空间向量及几何公式

合集下载

空间向量与立体几何公式

空间向量与立体几何公式

空间向量与立体几何公式一、空间向量1、空间向量是一种简单的数学表达形式,表示一组相同类型数据成员之间的关系。

它可以描述空间中的每个点与另一个点之间的连接情况,而连接情况是由三个不同的坐标表示的。

换言之,空间向量就是描述空间中一个点到另一个点的方向及距离,作为一种数学实体而存在的。

2、空间向量可以用一个有向箭头来表示,并用数学记号标注出来。

通常来说,它的数学记号是表示坐标系中的另一个点在第一个点的坐标上的偏移量,如a→b表示b点在a点上的偏移量。

3、空间向量形式可以表示一条从原点到某个点的路径,通过它可以确定在x、y和z轴上的平移量,即偏移量,从而避免了我们有时在空间中运行物体时会误解运动方向的困难。

从更宏观的角度来说,空间向量可以用来表示以位置、速度和加速度等。

二、立体几何公式1、立体几何是几何学分支之一,它学习的内容是空间中的点、线、面和体的特性、关系及其变化规律,其中关于立体图形的内容被称为立体几何。

立体几何的定义是关于空间中的点、线、面和体的研究,以及它们之间的关系,其中主要考虑的就是位置、形状、大小以及一般的空间概念。

2、立体几何公式包括:立体几何定义、立体几何变换、立体几何性质、其他立体几何相关概念以及三角几何相关公式。

例如,立体几何定义涉及的公式有:空间中的点的位置关系(a-b=c),线的距离关系(L=1/2×Z1×Z2),面的面积关系(S=1/2×Z1×Z2×cosX),以及球体表面积(S=4×π×R2)等公式。

3、另外,立体几何公式还包括三角几何公式,它主要涉及到角度、正弦、余弦、正切、反正切等相关公式。

这些公式用来解决各种形状三角形以及其他更复杂的立体图形以及相关空间距离关系的问题。

高中数学公式大全立体几何与空间向量

高中数学公式大全立体几何与空间向量

高中数学公式大全立体几何与空间向量高中数学公式大全:立体几何与空间向量一、立体几何立体几何是数学中研究三维空间中的几何图形及其性质的分支,对于高中生来说,常见的立体几何包括了体积、表面积等方面的内容。

下面是一些常用的立体几何公式:1. 立方体体积公式立方体是一种边长相等的六个正方形围成的立体。

其体积公式为:V = 边长³。

2. 正方体体积公式正方体是一种六个面都是正方形的立体。

其体积公式为:V = 底面积 ×高。

3. 长方体体积公式长方体是一种六个面都是矩形的立体。

其体积公式为:V = 长 ×宽×高。

4. 圆柱体积公式圆柱体是一种底面为圆形的立体。

其体积公式为:V = π × 半径² ×高。

5. 圆锥体积公式圆锥体是一种底面为圆形,顶点和底面中心连线垂直于底面的立体。

其体积公式为:V = 1/3 × π × 半径² ×高。

6. 球体积公式球体是一种所有点到球心的距离都相等的立体。

其体积公式为:V= 4/3 × π × 半径³。

7. 棱柱表面积公式棱柱是一种顶面和底面是平行的多边形,侧面是平行四边形的立体。

其表面积公式为:S = 底面积 + 侧面积。

8. 棱锥表面积公式棱锥是一种底面为多边形,侧面是由底面上的点和顶点连线形成的三角形的立体。

其表面积公式为:S = 底面积 + 侧面积。

二、空间向量空间向量是指具有大小和方向的箭头,可以表示空间中的位移、速度、加速度等物理量。

在高中数学中,空间向量常用于解决线性相关、平面垂直、平面平行等问题。

下面是一些常用的空间向量公式:1. 两点之间的距离公式设空间中的两点为A(x₁, y₁, z₁)和B(x₂, y₂, z₂),则两点之间的距离公式为:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)。

