四川大学2015-2016春微积分1-2试题A
(NEW)四川大学《690高等数学(微积分、级数)》历年考研真题汇编

6 (12分)一质量为m的物体,最初静止于x0处,在力F=-k/x2 的作用下沿直线运动,试求物体在任意位置x处的速度.
7 (13分)质量为m的摩托车,在恒定的牵引力F的作用下工作, 它所受的阻力与其速率的平方成正比,它能达到的最大速率是vm.试计 算从静止加速到vm/2所需的时间以及所走过的路程.
3 求下列不定积分(共50分): (1) (2)
(3)
(4) (5) (6) (7) (8) (9) (10)
4 用级数展开计算下列积分的近似值(计算前三项)(共20 分):
(1) (2)
5 (5分)甲乙两船同时从一码头出发,甲船以30km/h的速度向北 行驶,乙船以40km/h的速度向东行驶,求两船间距离增加的速度为多 少?
2012年四川大学690高等数学(微 积分、级数)考研真题
2013年四川大学690高等数学(微 积分、级数)考研真题
2014年四川大学690高等数学(微 积分、级数)考研真题
2015年四川大学690高等数学(微 积分、级数)考研真题
2016年四川大学690高等数学(川大学690高等数学(微 积分、级数)考研真题
1 请写出下列初等函数的级数展开式(共20分): (1)ax (2)sin(x/2) (3) (4)ln(1+x) (5)1/(1+x)
2 求下列平面图形的面积(共30分): (1)曲线y=x3与y轴和直线y=1所围成的图形; (2)曲线y=x2与y=2-x2所围成的图形.
目 录
2012年四川大学690高等数学(微积分、级数)考研真题 2013年四川大学690高等数学(微积分、级数)考研真题 2014年四川大学690高等数学(微积分、级数)考研真题 2015年四川大学690高等数学(微积分、级数)考研真题 2016年四川大学690高等数学(微积分、级数)考研真题 2017年四川大学690高等数学(微积分、级数)考研真题
四川大学微积分1-2(2016)B卷

4.设空间曲面: z 1 ( x 2 y2 ) (0 z 1部分) 所围成,方向指向外侧,计算曲面积分 2
( x y)dydz ( y z)dzdx ( x z)dxdy .
5.求微分方程 y 4 y x cos x 的通解.
(1)求常数 A,以及该微分方程的通解.
(2)计算曲线积分 (0,1) 2 xydx ( Ax 2 2 y)dy 的值. (1,0)
3.设二元函数
f
(
x,
y)
xy , x2 y2
0,
( x, y) (0, 0)
.
( x, y) (0, 0)
(1)求证:二元函数 f ( x, y) 在点(0,0)处不可微.
0
2
0
确定的隐函数组,求
y(1),
z(1) .
第 1 页,共 2 页 试卷编号:
2.设空间区域是由 z x2 y2 与 z 2 x2 y2 所围成,计算三重积分
(2x y 3z)dxdydz .
3.设平面闭曲线 L: y cos x 从点 A(1,1)到 B(1,1),计算曲线积分
四川大学期末考试试题(闭卷) (2015-2016 学年第 2 学期) B 卷
课程号:201138040 适用专业年级:
课序号: 学生人数:
课程名称:微积分(I)-2 任课教师:
成绩:
印题份数:
学号:
姓名:
考生承诺
我已认真阅读并知晓《四川大学考场规则》和《四川大学本科学生考试违纪作弊处分规定(修 订)》,郑重承诺:
2.二元函数 z
f (u, v) 具有二阶连续偏导数,
u
15-16A概率统计(III)

矩估计量为
.
二、解答题(共 7 小题,共 79 分)
1.(10 分)某商场销售一批照相机共 10 台,其中有 3 台次品,其余均为正品,某顾客去选购时,已
售出 2 台,该顾客从剩下的 8 台中任意选购 1 台,求
(1)顾客买到正品的概率;(2)若已知顾客买到的是正品,则已售出的 2 台都是次品的概率是多少?
.
