的坐标为______________,点Q的坐标是______________,然后再进行分类讨论.①当0<m<4时,PQ=________________,②当m<0或m>4时,PQ=______________,再根据DE=PQ,即可得到关于m的方程,从而求得符合条件的点P的坐标.解题方法点析对于两个定点、两个动点的问题,一般思路是先用一个未知数假设一个相对较简单的动点坐标,然后把这三点看成定点,用该未知数表示另一个动点的坐标,最后再根据动点应满足的条件,求出相应点的坐标.专题训练1.[2017·临沂] 如图Z6-5,抛物线y=ax2+bx-3经过点A(2,-3),与x轴负半轴交于点B,与y轴交于点C,且OC=3O B.(1)求抛物线的解析式.(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标.(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.图Z6-52.[2017·泰安] 如图Z 6-6,是将抛物线y =-x 2平移后得到的抛物线,其对称轴为直线x =1,与x 轴的一个交点为A (-1,0),另一个交点为B ,与y 轴的交点为C.(1)求抛物线的函数表达式.(2)若点N 为抛物线上一点,且BC ⊥NC ,求点N 的坐标.(3)点P 是抛物线上一点,点Q 是一次函数y =32x +32的图象上一点,若四边形OAPQ 为平行四边形,则这样的点P ,Q 是否存在?若存在,分别求出点P ,Q 的坐标;若不存在,说明理由.图Z 6-63.[2017·宜宾] 如图Z 6-7,抛物线y =-x 2+bx +c 与x 轴分别交于A (-1,0),B (5,0)两点. (1)求抛物线的解析式.(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连结AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位长度,当点C 落在抛物线上时,求m 的值.(3)在(2)的条件下,当点C 第一次落在抛物线上时记为点E ,点P 是抛物线对称轴上一点.试探究在抛物线上是否存在点Q ,使以点B ,E ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.图Z 6-74.[2017·齐齐哈尔] 如图Z6-8,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线折叠,点B落在点D处,DC与y轴相交于点E.矩形OABC的边OC,OA的长是关于x的一元二次方程x2-12x+32=0的两个根,且OA>O C.(1)求线段OA,OC的长.(2)证明△ADE≌△COE,并求出线段OE的长.(3)直接写出点D的坐标.(4)若F是直线AC上的一个动点,在平面直角坐标系内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.图Z6-8参考答案类型1 已知三定点,探究第四个点,使之构成平行四边形 例1 【例题分层分析】(1)3 (2)分别以AB ,BC ,AC 为平行四边形的对角线.解:答案不唯一,有三种情况:若AB 为平行四边形的对角线,则点D 的坐标为(-15,4);若BC 为平行四边形的对角线,则点D 的坐标为(3,-8);若AC 为平行四边形的对角线,则点D 的坐标为(9,4).例2 【例题分层分析】 (1)y =0 x =0解:(1)A (-1,0),C (0,-3),N (-3,0).(2)存在.若AC 为平行四边形的对角线,则点P 的坐标为(2,-3);若AN 为平行四边形的对角线,则点P 的坐标为(-4,3);若CN 为平行四边形的对角线,则点P 的坐标为(-2,-3).把这三个点的坐标分别代入验证,得点P (2,-3)在该抛物线上,因此存在符合条件的点P ,点P 的坐标为(2,-3).类型2 已知两个定点,探求限定条件下的另两个动点,使之构成平行四边形 例3 【例题分层分析】 (1)y =a (x -2)2+3 点A (2)抛物线的函数表达式 (3)AD AD AN AN解:(1)设抛物线的顶点为E ,根据题意,得E (2,3). 设抛物线的函数表达式为y =a (x -2)2+3, 将(4,0)代入,得0=4a +3,即a =-34,∴抛物线的函数表达式为y =-34(x -2)2+3=-34x 2+3x .(2)设直线AC 的函数表达式为y =kx +b (k ≠0), 将(4,0),(0,3)代入,得⎩⎪⎨⎪⎧4k +b =0,b =3,解得⎩⎪⎨⎪⎧k =-34,b =3.故直线AC 的函数表达式为y =-34x +3,将直线AC 的函数表达式与抛物线的函数表达式联立, 得⎩⎪⎨⎪⎧y =-34x +3,y =-34x 2+3x ,解得⎩⎪⎨⎪⎧x =1,y =94或⎩⎪⎨⎪⎧x =4,y =0,∴点D 的坐标为⎝ ⎛⎭⎪⎫1,94. (3)存在,分两种情况考虑:Ⅰ.若AD 为平行四边形的对角线,则有MD ∥AN ,MD =AN .由对称性得到M 1⎝ ⎛⎭⎪⎫3,94,即DM 1=2,故AN 1=2, ∴点N 1的坐标为(2,0).Ⅱ.若AD 为平行四边形的一边,则MN ∥AD ,MN =AD .①当点M 在x 轴上方时,如图①所示. 由Ⅰ知AN 2=2,∴点N 2的坐标为(6,0).②当点M 在x 轴下方时,如图②所示,过点D 作DQ ⊥x 轴于点Q ,过点M 3作M 3P ⊥x 轴于点P ,可得△ADQ ≌△N 3M 3P ,∴M 3P =DQ =94,N 3P =AQ =3,∴点M 3的纵坐标为-94.将y M =-94代入抛物线的函数表达式,得-94=-34x 2+3x ,解得x M =2-7或x M =2+7,∴x N =x M -3=-7-1或7-1, ∴N 3()-7-1,0,N 4( 7-1,0).综上所述,满足条件的点N 有4个,N 1(2,0),N 2(6,0),N 3(-7-1,0),N 4( 7-1,0). 例4 【例题分层分析】(1)①c =4 ②0=4a -2b +c ③b =-2a (2)(t ,-12t 2+t +4) 4(3)y =-x +4 (1,92) (1,3) 32 (m ,-m +4) (m ,-12m 2+m +4) (-12m 2+m +4)-(-m +4)=-12m 2+2m (-m +4)-(-12m 2+m +4)=12m 2-2m解:(1)由抛物线经过点C (0,4)可得c =4,① ∵对称轴为直线x =-b2a =1,∴b =-2a ,②又抛物线经过点A (-2,0), ∴0=4a -2b +c ,③由①②③得a =-12,b =1,c =4,∴抛物线的函数表达式是y =-12x 2+x +4.(2)假设存在满足条件的点F ,如图所示,连结BF ,CF ,OF .过点F 分别作FH ⊥x 轴于点H ,FG ⊥y 轴于点G .设点F 的坐标为(t ,-12t 2+t +4),其中0<t <4,则FH =-12t 2+t +4,FG =t ,∴S △OBF =12OB ·FH =12×4×(-12t 2+t +4)=-t 2+2t +8,S △OFC =12OC ·FG =12×4×t =2t ,∴S 四边形ABFC =S △AOC +S △OBF +S △OFC =4-t 2+2t +8+2t =-t 2+4t +12. 