空间向量的计算公式总结

空间向量的计算公式总结

空间向量的计算公式总结空间向量是空间中的一类几何对象,具有大小和方向。

计算空间向量通常需要使用一些公式和性质。

下面是:1. 向量的模长计算:对于空间中的向量 \vec{a} = (a_1, a_2, a_3) ,其模长计算公式为:|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}2. 向量之间的加法和减法:设 \vec{a} = (a_1, a_2, a_3) , \vec{b} = (b_1, b_2, b_3) 为两个空间向量,则它们的加法和减法公式为:\vec{a} + \vec{b} = (a_1+b_1, a_2+b_2, a_3+b_3)\vec{a} - \vec{b} = (a_1-b_1, a_2-b_2, a_3-b_3)3. 向量的数量积(点积):向量 \vec{a} = (a_1, a_2, a_3) 和 \vec{b} = (b_1, b_2, b_3) 的数量积(点积)定义为: \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_34. 向量的向量积(叉积):向量 \vec{a} = (a_1, a_2, a_3) 和 \vec{b} = (b_1, b_2, b_3) 的向量积(叉积)定义为: \vec{a} \times \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)5. 向量的混合积:三个向量 \vec{a} 、 \vec{b} 和 \vec{c} 的混合积定义为:\vec{a} \cdot (\vec{b} \times \vec{c})6. 向量的投影:向量 \vec{a} 在向量 \vec{b} 上的投影长度为:|\text{proj}_{\vec{b}} \vec{a}| = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}7. 向量的夹角公式:两个向量 \vec{a} 和 \vec{b} 的夹角 \theta 的余弦值为:\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}8. 两条直线的平行判定:设 \vec{m} 和 \vec{n} 分别为两条直线的方向向量,则若 \vec{m} 与 \vec{n} 共线,则两条直线平行。

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。

设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。

设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。

设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。

向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。

向量具有平移不变性。

2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。

运算法则包括三角形法则、平行四边形法则和平行六面体法则。

3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。

共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。

4.共面向量:能平移到同一平面内的向量叫做共面向量。

5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。

若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。

6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

空间向量知识点归纳总结(经典)

空间向量知识点归纳总结(经典)

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示•同向等长的有向线段表示同一或相等的向量。

(2) 向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB = OA+ AB = a+b .BA = OA-OB = a-b .OP = λa(λGR)运算律:⑴加法交换律:a + b =b + a ⑵加法结合律:(^ + fe) + c = + + c)⑶数乘分配律:+ b) = λa + λb运算法则:三角形法则、平行四边形法则.平行六面体法则 3. 共线向量。

(1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,N 平行于方,记作N 〃b 。

(2 )共线向量定理:空间任意两个向量万、b (方≠6),ababAB = λAC OC = XOA+ yOB(^^x + y = l) a 土(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2) 共面向量定理:如果两个向量",5不共线,0与向量久5共面的条件是存在实数—♦兀」'使p = xa + yb 9(3) 四点共面:若A 、B 、C 、P 四点共面<=>AP = xAB + yAC共面向量©OP = XOA + yOB +zOC(其中兀 + y + z = 1)在一个唯一的有序实数组x,y,Z f使p = xa+ yb +zc 9—♦若三向量GbE不共面,我们把{a.b,c}叫做空间的一个基底,a,b,c叫做基向量, 空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设o,4,5C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数X,y.Z f使OP = XOA + yOB + zOC O6.空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系0 —厂Z中,对空间任一点A,存在唯一的有序实数组(兀”Z), 使OA = xi + yi+忑,有序实数组(x,y,z)叫作向量A在空间直角坐标系O-XK中的坐标, 记作A(X,y,z), X叫横坐标,y叫纵坐标,Z叫竖坐标。

1.2空间向量基本定理

1.2空间向量基本定理
(2)正交分解
把一个空间向量分解为三个_两_两__垂__直__的向量,叫做把空间向量
进行正交分解.
6
1.思考辨析(正确的打“√”,错误的打“×”)
(1)若{ O→A , O→B , O→C }不能构成空间的一个基底,则O,A,B,
C四点共面.
()
(2)若{a,b,c}为空间的一个基底,则a,b,c全不是零向量.
()
(3)只有两两垂直的三个向量才能作为空间向量的一组基底.
[提示] (1)√ (2)√ (3)×
()
7
2.已知{a,b,c}是空间的一个基底,则可以和向量p=a+b,
q=a-b构成基底的向量是( )
A.a
B.b
C.a+2b
D.a+2c
[答案] D
8
3.在长方体ABCD-A1B1C1D1中,可以作为空间向量一个基底的 是( )
B.2个
C.3个
D.4个
11
(2)已知{e1,e2,e3}是空间的一个基底,且 O→A =e1+2e2-e3, O→B=-3e1+e2+2e3,O→C=e1+e2-e3,试判断{O→A,O→B,O→C}能否 作为空间的一个基底.
12
基底判断的基本思路及方法 (1)基本思路:判断三个空间向量是否共面,若共面,则不能构 成基底;若不共面,则能构成基底. (2)方法:①如果向量中存在零向量,则不能作为基底;如果存 在一个向量可以用另外的向量线性表示,则不能构成基底.②假设a =λb+μ c,运用空间向量基本定理,建立λ,μ的方程组,若有解, 则共面,不能作为基底;若无解,则不共面,能作为基底.
2 [如图,A→G=A→B+B→G=A→B+12B→C1=A→B+12(B→C+B→B1)=A→B+ 12A→D+12A→A1.