6. 设 X1 , X2 ,, X6 是 来 自 正 态 总 体 X ~ N (0, 2 ) 的 简 单 随 机 样 本 , 统 计 量
T a X1 X 2 X 3 服从 t 分布,则常数 a
.
X
2 4
X
2 5
X
2 6
7. 设 X1, X2 ,, X n 是来自总体 X ~ U ( , 2) 的简单随机样本,X 为样本均值,则未知参数 的
1、已按要求将考试禁止携带的文具用品或与考试有关的物品放置在指定地点; 2、不带手机进入考场; 3、考试期间遵守以上两项规定,若有违规行为,同意按照有关条款接受处理。
考生签名:
注:考试时间 120 分钟。请将答案写在答题纸规定的方框内,否则记 0 分。
一、填空题(每题 3 分,共 21 分)
1. 已知 P( A) p, P(B) q, P( A B) p q ,则 P( A B)
附:标准正态分布、 t 分布、 2 分布上侧分位点值: u 0.025 1 .9 6 , u 0.05 1 .6 4 5
t0.025 ( 9 ) 2 .2 6 2 , t0.025 ( 8 ) 2 .3 0 6 , t0.05 ( 9 ) 1 .8 3 3 , t0.05 ( 8 ) 1 .8 6 ,
(2)求Y y 的条件下, X 的条件概率密度,并计算概率 P{ X 2 Y 4} ;
参考答案2015-2016几何与多元微积分A(上)_A卷

(2) 若 r > 1 ,则由 lim
n →∞
an +1 = r > 1 ,推知 n 充分大时 an +1 > an ,故 an
lim an ≠ 0 ⇒ lim an ≠ 0 ,此与条件矛盾。
n →∞ n →∞
(3) 若 r = 1 ,则由 lim 件收敛矛盾。 综上得
∞
∞ an +1 = 1 ,推知 n 充分大时, an 同为正值或同为负值,与 ∑ an 条 n →∞ a n =1 n
x − 2 y − 2z +1 12 + (Leabharlann 2) 2 + (−2) 2
去掉绝对值符号,得所求平面方程为
=
3x − 4 y + 5 32 + (−4) 2
7 x − 11 y − 5 z + 10 = 0
或
2 x − y + 5z + 5 = 0
4、求常数项级数
∞
3n −1 − 1 的和. ∑ n −1 n =1 6
π ⎧ ⎪1, 0 ≤ x < 2 ⎪ π ⎪ = < x≤π 和函数 s ( x) ⎨0, 2 ⎪ π ⎪1 ⎪2 , x = 2 ⎩
四、 (6 分)求直线 L : 曲面? 解:设 P ( x, y , z ) 为旋转曲面上任一点,它是由直线 L 上 Q( x1 , y1 , z1 ) 点绕 z 轴旋转所得,则
4、在空间直角坐标系中,方程 y = 2 x 表示的曲面是 抛物柱面 ,方程 z = 1 −
2
示的曲面是 圆锥面 . 5、设 u ( x, y , z ) = z
z z x −3 x dx − y 2 dy + ,则 du = 2 y 2 xy
2015-2016几何与多元微积分A(下)试卷

.
∫ 6、计算第一类曲线积分 3 z ds = Γ4
⎧x = 0
,其中曲线
Γ
:
⎪ ⎨
y
=
t
2
−
1
⎪ ⎩
z
=
2t
(0 ≤ t ≤ 1) .
( 2,3)
∫ 7、计算 (x + y)dx + (x − y)dy = (1,1)
.
∫∫∫ 8、区域 Ω 由 x = 0, y = 1, z = y 与 z = x 围成, f ( y) 连续,则 (x − y)6 f ( y)dV 可用定积
Ω
分表示为
.
二、计算下列各题(每小题 7 分,共 28 分)
∫∫ 1、计算二重积分 (x2 + y2 )dxdy ,其中 D 为由 x 轴和曲线 y = 2x − x2 所围成的半圆形 D
区域。
∫ ∫ 1
2、通过交换积分次序计算二次积分 dx
x sin ydy .