令-t 2+4t +12=17,即t 2-4t +5=0,则判别式=(-4)2-4×5=-4<0, ∴方程t 2-4t +5=0无解,故不存在满足条件的点F . (3)设直线BC 的函数表达式为y =kx +b ′(k ≠0), ∵直线经过点B (4,0),C (0,4), ∴⎩⎪⎨⎪⎧4=b′,0=4k +b′,解得⎩⎪⎨⎪⎧b′=4,k =-1,∴直线BC 的函数表达式是y =-x +4.由y =-12x 2+x +4=-12(x -1)2+92,得D (1,92).∵点E 在直线BC 上,∴点E 的坐标为(1,3),于是DE =92-3=32.若以点D ,E ,P ,Q 为顶点的四边形是平行四边形,∵DE ∥PQ ,∴只需DE =PQ . 设点P 的坐标是(m ,-m +4), 则点Q 的坐标是(m ,-12m 2+m +4).①当0<m <4时,PQ =(-12m 2+m +4)-(-m +4)=-12m 2+2m ,由-12m 2+2m =32,解得m =1或3.当m =1时,线段PQ 与DE 重合,m =1舍去, ∴m =3,此时P 1(3,1).②当m <0或m >4时,PQ =(-m +4)-(-12m 2+m +4)=12m 2-2m ,由12m 2-2m =32,解得m =2±7,经检验符合题意,此时P 2(2+7,2-7),P 3(2-7,2+7).综上所述,满足条件的点P 有3个,分别是P 1(3,1),P 2(2+7,2-7),P 3(2-7,2+7). 专题训练1.解:(1)令x =0,由y =ax 2+bx -3得y =-3, ∴C (0,-3),∴OC =3. 又∵OC =3OB ,∴OB =1, ∴B (-1,0).把点B (-1,0)和A (2,-3)的坐标分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧a -b -3=0,4a +2b -3=-3, 解得⎩⎪⎨⎪⎧a =1,b =-2,∴抛物线的解析式为y =x 2-2x -3.(2)过点B 作BE ⊥x 轴,交AC 的延长线于点E . ∵∠BDO =∠BAC ,∠BOD =∠BEA =90°,∴Rt△BDO∽Rt△BAE,∴OD∶OB=AE∶BE,∴OD∶1=3∶3,∴OD=1,∴D点坐标为(0,1)或(0,-1).(3)存在.M1(0,-3);M2(-2,5);M3(4,5).2.解:(1)由题意,设抛物线的函数表达式为y=-(x-1)2+k,把(-1,0)代入,得0=-(-1-1)2+k,解得k=4,∴抛物线的函数表达式为y=-(x-1)2+4=-x2+2x+3. (2)当x=0时,y=-(0-1)2+4=3,∴点C的坐标是(0,3),∴OC=3.∵点B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形,∴∠OCB=45°.过点N作NH⊥y轴,垂足为H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N为(a,-a2+2a+3),∴a+3=-a2+2a+3,解得a=0(舍去)或a=1,∴点N的坐标是(1,4).(3)∵四边形OAPQ是平行四边形,∴PQ =OA =1,且PQ ∥OA .设P (t ,-t 2+2t +3),则Q (t +1,-t 2+2t +3).将点Q (t +1,-t 2+2t +3)代入y =32x +32,得-t 2+2t +3=32(t +1)+32, 整理得2t 2-t =0,解得t 1=0,t 2=12, ∴-t 2+2t +3的值为3或154, ∴P ,Q 的坐标分别是(0,3),(1,3)或(12,154),(32,154). 3.解:(1)∵抛物线y =-x 2+bx +c 经过A (-1,0),B (5,0)两点,∴⎩⎪⎨⎪⎧-1-b +c =0,-25+5b +c =0,解得⎩⎪⎨⎪⎧b =4,c =5, ∴y =-x 2+4x +5.(2)∵点C 的纵坐标为8,∴令-x 2+4x +5=8,解得x 1=1,x 2=3,当x =1时,m =1-(-6)=7;当x =3时,m =3-(-6)=9.综上所述,将△ADC 沿x 轴向右平移7个或9个单位长度时,点C 落在抛物线上.(3)由(1)得,抛物线的对称轴为直线x =2,即点P 的横坐标为x P =2,由(2)得点E (1,8).若以点B ,E ,P ,Q 为顶点的四边形是平行四边形,则分两类情况讨论:①以BE 为一边的平行四边形,如图①,②,则||x Q -2=4,解得x Q =6或x Q =-2,∴Q (6,-7)或Q (-2,-7);②以BE 为对角线的平行四边形,如图③,则x Q =x B +x E -x P =5+1-2=4,∴Q (4,5).综上所述,使得以点B ,E ,P ,Q 为顶点的四边形是平行四边形的点Q 的坐标为(6,-7)或(-2,-7)或(4,5).4.解:(1)解x 2-12x +32=0得x 1=8,x 2=4.∵边OC ,OA 的长是关于x 的一元二次方程x 2-12x +32=0的两个根,且OA >OC , ∴OA =8,OC =4.(2)∵把矩形OABC 沿对角线AC 所在的直线折叠,点B 落在点D 处,DC 与y 轴相交于点E , ∴AD =AB =CO ,∠ADE =∠ABC =∠COE ,又∵∠AED =∠CEO ,∴△ADE ≌△COE (AAS ),∴CE =AE =OA -OE =8-OE .在Rt △OEC 中,由勾股定理得OE 2+OC 2=CE 2,即OE 2+42=(8-OE )2,∴OE =3.(3)如图所示,作DM ⊥x 轴于点M ,则△COE ∽△CMD ,∴OE DM =CO CM =CE CD ,即3DM =44+OM =58,∴OM =125,DM =245,∴点D 的坐标为(-125,245).(4)存在.如图①所示,点P 的坐标为(54,12);① ②如图②所示,点P的坐标为(4,5);如图③所示,点P的坐标为P3(5,3-2 5);③④如图④所示,点P的坐标为P4(-5,3+2 5).。
2020届中考数学复习难题训练:黄金分割专题训练(含答案)

2020届中考复习--黄金分割专题训练一、选择题1.若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为()A. 0.191B. 0.382C. 0.5D.0.6182.上海东方明珠电视塔高468m.其上球体位于塔身的黄金分割点,那么它到塔底部的距离大约是()A. 289.2mB. 178.8mC. 110.4mD. 468m3.如果把一条线段分为两部分,使其中较长的一段与整条线段的长度比是黄金比,那么较短一段与较长一段的长度比也是黄金比.由此,假设整条线段长为1,较长的一段为x,可以列出的方程为()A. 1−xx =x1B. 1−x1=1xC. x1−x=1−x1D. 1−xx=x√54.已知点C是线段AB的黄金分割点(AC>BC),AB=4,则线段AC的长是()A. 2√5−2B. 6−2√5C. √5−1D. 3−√55.一条线段的黄金分割点有()个A. 1B. 2C. 3D. 无数个6.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至点F,使得EF=BE,以AF为边作正方形AFGH,则H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A. S1>S2B. S1<S2C. S1=S2D. 不能确定7.已知点C把线段AB分成两条线段AC、BC,且AC>BC,下列说法错误的是()A. 如果ACAB =BCAC,那么线段AB被点C黄金分割B. 