空间解析几何和向量代数公式

空间解析几何和向量代数公式
解析几何和向量代数:
空间间两点的距离:d M 1 M 2 ( x2 x1 ) 2 ( y2 y1 ) 2 ( z 2 z1 ) 2 向量在轴上的投影: Pr ju AB AB cos , 是 AB与u轴的夹角。 Pr ju (a1 a2 ) Pr ja1 Pr ja2 a b a b cos a x bx a y by a z bz , 是一个数量 其中 a b 0 cos 0 a垂直b 两向量之间的夹角: cos i a b ax bx j ay by k a x bx a y by a z bz a x a y a z bx by bz
2 2 2 2 2 2
a z , a b a b sin 其中 a b 0 sin 0 a平行b bz ay by cy az bz a b c cos , 为锐角时,代表平行六面体的体积。 cz
ax 向量的混合积: [ab c ] (a b ) c bx cx
x x0 mt x x0 y y0 z z0 t , 其中s {m, n, p}; 参数方程: 空间直线的方程: y y0 nt n p m z z pt 0 二次曲面: x2 y2 z 2 1、椭球面: 2 2 2 1 a b c 2 2 x y 2、抛物面: , p, q同号) z( 2 p 2q 3、双曲面: x2 y2 z2 x2 y2 z 2 ( k 1) 当k 0时间为圆锥 单叶双曲面: 2 2 2 k,双叶双曲面: 2 2 2 k(马鞍面) a b c a b c