0 xy
∫∫∫ 3、计算三重积分 (x2 + y2 )dV ,其中 Ω 是由抛物面 z = x2 + y2 和 z = 2 − x2 − y2 所围成的 Ω
.
2、曲面 方程为
.
G
3、 f (x, y) = x2 + xy 在点 (1, 2) 处沿方向 l = (1,1) 的方向导数为
.
4、函数 z = x3 + y3 − 9xy + 27 的驻点为
.
5、以 x 轴和 y = 1− x2 为边界的半圆区域的形心为
(单位:万元). 除此之外,生产甲、乙两种产品每吨还需分别支付排污费 2 万元,1 万元。 问在限制排污费用支出总额为 8 万元的条件下,甲、乙两种产品的产量各为多少时总利润最 大?最大总利润是多少?
【四川大学】2014-2015春(微积分II-2)半期试题

2x 2 八. (10 分)求函数 f ( x , y ) e ( x y 2 y ) 的极值,并判断是极大值还是极小值?
四川大学半期考试试卷
(2014—2015 年第二学期) 科目:微积分(II)-2 考试时间:90 分钟 注:请将答案写在答题纸规定的方框内,否则记 0 分。
一 、计算下列多元函数的极限。若极限不存在,请给出理由(每题 5 分,共 15 分)
sin( x 4 y 4 ) 1、 lim ( x , y ) ( 0 , 0 ) x2 y2 ln(1 x ) dx 。 (2 x ) 2 x3 y5 2、 lim ( x , y ) ( 0 , 0 ) x 2 y 2 1 dx 。 x (1 x 2 ) 2
1 x 1
x
1
(1 x ) 3
t
f ( u)du )dt
。
四. (10 分)设函数 f ( x ) 连续,且 f ( 0) 0 ,求极限 lim
x 0
x
0
( x t ) f ( t )dt
x 0
x f ( x t )dt
。
五. (10 分)证明函数 f ( x , y ) | xy | 在点 ( 0,0) 连续、偏导数存在,但、 lim ( x , y ) ( 0 , 0 ) x 6 y 2
二.计算题。 (每小题 5 分,共 25 分) 1、
1 0
2、
3
1
3、设 f ( x ) x sin x
4 0
f ( 2 x )dx ,求 2 f ( x )dx 。
4、 u ( xy ) z ,求 du |(1, 2 ,1) 。
1 ,x 1 x x 1 x 5、 f ( x ) x ,0 x 1 ,求 f ( t )dt 。 0, x 0
概率统计(I)2015-2016-2(15级)期末试题及参考答案
0 1 1 C4 1 2 1 2 C 4 1 2 1 2 0 4 1 3
11 0.6875. 16
1 1, 2; 4, 25; 4. X , Y N 2 E X 1, E Y 2, D X 4, D Y 25, R X , Y
2 待检检验为:
H 0 : 0 0.27,
0 .
因总体方差已知,用 U 检验法,即检验统计量为
U X 0
n
. 因 0.05 ,查表得拒绝域为
W U : U U : U 0.95 U : U 1.645 .
2. FY y P Y y P 2 X 1 y
y 1 y 1 y 1 PX FX F . 2 2 2 1 1 3. X U 1,1 P X 0 Y B 4, 2 2
i
n
n
3
xi
i 1
n
e 3n ,
i 1
i 1
显然可见, L 关于 单调递增;又 xi , i 1, 2,, n , 从而 min x1 , x2 ,, xn ;故 的极大似然估计值为
ˆ min x ,极大似然估计量为 ˆ min X ; l i l i
1
fX x
f x, y dy
1 1 x , 1 x 1 x 1dy , 1 x 1 ; , 其它 0 其它 0,
fY y
四川大学《大学数学-微积分》期末考试试卷B(末尾含答案解析)
B.双叶双曲面 D.旋转抛物面
2. 设F (x y, y z, z x) 0,则 z ( ). x
A. F1 F3 F2 F3
B. F2 F1 F2 F3
C. F1 F3 F2 F3
D. F1 F3 F2 F3
3.函数z ln(x y)在抛物线y2 4x上点(1,2)处,沿着这抛物线 在该点处偏向X轴正向的切线方向的方向导数为( )
A. 2 3
B. 3 3
C.1
D. 3
4.