如果AC2=AB⋅BC,那么线段AB被点C黄金分割C. 如果线段AB被点C黄金分割,那么BC与AB的比叫做黄金比D. 0.618是黄金比的近似值8.如图,在△ABC中,AB=AC,∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,则下列结论中错误的是()A. 点D是线段BC的黄金分割点B. 点E是线段BC的黄金分割点C. 点E是线段CD的黄金分割点D. EDBE =√5−12二、填空题9.据有关测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,则这个气温约为_________℃(结果保留整数).10.如果线段AB=10cm,P是线段AB的黄金分割点,那么线段BP=________cm.11.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(BC<AC).已知AB=4cm,则BC的长约为________cm.(结果精确到0.1)12.在自然界中,蝴蝶的身长与双翅展开后的长度的比接近于0.618.若双翅展开后的长度约为5.62cm,则其身长约为_______cm(保留两位小数)13.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为____.14.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则宽约为________(精确到1cm).15.已知点C为线段AB的黄金分割点,且AC>BC,若P点为线段AB上的任意一点,则P点出现在线段AC上的概率为________.三、解答题16.拥有一个完美的身材是很多人的梦想,世界著名的雕像“维纳斯”就被认为是最美的身材。
(通用)2020年中考数学重点突破(附答案与解析):四边形

2020年数学一轮复习之针对训练:四边形的突破1.如图,以正方形的中心O为顶点作一个直角,直角的两边分别交正方形的两边BC、DC 于E、F点,问:(1)△BOE与△COF有什么关系?证明你的结论(提示:正方形的对角线把正方形分成全等的四个等腰直角二角形,即正方形的对角线垂直相等且相互平分);(2)若正方形的边长为2,四边形EOFC的面积为多少?2.如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D 运动,设点P运动的时间为t秒(0<t<13).(1)点D的坐标是(3,4);(2)当点P在AB上运动时,点P的坐标是(6,t﹣6)(用t表示);(3)求△POD的面积S与t之间的函数表达式,并写出对应自变量t的取值范围.3.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?4.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.5.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).6.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.7.如图,正方形ABCD中,E,F分别是边AD,CD上的点,DE=CF,AF与BE相交于O,DG ⊥AF,垂足为G.(1)求证:BE⊥AF;(2)若正方形ABCD的边长为4,EH⊥DG,垂足为H,且=,求DE的长.8.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.9.在四边形ABCD中,E为BC边中点.(Ⅰ)已知:如图1,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;(Ⅱ)已知:如图2,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,点F,G均为AD 上的点,AF=AB,GD=CD.求证:(1)△GEF为等边三角形;(2)AD=AB+BC+CD.10.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是DG=BE;②直线DG与直线BE之间的位置关系是DG⊥BE;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).11.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.12.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD=2,BC=5,DC=3,点E在边BC上,tan∠AEC=3,点M是射线DC上一个动点(不与点D、C重合),联结BM交射线AE于点N,设DM=x,AN=y.(1)求BE的长;(2)当动点M在线段DC上时,试求y与x之间的函数解析式,并写出函数的定义域;(3)当动点M运动时,直线BM与直线AE的夹角等于45°,请直接写出这时线段DM的长.13.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为4﹣2;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.14.在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围9≤S<18 ;(2)若DM:DB=3:5,则AN与BN的数量关系是AN=6BN.15.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为AD=AB+DC;(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.答案与解析1.如图,以正方形的中心O 为顶点作一个直角,直角的两边分别交正方形的两边BC 、DC 于E 、F 点,问:(1)△BOE 与△COF 有什么关系?证明你的结论(提示:正方形的对角线把正方形分成全等的四个等腰直角二角形,即正方形的对角线垂直相等且相互平分);(2)若正方形的边长为2,四边形EOFC 的面积为多少?解:(1)△BOE ≌△COF ,理由如下:∵四边形ABCD 是正方形,∴OB =OC ,OB ⊥OC ,∠OBC =∠OCD =45°;∵∠EOF =90°,∴∠BOE =90°﹣∠EOC =∠COF ,且∠OBC =∠OCD ,OB =OC∴△BOE ≌△COF (ASA )(2)由(1)知:四边形EOFC 的面积=S △BOC =S 正方形ABCD =×4=1.2.如图,在平面直角坐标系中,长方形OABC 的顶点A ,B 的坐标分别为A (6,0),B (6,4),D 是BC 的中点,动点P 从O 点出发,以每秒1个单位长度的速度,沿着O →A →B →D 运动,设点P 运动的时间为t 秒(0<t <13).(1)点D 的坐标是 (3,4) ;(2)当点P 在AB 上运动时,点P 的坐标是 (6,t ﹣6) (用t 表示);(3)求△POD 的面积S 与t 之间的函数表达式,并写出对应自变量t 的取值范围.解:(1)∵四边形OABC 是矩形,A (6,0),B (6,4),∴C(0,4),∵D是BC的中点,∴D(3,4).故答案为:(3,4);(2)当P在AB上运动时,P(6,t﹣6),故答案为:(6,t﹣6);(2)①当0<t≤6时,P(t,0),S=×t×4=2t.