全网最全空间向量与立体几何基础公式

全网最全空间向量与立体几何基础公式

空间向量与立体几何1、空间直角坐标系与向量的坐标运算(1)空间向量直角坐标系(表1)名称内容空间直角坐标系以空间一点O 为原点,具有相同的单位长度,给定正方向,建立三条两两垂直的数轴:x 轴、y 轴、Z 轴,这时建立了一个空间直角坐标系xyzo -坐标原点点O坐标轴x 轴、y 轴、Z 轴(y 在x 逆时针090方向)坐标平面通过每两个坐标轴的平面(2)空间两点间的距离①设点()111,,z y x A ,()222,,z y x B ,则()()()221221221z z y y x x AB -+-+-=;特别地,点()z y x M ,,与坐标原点O 的距离为222z y x OM ++=.②设点()111,,z y x A ,()222,,z y x B ,()333,,z y x C ,则线段AB 的中点坐标为⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x .则线段ABC ∆的重心坐标为⎪⎭⎫⎝⎛++++++3,3,3321321321z z z y y y x x x (3)空间向量有关概念(表2)2、空间向量的线性运算及运算律(1)空间向量的加法、减法与数乘运算()bOB a OA ==,如:b a OB AO AB +-=+=;BA OA OB a b =-=- ;()OA a R λλλ=∈(2)运算律①加法交换律:a b b a +=+②加法结合律:()()c b a c b a ++=++③数乘分配律:()b a b a λλλ+=+(3)空间向量的有关定理①共线向量定理:对空间任意两个向量()0,≠b b a ,a b∥的充要条件是存在实数λ,使得b a λ=;②共面向量定理:如果两个向量,a b不共线,那么向量c 与向量b a ,共面的充要条件是存在唯一的有序实数对()y x ,,使b y a x c +=推论:若OA ,OB 不共线,则P ,A ,B 三点共线OB y OA x OP +=,且1=+y x .③空间向量基本定理:如果三个向量c b a ,,不共面,那么对空间有序实数组{}z y x ,,,使得c z b y a x p ++=,其中{}c b a ,,叫做空间的一个基底.推论:若OM ,OA ,OB 不共线,则P ,M ,A ,B 四点共面OB z OA y OM x OP ++=,其中1=++z y x 3、空间向量的坐标设()()111222,,,,,a x y z b x y z ==,则(1)()121212,,;a b x x y y z z +=+++(2)()121212,,;a b x x y y z z -=---(3)()()111,,;a x y z R λλλλλ=∈(4)121212a b x x y y z z ⋅=++.(5)设()()111222,,,,y ,A x y z B x z ==,则()121212,,BA OA OB x x y y z z =-=---.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量及几何公式-CAL-FENGHAI.-(YICAI)-Company One1
空间向量及几何公式
118.共面向量定理
向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.
推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,
或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 119.对空间任一点O 和不共线的三点A 、B 、C ,满足
OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.
C A B 、、、
D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).
120.空间向量基本定理
如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc .
推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.
121.射影公式
已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则
''||cos A B AB =〈a ,e 〉=a ·e
122.向量的直角坐标运算
设a =123(,,)a a a ,b =123(,,)b b b 则
(1)a +b =112233(,,)a b a b a b +++;
(2)a -b =112233(,,)a b a b a b ---;
(3)λa =123(,,)a a a λλλ (λ∈R);
(4)a ·b =112233a b a b a b ++;
123.设A 111(,,)x y z ,B 222(,,)x y z ,则
AB OB OA =-= 212121(,,)x x y y z z ---.
124.空间的线线平行或垂直
设111(,,)a x y z =,222(,,)b x y z =,则
a b ⇔(0)a b b λ=≠⇔12121
2x x y y z z λλλ=⎧⎪=⎨⎪=⎩;
a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.
125.夹角公式
设a =123(,,)a a a ,b =123(,,)b b b ,则
cos 〈a ,b 〉
.
推论 222222*********
3123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角
四面体ABCD 中, AC 与BD 所成的角为θ,则
2222|()()|cos 2AB CD BC DA AC BD
θ+-+=⋅. 127.异面直线所成角
cos |cos ,|a b θ= =21||
||||a b a b x ⋅=⋅+(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)
128.直线AB 与平面所成角
sin
||||
AB m arc AB m β⋅=(m 为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则 2222212sin sin (sin sin )sin A B θθθ+=+.
特别地,当90ACB ∠=时,有
22212sin sin sin θθθ+=.
130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则 222'2'212tan tan (sin sin )tan A B θθθ+=+.
特别地,当90AOB ∠=时,有
22212sin sin sin θθθ+=.
131.二面角l αβ--的平面角
cos
||||m n arc m n θ⋅=或cos ||||
m n arc m n π⋅-(m ,n 为平面α,β的法向量). 132.三余弦定理
设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则
12cos cos cos θθθ=. 133. 三射线定理
若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有
22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;
1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).
134.空间两点间的距离公式
若A 111(,,)x y z ,B 222(,,)x y z ,则
,A B d =||AB AB AB =⋅=
135.点Q 到直线l 距离
h =(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ).
136.异面直线间的距离
||||
CD n d n ⋅=
(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).
137.点B 到平面α的距离 ||||
AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式
d =.
',d EA AF =.
d =('E AA F ϕ=--).
(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).
139.三个向量和的平方公式 2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅
2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅ 140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为
123l l l 、、,夹角分别为123θθθ、、,则有
2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=. (立体几何中长方体对角线长的公式是其特例).
141. 面积射影定理
'
cos S S θ
=. (平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).
142. 斜棱柱的直截面
已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面
的周长和面积分别是1c 和1S ,则
①1S c l =斜棱柱侧.
②1V S l =斜棱柱.
143.作截面的依据
三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质
如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.
145.欧拉定理(欧拉公式)
2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).
(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,
则面数F 与棱数E 的关系:12
E n
F =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:
12
E mV =. 146.球的半径是R ,则 其体积343
V R π=, 其表面积24S R π=.
147.球的组合体
(1)球与长方体的组合体:
长方体的外接球的直径是长方体的体对角线长.
(2)球与正方体的组合体:
正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.
(3) 球与正四面体的组合体:
棱长为a 的正四面体的内切球的半径为,. 148.柱体、锥体的体积
13
V Sh =柱体(S 是柱体的底面积、h 是柱体的高). 13
V Sh =锥体(S 是锥体的底面积、h 是锥体的高).。

相关文档
最新文档