1
dx
x
e
y
2
01
dy
(
).
A. 1 (e1 1) 2
B. 1 (e 1) 2
C. 1 (e 1) 2
D. 1 (e1 1) 2
5.若 y1 和 y2 是二阶齐次线性方程 y p(x)y q(x)y 0 的两个特解,则
第 1 页 共 6页
年级: 装
5.级数
n1
(2
x
n
1)
n
的收敛区间是
______
.
三.计算题(每小题8分,共24分)
1.设函数 Q(x,y) 在 xoy 平面上具有一阶连续偏导数,曲线积分
L 2xydx Q(x, y)dy 与路径无关,并且对任意 t ,恒有
(1, t)
(t , 1)
(0,0) 2xydx Q(x, y)dy (0,0) 2xydx Q(x, y)dy
1.证明,变换
u v
x 2y x 3y
可把方程
6
2 x
z
2
2z xy
2z y 2
0 简化为 2 z 0 . uv
第5页 共6页
四川大学期末考试试卷
2014-15(2)四川大学微积分期末试卷 解答
∆y → 0
f (0, 0 + ∆y ) − f (0, 0) 0 = lim = 0 ∆ → y 0 ∆y ∆y
假设 f ( x, y ) 在 (0, 0) 处的可微,则 = dz
f x′(0, 0)∆x + f y′(0, 0) = ∆y 0
考虑 lim
ρ →0
ϕ ′( x) = e x − ∫ ϕ (t )dt ,
0
x
ϕ ′′( x) = e x − ϕ ( x) , 即 ϕ ′′( x) + ϕ ( x) = e x ,
r2 +1 = 0,
Φ ( x) = C1 cos x + C 2 sin x ,
特征根为 r1, 2 = ±i ,故对应的齐次方程的通解为 易知 Φ * ( x) =
内的部分的上侧. 解:设 S 0 为平面: x + y ≤ 2, z = 0 方向向下, Ω 为 S + S 0 围的立体,
2 2
Ω 在 xOy 上投影 D xy : x 2 + y 2 ≤ 2, z = 0 ,
用极坐标表示: 0 ≤ θ ≤ 2π ,0 ≤ r ≤ 利用高斯公式得
S + S0
2
∫∫ ( y
故
∂2 z 3 = − ∂x∂y (0,0) 25
1
∂2 z = 2. 设 z f (2 x − y, y sin x) ,其中 f 具有连续二阶偏导数,求 ∂x∂y= x
解: 令 u =2 x − y, v =y sin x , 则
π
.
= ,y 2 4
∂z ∂f ∂u ∂f ∂v = ⋅ + ⋅ = 2 fu′ + y cos xf v′ , ∂x ∂u ∂x ∂v ∂x
2017春微积分I-2期末B卷试题
第1页,共2页四川大学半期考试试题(闭卷)(2016-2017学年第2学期)课程号:201138040课序号:课程名称:微积分(I )-2任课教师:成绩:适用专业年级:学生人数:印题份数:学号:姓名:考生承诺我已认真阅读并知晓《四川大学考场规则》和《四川大学本科学生考试违纪作弊处分规定(修订)》,郑重承诺:1、已按要求将考试禁止携带的文具用品或与考试有关的物品放置在指定地点;2、不带手机进入考场;3、考试期间遵守以上两项规定,若有违规行为,同意按照有关条款接受处理。
考生签名:一、填空题(每小题4分,共20分)1.曲线220y x z ⎧=⎪⎨=⎪⎩绕y 轴旋转一周所成的曲面方程为__________.2.设(01)y z x x x =>≠,,则__________.dz =3.改变二次积分130()y y dy f x y d x ⎰⎰,的积分顺序为__________.4.函数2()f x y x y =,在点(11),处方向导数的最大值为__________.5.曲线3z xy x y z =⎧⎪⎨++=⎪⎩上点(111),,处的切线方程为__________. 二、解答题(每小题10分,共60分)1.设()()z z x y y x ==,由方程组()1z f y z x x y z =+⎧⎪⎨++=⎪⎩,确定,求. dz dy dx dx ,2.求由曲面222z x y =+及2262z x y =--所围成的立体的体积.3.求极限24301lim ln(4)rr xy dv r →Ω++⎰⎰⎰,其中2222. r x y z r Ω++≤:4.求过曲面2226x y z ++=上一点的切平面,且该切平面垂直于直线2. 2x y z x z --=⎧⎪⎨+=⎪⎩第2页,共2页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 y2
( x 2 y )dydz ( y 2 z )dzdx ( x z 2 )dxdy .