②当6<t≤10时,S=S矩形OCBA ﹣S△OPA﹣S△PBD﹣S△CDO=24﹣12×6×(t﹣6)﹣×3×(10﹣t)﹣6=﹣t+21.③当10<t<13时,P(16﹣t,4),PD=13﹣t,∴S=×(13﹣t)×4=﹣2t+26,综上所述,S=.3.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.4.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC.(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG.(3)解:结论:FH=HD.理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD.5.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,∴∠F=∠EHM,∵AE=HE,FA=HM,∴△EFA≌△EHM(SAS),∴EA=EM,∠FEA=∠HEM,∵∠EAB=∠FEH,∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,∵BE=BE,EA=EM,∴△AEB≌△MEB(SAS),∴AB=BM,∵BM=BH+HM=BH+AF,∴AB=AF+BH.(2)解:①如图2中,结论:NH=FN.理由:∵NE平分∠FEH,∴∠FEN=∠HEN,∵EF=EH,EN=EN,∴△ENF≌△ENH(SAS),∴NH=FN.②∵△ENF≌△ENH,∴∠ENF=∠ENH,∵∠ENM=α,∴∠ENF=∠ENH=180°﹣α,∴∠MNH=180°﹣α﹣α=180°﹣2α,∵∠FGH=180°﹣2α,∴∠MNH=∠FGH,∵∠MNH+∠FNH=180°,∴∠FGH+∠FNH=180°,∴F,G,H,N四点共圆,∵NH=NF,∴=,∴∠NGH=∠NGF=∠FGH=90°﹣α.6.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.7.如图,正方形ABCD中,E,F分别是边AD,CD上的点,DE=CF,AF与BE相交于O,DG ⊥AF,垂足为G.(1)求证:BE⊥AF;(2)若正方形ABCD的边长为4,EH⊥DG,垂足为H,且=,求DE的长.(1)证明:∵四边形ABCD为正方形,且DE=CF,∴AE=DF,AB=AD,∠BAE=∠ADF=90°,∵在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,又∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴∠AOB=90°,即AF⊥BE;(2)解:∵EH⊥DG,显然四边形EOGH为矩形,∴EH=OG,∴==,又知∠EDH=∠DFA(同角的余角相等),∴sin∠EDH=sin∠DFA=,∴在Rt△ADF中,=,又∵AD=4,∴AF=5,由勾股定理得DF=3,∴DE=CF=4﹣3=1.8.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.9.在四边形ABCD中,E为BC边中点.(Ⅰ)已知:如图1,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;(Ⅱ)已知:如图2,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,点F,G均为AD 上的点,AF=AB,GD=CD.求证:(1)△GEF为等边三角形;(2)AD=AB+BC+CD.(Ⅰ)证明:(1)如图1中,∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS),(2)∵△ABE≌△AFE,∴∠AEB=∠AEF,BE=BF,∵AE平分BC,∴BE=CE,∴FE=CE,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC,在△DEF和△DEC中,,∴△DEF≌△DEC(SAS),∴DF=DC,∵AD=AF+DF,∴AD=AB+CD;(Ⅱ)证明:(1)如图2中,∵E是BC的中点,∴BE=CE=BC,同(1)得:△ABE≌△AFE(SAS),△DEG≌△DEC(SAS),∴BE=FE,∠AEB=∠AEF,CE=EG,∠CED=∠GED,∵BE=CE,∴EF=EG,∵∠AED=120°,∠AEB+∠CED=180°﹣120°=60°,∴∠AEF+∠GED=60°,∴∠FEG=60°,∴△FEG是等边三角形.(2)由(1)可知FG=GE=EF=BC,∵AD=AG+GH+HD,∴AD=AB+CD+BC.10.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是DG=BE;②直线DG与直线BE之间的位置关系是DG⊥BE;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.11.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠EAP=∠EPA=15°,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣4.12.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD=2,BC=5,DC=3,点E在边BC上,tan∠AEC=3,点M是射线DC上一个动点(不与点D、C重合),联结BM交射线AE于点N,设DM=x,AN=y.(1)求BE的长;(2)当动点M在线段DC上时,试求y与x之间的函数解析式,并写出函数的定义域;(3)当动点M运动时,直线BM与直线AE的夹角等于45°,请直接写出这时线段DM的长.解:(1)如图1中,作AH⊥BC于H,∵AD∥BC,∠C=90°,∴∠AHC=∠C=∠D=90°,∴四边形AHCD是矩形,∴A D=CH=2,AH=CD=3,∵tan∠AEC=3,∴=3,∴EH=1,CE=1+2=3,∴BE=BC﹣CE=5﹣3=2.(2)延长AD交BM的延长线于G.∵AG∥BC,∴=,∴=,∴DG=,AG=2+=,∵=,∴=,∴y=(0<x<3).(3)①如图3﹣1中,当点M在线段DC上时,∠BNE=∠ABC=45°,∵△EBN∽△EAB,∴EB2=EN•AE,∴,解得x=.②如图3﹣2中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,∵△BNA∽△EBA,∴AB2=AE•AN,∴(3)2=•[+解得x=13,综上所述DM的长为或13.13.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为4﹣2;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠B=90°,∵AB=CD=2,∴DG===2,∴AG=AB﹣BG=4﹣2,故答案为4﹣2.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=,∴AH=,GH===.(3)如图,当点G在对角线AC上时,△OGE的面积最小,最小值=×OG×EG=×2×(4﹣)=4﹣.当点G在AC的延长线上时,△OE′G′的面积最大.最大值=×E′G′×OG′=×2×(4+)=4+综上所述,4﹣≤S≤4+.14.在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围9≤S<18 ;(2)若DM:DB=3:5,则AN与BN的数量关系是AN=6BN.解:探究:如图①中,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;应用:(1)当点M与D重合时,△CNM的面积最大,最大值为18,当DM=BM时,△CNM的面积最小,最小值为9,综上所述,9≤S<18.(2)如图②中,由(1)得FM∥AD,EM∥CD,∴===,∵AN=BC=6,∴AF=3.6,CE=3.6,∵△MFN≌△MEC,∴FN=EC=3.6,∴AN=7.2,BN=7.2﹣6=1.2,∴AN=6BN,故答案为AN=6BN.15.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为AD=AB+DC;(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.解:(1)探究问题:结论:AD=AB+DC.理由:如图①中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.故答案为AD=AB+DC.(2)方法迁移:结论:AB=AF+CF.证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC∴△AEB≌△GEC(AAS)∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG,∵∠BAG∠G,∴∠FAG=∠G,∴FA=FG,∵CG=CF+FG,∴AB=AF+CF.(3)联想拓展:结论;AB=DF+CF.证明:如图③,延长AE交CF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥CF,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=DF+CF.。
2020年中考数学压轴题(含答案)

2020年中考数学压轴题一、选择题1.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4第1题第2题2.如图,在平面直角坐标系中,已知点A坐标(0,3),点B坐标(4,0),将点O沿直线34y x b=-+对折,点O恰好落在∠OAB的平分线上的O’处,则b的值为()A.12B.65C.98D.1516二、填空题3.如图,在Rt△ABC中BC=AC=4,D是斜边AB上的一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D垂直于Rt△ABC的直角边时,AD的长为.第3题第4题4.如图,在正方形ABCD中,AB=4,以B为圆心,BA长为半径画弧,点M为弧上一点,MN ⊥CD 于N ,连接CM ,则CM -MN 的最大值为 . 三、解答题5.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD = ⌒AD ,DE ⊥BC ,垂足为E . (1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由; (3)若CE =2,AC =8,阴影部分的面积为 .6.如图,抛物线y =ax 2+bx +c (a <0,a 、b 、c 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点,A (﹣6,0),C (1,0),B (0,).(1)求该抛物线的函数关系式与直线AB 的函数关系式;(2)已知点M (m ,0)是线段OA 上的一个动点,过点M 作x 轴的垂线l ,分别与直线AB 和抛物线交于D 、E 两点,当m 为何值时,△BDE 恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当△BDE 恰妤是以DE 为底边的等腰三角形时,动点M 相应位置记为点M ′,将OM ′绕原点O 顺时针旋转得到ON (旋转角在0°到90°之间);i :探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,始终保持不变,若存在,试求出P 点坐标:若不存在,请说明理由;ii :试求出此旋转过程中,(NA +NB )的最小值.EO CBA【答案与解析】一、选择题1.A2.D二、填空题3.【分析】由等腰直角三角形的性质和勾股定理得出AB=4,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,根据折叠的性质得到∠A′=∠A=∠A′CB=45°,A′D=AD =x,推出A′C⊥AB,求得BH=BC=2,DH=A′D=x,然后列方程即可得到结果,②如图2,当A′D∥AC,根据折叠的性质得到AD=A′D,AC=A′C,∠ACD =∠A′CD,根据平行线的性质得到∠A′DC=∠ACD,于是得到∠A′DC=∠A′CD,推出A′D=A′C,于是得到AD=AC=2.【解答】解:Rt△ABC中,BC=AC=4,∴AB=4,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B =45°, ∴A ′C ⊥AB , ∴BH =BC =2,DH =A ′D =x ,∴x +x +2=4,∴x =4﹣4, ∴AD =4﹣4;②如图2,当A ′D ∥AC ,∵把△ACD 沿直线CD 折叠,点A 落在同一平面内的A ′处, ∴AD =A ′D ,AC =A ′C ,∠ACD =∠A ′CD , ∵∠A ′DC =∠ACD , ∴∠A ′DC =∠A ′CD , ∴A ′D =A ′C , ∴AD =AC =4, 综上所述:AD 的长为:4﹣4或4.4. 2 三、解答题 5、(1),BD AD BAD ACD =∴=∠∠°+180ABCD O BAD BCD ∴=四边形内接于圆,∠∠°+180BCD DCE =又∠∠,DCE BAD ∴=∠∠ACD DCE ∴=∠∠即CD 平分∠ACE(2)直线ED 与⊙O 相切。
天津市2020年中考数学试题(含答案与解析)

请根据相关信息,解答下列问题:
【详解】∵抛物线 经过点 ,对称轴是直线 ,
∴抛物线经过点 ,b=-a
当x= -1时,0=a-b+c,∴c=-2a;当x=2时,0=4a+2b+c,
∴a+b=0,∴ab<0,∵c>1,
∴abc<0,由此①是错误的,
∵ ,而
∴关于x的方程 有两个不等的实数根,②正确;
∵ ,c=-2a>1,∴ ,③正确
4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形的概念求解.
【详解】解:A、不是轴对称图形;
B、不是轴对称图形;
C、是轴对称图形;
D、不是轴对称图形;
故选:C.
【点睛】本题考查了轴对称图形 知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)
19.解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得_______________;
(Ⅱ)解不等式②,得_____________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为_______________.