x
5.求微分方程 y 2 y y xe 的通解. 三.综合题(每小题 9 分,共 27 分) 1.求函数 u x y z 在约束条件: x y 1 与 x 2 y 3 z 6 下的最大值和最小值. 2.已知微分方程 ( Ax y 6 xy y )dx (6 x y x Bx )dy 0 是一个全微分方程. (1) 求常数 A,B 的值. (2) 求该微分方程的通解. (3) 计算曲线积分
考生签名:
一.填空题(每小题 4 分,共 28 分) 1.设二元函数 z
x2 y2 x 2 y , 则
z y x x
(
x 1, y 1
).
2.二元函数 z f ( u, v ) 具有二阶连续偏导数, u x , v x 2 y ,则 3.空面 z x 2 y 在点(1, 1, 3)处的切平面方程是 ( 4.设平面区域 D 是由 y 5.设空间曲面: z
四川大学期末考试试题(闭卷) (2015-2016 学年第 2 学期)
课程号:201138040 适用专业年级: 课序号: 学生人数: 课程名称:微积分(I)-2 印题份数: 学号:
A卷
成绩: 姓名:
任课教师:
考 生 承 诺
我已认真阅读并知晓《四川大学考场规则》和《四川大学本科学生考试违纪作弊处分规定(修 订) 》 ,郑重承诺: 1、已按要求将考试禁止携带的文具用品或与考试有关的物品放置在指定地点; 2、不带手机进入考场; 3、考试期间遵守以上两项规定,若有违规行为,同意按照有关条款接受处理。
2 2 2 3 2 2 2 2 2
(1,2)
(0,0)
Hale Waihona Puke ( Ax 2 y 6 xy 2 y )dx (6 x 2 y x 3 Bx )dy 的值.
x2 y , ( x , y ) (0, 0) 3.设二元函数 f ( x , y ) x 2 y 2 . 0, ( x, y) (0, 0)
(1) 求证:二元函数 f ( x , y ) 在点(0,0)处不可微. (2) 求证:函数 f ( x , y ) 在点(0,0)处沿任意方向 l (cos ,cos ) 的方向导数都存在.
第 2 页,共 试卷编号:
2 页
2 2
2z ( y 2
).
). ).
1 y , y x 和 x 2 所围成,则二重积分 dxdy ( D x x
4 x 2 y 2 ,则曲面积分 zdS (
).
6.设平面闭曲线 L 是由 y 3 x , y 0, x 1 所围成,则曲线积分 7.微分方程 y y 2xy 满足 x 0 时 y 1 的特解是( 二.计算题(每小题 9 分,共 45 分) ).
( x 2y z )dxdydz .
3. 设平面曲线 L:y sin 4.设空间曲面: z
计算曲线积分 (2xy 2 2 y )dx (2x 2 y x )dy . x 从点 A(0,0)到 B(2,0), L 2
(0 z 1部分) ,方向指向外侧,计算曲面积分
L
xyds (
).
1.设 e 2 x 3 y z 1 0 确定的二元函数 z z( x , y ) ,求(1) dz (0,0) , (2)
z
2z xy
.
(0,0)
第 1 页,共 试卷编号:
2 页
2.设空间区域是由 z x y 与 z 2
2
2
x 2 y 2 所围成,计算三重积分