2020中考数学(选择题难题突破)(含答案)

2020中考数学(选择题难题突破)(含答案)备战中考数学选择题难题突破类型⼀:动点函数类1.如图,点P是菱形ABCD边上的⼀动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△P AD的⾯积为y,P点的运动时间为x,则y关于x的函数图象⼤致为( )A B C D2.如图,在正⽅形ABCD中,点P从点A出发,沿着正⽅形的边顺时针⽅向运动⼀周,则△APC的⾯积y与点P运动的路程x之间形成的函数关系图象⼤致是( )A BCD3.如图,已知正三⾓形ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的⾯积为y ,AE 的长为x ,则y 关于x 的函数图象⼤致是( )4.如图,在Rt △AOB 中,AB △OB ,且AB =OB =3,设直线x =t 截此三⾓形所得阴影部分的⾯积为S ,则S 与t 之间的函数关系的图象为下列选项中A BCD的( )5.如图,正△ABC 的边长为4,点P 为BC 边上的任意⼀点(不与点B ,C 重合),且△APD =60°,PD 交AB 于点D .设BP =x ,BD =y ,则y 关于x 的函数图象⼤致是( )6.如图,△ABC 是等腰直⾓三⾓形,△A =90°,BC =4,点P 是△ABC 边上⼀动点,沿B →A →C 的路径移动,过点P 作PD △BC 于点D ,设BD =x ,△BDP 的⾯积为y ,则下列能⼤致反映y 与x 函数关系的图象是( )7.如图,边长分别为1和2的两个等边三⾓形,开始它们在左边重合,⼤三⾓形固定不动,然后把⼩三⾓形⾃左向右平移直⾄移出⼤三⾓形外停⽌.设⼩三⾓形移动的距离为x ,两个A B CD三⾓形重叠⾯积为y,则y关于x的函数图象是( )A BC D8.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的⾯积为y,那么y与x之间的函数关系的图象⼤致是( )A BC D9.如图,正⽅形ABCD的边长为2 cm,动点P,Q同时从点A出发,在正⽅形的边上,分别按A→D→C,A→B→C的⽅向,都以1 cm/s的速度运动,到达点C运动终⽌,连接PQ,设运动时间为x s,△APQ的⾯积为y cm2,则下列图象中能⼤致表⽰y与x的函数关系的是( )A BC D10.如图,在菱形ABCD中,△B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当⼀个点停⽌运动时,另⼀个点也随之停⽌.设△APQ的⾯积为y,运动时间为x秒,则下列图象能⼤致反映y与x之间函数关系的是( )A BC D11.如图,△O的半径为1,AD,BC是△O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin△APB=y,那么y与x之间的关系图象⼤致是( )12.如图,在Rt△PMN中,△P=90°,PM=PN,MN=6 cm,在矩形ABCD中,AB=2 cm,BC=10 cm,点C和点M重合,点B,C(M),N在同⼀直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,⾄点C与点N重合为⽌,设移动x秒后,矩形ABCD与△PMN重叠部分的⾯积为y,则y与x的⼤致图象是( )A B C D13.早上,⼩明从家⾥步⾏去学校,出发⼀段时间后,⼩明妈妈发现⼩明的作业本落在家⾥,便带上作业本骑车追赶,途中追上⼩明两⼈稍作停留,妈妈骑车返回,⼩明继续步⾏前往学校,两⼈同时到达.设⼩明在途的时间为x,两⼈之间的距离为y,则下列选项中的图象能⼤致反映y与x之间关系的是( )14.从甲地到⼄地的铁路路程约为615千⽶,⾼铁速度为300千⽶/时,直达;动车速度为200千⽶/时,⾏驶180千⽶后,中途要停靠徐州10分钟.若动车先出发半⼩时,两车与甲地之间的距离y(千⽶)与动车⾏驶时间x(⼩时)之间的函数图象为( )15.⼩聪步⾏去上学,5分钟⾛了总路程的1,估6计步⾏不能准时到校,于是他改乘出租车赶往学校,他的⾏程与时间关系如图所⽰(假定总路程为1,出租车匀速⾏驶),则他到校所花的时间⽐⼀直步⾏提前了( )A.16分钟B.18分钟C.20分钟D.24分钟类型⼆:⼏何综合类1.如图,已知正⽅形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;①S△CDF=4S△CEF;①S△ADF=2S△CEF;①S△ADF=2S△CDF.其中正确的是( )A.①①B.①①C.①①D.①①2.如图,正⽅形ABCD的边长为4,延长CB⾄E使EB=2,以EB为边在上⽅作正⽅形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K,则下列结论:△△ANH △△GNF ;△△AFN =△HFG ;△FN =2NK ;△S △AFN △S △ADM =1△4.其中正确的结论有( )A .1个B .2个C .3个D .4个强化训练3.如图,ABCD 是正⽅形,E ,F 分别是DC ,CB 的延长线上的点,且DE=BF .连接AE ,AF ,EF ,AC ,EF 交AB 于点G.则下列结论:①△ADE △△ABF ; ①△AEF=45°;①若AB=3,DE=13DC ,则S △AEF =54;①若AB=2,E 为DC 的中点,则EF AC =√102.其中正确结论的有( )A .1个B .2个C .3 个D .4 个4.如图,已知E ,F 分别为正⽅形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,设AB=4,则下列结论:①△AME=90°;①△BAF=△EDB;①MD=2AM=4EM;MF.其中正确结论的有()①AM=23A.4个B.3个C.2个D.1个5.如图,已知△ABCD的对⾓线AC,BD交于点O,DE平分△ADC交BC于点E,交AC于点F,且△BCD=60°, BC=2CD,连接OE.下列结论:=BD·CD;①OE①AB; ①S平⾏四边形ABCD①AO=2BO; ①S△DOF=2S△EOF.其中成⽴的有( )A.1个B.2个C.3个D.4个6.如图,在矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若△COB=60°,FO=FC,则下列结论:①FB垂直平分OC;①△EOB△△CMB;①DE=EF;①S△AOE①S△BCM=2①3.其中正确结论的有( )A.4个B.3个C.2个D.1个7.如图,AB为△O的直径,BC为△O的切线,弦AD△OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是△O的切线;①CO△DB;①△EDA△△EBD;①ED·BC=BO·BE.其中正确结论的有( )A.4个B.3个C.2个D.1个类型三:函数综合类1.已知k1<0的图象⼤致是( )xA B C D2.⼆次函数y=ax2+bx+c(a≠0)的⼤致图象如图,关于该⼆次函数,下列说法错误的是( )A.函数有最⼩值B.对称轴是直线x=12C.当x<1时,y随x的增⼤⽽减⼩D.当-12时,y>0强化训练3.如图,在平⾯直⾓坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对⾓线BD△x轴,反⽐例函数(k>0,x>0)的图象经过矩形对⾓线的交点E.若点y=kxA(2,0),D(0,4),则k的值为()A.16B.20C.32D.404.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=c的图象为x( )5.⼀次函数y=ax+b与反⽐列函数y=c的图象如图所⽰,则⼆次函数xy=ax2+bx+c的⼤致图象是( )6.若函数y=k与y=ax2+bx+c的图象如图所⽰,则函数y=kx+b的⼤致图x象为( )7.在平⾯直⾓坐标系中,⼆次函数y=ax2+bx+c(a≠0)的图象如图所⽰,现给以下结论:△abc<0;△c+2a<0;△9a-3b+c=0;△a-b≥m(am+b)(m 为实数);△4ac-b2<0.其中结论错误的有( )A.1个B.2个C.3个D.4个类型四:图形变换类1.如图,在菱形ABCD中,AC=6√2,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最⼩值是( )C.2√6D.4.52.如图,在△ABC中,△BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连接AD,则下列结论不⼀定正确的是( )A.AE=EFB.AB=2DEC.△ADF和△ADE的⾯积相等D.△ADE和△FDE的⾯积相等3.如图,在正⽅形ABCD中,E是BC边上的⼀点,BE=4,EC=8,将正⽅形边AB沿AE折叠到AF,延长EF交DC于G,连接AG,FC,现在有如下4个结论:△△EAG=45°;△FG=FC;△FC△AG;△S△GFC=14.其中正确结论的有( )A.1个B.2个C.3个D.4个4.如图,在等腰直⾓三⾓形ABC中,△BAC=90°,⼀个三⾓尺的直⾓顶点与BC边的中点O重合,且两条直⾓边分别经过点A和点B,将三⾓尺绕点O按顺时针⽅向旋转任意⼀个锐⾓,当三⾓尺的两直⾓边与AB,AC分别交于点E,F时,下列结论中错误的是( )A.AE+AF=ACB.△BEO+△OFC=180°C.OE+OF=√22BCD.S四边形AEOF =12S△ABC5.如图,在Rt△ABC中,△ACB=90°,△ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )A.√7B.2√2类型五:求阴影⾯积类1.如图,在正⽅形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的⾯积是( )A.18+36πB.24+18πC.18+18πD.12+18π2.如图,将半径为2,圆⼼⾓为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O',B',连接BB',则图中阴影部分的⾯积是( )A.2π3B.2√3?π3C.2√3?2π3D.4√3?2π33.如图,在半径为6的△O中,点A,B,C都在△O上,四边形OABC是平⾏四边形,则图中阴影部分的⾯积为( )A.6πB.3√3πC.2√3πD.2π4.如图,在菱形ABCD中,点E是BC的中点,以C为圆⼼、CE为半径作弧,交CD于点F,连接AE,AF.若AB=6,△B=60°,则阴影部分的⾯积为( )A.9√3-3πB.9√3-2πC.18√3-9πD.18√3-6π选择题难题突破类型⼀:动点函数类1.B2.C【强化训练】4.D5.C6.B7.B8.D9.A10.B11.C12.A 13.B14.A15.C类型⼆:⼏何综合类1.C 2.C【强化训练】3.B4.B5.C6.B7.A类型三:函数综合类1.A 2.D【强化训练】3.B4.C5.A6.C7.A类型四:图形变换类1.C 2.C 3.B 4.C 5.A 类型五:求阴影⾯积类1.C 2.C 3.A 4.A。
2020年中考数学试题(含答案)

解析:C 【解析】 【分析】 画出树状图即可求解. 【详解】 解:画树状图得:
∵共有 6 种等可能的结果,而两张卡片上的数字恰好都小于 3 有 2 种情况,
∴两张卡片上的数字恰好都小于 3 概率= 1 ; 3
故选:C. 【点睛】 本题考查的是概率,熟练掌握树状图是解题的关键.
4.D
解析:D 【解析】 【分析】 先通过加权平均数求出 x 的值,再根据众数的定义就可以求解. 【详解】
【详解】
∵AB 为直径,
∴ ACB 90 ,
∴ BC AB2 AC2 102 82 6 ,
∵ OD AC , ∴ CD AD 1 AC 4 ,
2 在 RtCBD 中, BD 42 62 2 13 .
B.在 1.2 和 1.3 之间
C.在 1.3 和 1.4 之间
D.在 1.4 和 1.5 之间
10.如图,AB,AC 分别是⊙O 的直径和弦, OD AC 于点 D,连接 BD,BC,且
AB 10 , AC 8 ,则 BD 的长为( )
A. 2 5
B.4
C. 2 13
D.4.8
11.如图,四个有理数在数轴上的对应点 M,P,N,Q,若点 M,N 表示的有理数互为相
15.在一次班级数学测试中,65 分为及格分数线,全班的总平均分为 66 分,而所有成绩
及格的学生的平均分为 72 分,所有成绩不及格的学生的平均分为 58 分,为了减少不及格
的学生人数,老师给每位学生的成绩加上了 5 分,加分之后,所有成绩及格的学生的平均
分变为 75 分,所有成绩不及格的学生的平均分变为 59 分,已知该班学生人数大于 15 人少
2020 年中考数学试题(含答案)
一、选择题
最新 2020年中考数学试卷(含答案和解析)

中考数学试卷一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x 3=x6B.x6÷x 5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC 边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=_________.10.(3分)分解因式:(2a+1)2﹣a2=_________.11.(3分)计算:﹣=_________.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=_________度.13.(3分)当x=﹣1时,代数式÷+x的值是_________.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=_________.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为_________ cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有_________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(_________,_________),B(_________, _________),D(_________,_________).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C 正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=_________(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选C.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S 与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x ﹣)2+,∴S与x的关系式为S=﹣(x ﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=.考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)计算:﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点:反比例函数综合题.专题:综合题.分析:(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B 坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.解答:解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形, ∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,解得:k=(不合题意,舍去)或k=4,则当k=4时,▱ADBC是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C 正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分析:(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战中考数学选择题难题突破类型一:动点函数类1.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△P AD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )A B C D2.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )A BCD3.如图,已知正三角形ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )4.如图,在Rt △AOB 中,AB △OB ,且AB =OB =3,设直线x =t 截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中A BCD的( )5.如图,正△ABC 的边长为4,点P 为BC 边上的任意一点(不与点B ,C 重合),且△APD =60°,PD 交AB 于点D .设BP =x ,BD =y ,则y 关于x 的函数图象大致是( )6.如图,△ABC 是等腰直角三角形,△A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD △BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )7.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个A B CD三角形重叠面积为y,则y关于x的函数图象是( )A BC D8.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )A BC D9.如图,正方形ABCD的边长为2 cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1 cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为x s,△APQ的面积为y cm2,则下列图象中能大致表示y与x的函数关系的是( )A BC D10.如图,在菱形ABCD中,△B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是( )A BC D11.如图,△O的半径为1,AD,BC是△O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin△APB=y,那么y与x之间的关系图象大致是( )12.如图,在Rt△PMN中,△P=90°,PM=PN,MN=6 cm,在矩形ABCD中,AB=2 cm,BC=10 cm,点C和点M重合,点B,C(M),N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是( )A B C D13.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是( )14.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/时,直达;动车速度为200千米/时,行驶180千米后,中途要停靠徐州10分钟.若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为( )15.小聪步行去上学,5分钟走了总路程的1,估6计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了( )A.16分钟B.18分钟C.20分钟D.24分钟类型二:几何综合类1.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;①S△CDF=4S△CEF;①S△ADF=2S△CEF;①S△ADF=2S△CDF.其中正确的是( )A.①①B.①①C.①①D.①①2.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K,则下列结论:△△ANH △△GNF ;△△AFN =△HFG ;△FN =2NK ;△S △AFN △S △ADM =1△4.其中正确的结论有( )A .1个B .2个C .3个D .4个强化训练3.如图,ABCD 是正方形,E ,F 分别是DC ,CB 的延长线上的点,且DE=BF .连接AE ,AF ,EF ,AC ,EF 交AB 于点G.则下列结论:①△ADE △△ABF ; ①△AEF=45°;①若AB=3,DE=13DC ,则S △AEF =54;①若AB=2,E 为DC 的中点,则EF AC =√102.其中正确结论的有( )A .1个B .2个C .3 个D .4 个4.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,设AB=4,则下列结论:①△AME=90°;①△BAF=△EDB;①MD=2AM=4EM;MF.其中正确结论的有()①AM=23A.4个B.3个C.2个D.1个5.如图,已知△ABCD的对角线AC,BD交于点O,DE平分△ADC交BC于点E,交AC于点F,且△BCD=60°, BC=2CD,连接OE.下列结论:=BD·CD;①OE①AB; ①S平行四边形ABCD①AO=2BO; ①S△DOF=2S△EOF.其中成立的有( )A.1个B.2个C.3个D.4个6.如图,在矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若△COB=60°,FO=FC,则下列结论:①FB垂直平分OC;①△EOB△△CMB;①DE=EF;①S△AOE①S△BCM=2①3.其中正确结论的有( )A.4个B.3个C.2个D.1个7.如图,AB为△O的直径,BC为△O的切线,弦AD△OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是△O的切线;①CO△DB;①△EDA△△EBD;①ED·BC=BO·BE.其中正确结论的有( )A.4个B.3个C.2个D.1个类型三:函数综合类1.已知k1<0<k2,则函数y=k1x-1和y=k2的图象大致是( )xA B C D2.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A.函数有最小值B.对称轴是直线x=12C.当x<1时,y随x的增大而减小D.当-1<x<22时,y>0强化训练3.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD△x轴,反比例函数(k>0,x>0)的图象经过矩形对角线的交点E.若点y=kxA(2,0),D(0,4),则k的值为()A.16B.20C.32D.404.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=c的图象为x( )5.一次函数y=ax+b与反比列函数y=c的图象如图所示,则二次函数xy=ax2+bx+c的大致图象是( )6.若函数y=k与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图x象为( )7.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:△abc<0;△c+2a<0;△9a-3b+c=0;△a-b≥m(am+b)(m 为实数);△4ac-b2<0.其中结论错误的有( )A.1个B.2个C.3个D.4个类型四:图形变换类1.如图,在菱形ABCD中,AC=6√2,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )A.6B.3√3C.2√6D.4.52.如图,在△ABC中,△BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连接AD,则下列结论不一定正确的是( )A.AE=EFB.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等3.如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG,FC,现在有如下4个结论:△△EAG=45°;△FG=FC;△FC△AG;△S△GFC=14.其中正确结论的有( )A.1个B.2个C.3个D.4个4.如图,在等腰直角三角形ABC中,△BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是( )A.AE+AF=ACB.△BEO+△OFC=180°C.OE+OF=√22BCD.S四边形AEOF =12S△ABC5.如图,在Rt△ABC中,△ACB=90°,△ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )A.√7B.2√2C.3D.2√3类型五:求阴影面积类1.如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是( )A.18+36πB.24+18πC.18+18πD.12+18π2.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O',B',连接BB',则图中阴影部分的面积是( )A.2π3B.2√3−π3C.2√3−2π3D.4√3−2π33.如图,在半径为6的△O中,点A,B,C都在△O上,四边形OABC是平行四边形,则图中阴影部分的面积为( )A.6πB.3√3πC.2√3πD.2π4.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE,AF.若AB=6,△B=60°,则阴影部分的面积为( )A.9√3-3πB.9√3-2πC.18√3-9πD.18√3-6π选择题难题突破类型一:动点函数类1.B2.C3.D【强化训练】4.D5.C6.B7.B8.D9.A10.B11.C12.A 13.B14.A15.C类型二:几何综合类1.C 2.C【强化训练】3.B4.B5.C6.B7.A类型三:函数综合类1.A 2.D【强化训练】3.B4.C5.A6.C7.A类型四:图形变换类1.C 2.C 3.B 4.C 5.A类型五:求阴影面积类1.C 2.C 3.A 4.A。