四年级奥数题:还原问题
新四年级奥数——还原问题

四年级(上)教师:胡老师学生:还原问题方法点拨一个数量经过若干次变化成了另一种结果,我们从结果出发根据每一次变化情况,一步步地倒着想,把结果还原成开始状态,这类问题叫还原问题,又叫逆运算问题。
对于简单的,每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。
快乐学习例1、一个数减24加上15,再乘以8得432,求这个数。
【思路分析】我们可以从最后结果432出发倒着推理。
最后是乘以8得432,如果不乘以8,那应该是432÷8=54;如果不加上15,那应该是54-15=39;如果不减去24,那应该是39+24=63。
【小试身手】一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几?例2、甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?【思路分析】因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7(本)。
【小试身手】小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?例3、李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有多少个鸡蛋?【思路分析】根据题意,画出线段图:从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75(个),那么上午卖出后共剩下鸡蛋75×2=150(个),150个鸡蛋再加上10个就是总数的一半,所以总数的一半为150+10=160(个),李妈妈原有160×2=320(个)鸡蛋。
【小试身手】竹篮内有若干个李子,取它的一半又一枚给第一人,再取余直的一半又两枚给第二人。
竹篮内原有李子多少枚?例4、小红、小青、小宁都喜欢画片。
四年级奥数:还原问题

四年级奥数:还原问题还原问题是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题.解答这一类的问题时,要根据题意,从所给的结果出发,抓住逆运算关系,由后向前一步步逆推(倒推法、还原法),做相反的运算,逐步靠拢已知条件,直到问题得到解决.在解答还原问题时,如果列综合算式,要注意括号的正确使用.典型例题例【1】三(1)班小图书箱第一天借出了存书的一半,第2天又借出43本,还剩32本.小图书箱原有图书多少本?分析经过两天借出图书,小图书最后还剩32本书.由此可以往前推算:第2天没借出43本前(也就是第1天借出图书后),应有(32+43)本书,再根据“第1天借出了存书的一半”,可推算出这75本书也就是第1天借出后的另一半,即相当于第1天借出的本数.这样,小图书箱原有的图书本数可求得.解第1天借书后还剩的本数:32+43=75(本)原有图书的本数:75×2=150(本)综合算式:(32+43)×2=150(本)答:小图书箱原有图书150本.例【2】某数加上5,乘以5,减去5,除以5,其结果等于5.求这个数.分析从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法.从最后一步推起,“除以5,其结果等于5”可以求出被除数:5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数:25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数:30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1.解 5×5=2525+5=3030÷5=66-5=1答:所求的数为1.例【3】小明在做一道加法算式题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的结果应是多少?分析要求正确的和,就要知道两个正确的加数.看错的加数是39,因此得到错误的和是123.根据逆运算可得到一个没看错的加数是123-89=84,题中已知一个正确的加数是85,所以正确的和是85+84=169把个位上的5看作9,相当于把正确的和多算了4,求正确的和应把4减去;把视为上的8看作3,相当于把正确的和少算了50,求正确的和应把50加上去.这样,正确的答案123+50-4=169.解一 123-39+85=84+85=169解二 9-5=480-30=50123+50-4=169答:正确的答案是169.例【4】仓库里有一批大米.第一天售出的重量比总数的一半少12吨.第二天售出的重量比剩下的一半少12吨,结果还剩下19吨.这个仓库原有大米多少吨?分析如果第二天刚好售出剩下的一半,就应是(19+12)吨.第一天售出以后剩下的吨数是(19+12)×2吨.以下类推.解(19+12)×2=62(吨)(62-12)×2=100(吨)答:这个仓库原有大米100吨.小结还原问题是逆解应用题.一般根据加减法或乘除法的互逆运算关系,由题目所叙述的顺序倒过来思考,从最后一个已知条件出发,逆推而上,求得结果.。
四年级奥数题《还原问题》数学小升初常考例题讲解+练习

例题1:把刘老师的年龄,乘4以后减去45再把所得的差除以3,然后加上5,最后得30。
刘老师今年几岁?1.还原时运算顺序和运算符号都会发生变化。
2.加变减,减变加;乘变除,除变乘。
30-5=2525×3=7575+45=120120÷4=30答:刘老师今年30岁。
练习1.一个数乘7除以3,然后加上5,最后再减3所得的结果是16。
那么这个数是多少?2.慢羊羊在黑板上写了一个数,喜洋洋将这个数乘7后,抹掉了末尾的数字0,美羊羊将喜洋洋所得的结果乘6以后,又抹掉了末尾的0,这时黑板上的数字是42。
原来的数是多少?例题2:(1)某商场卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉剩余的一半多3个,此时还剩3个。
那么商场原来有菠萝多少个?(3+3)×2=12(个)(12+2)×2=28(个)答:商场共有菠萝28个。
例题2:(2)某水果店卖苹果,第一天卖出所有苹果的一半少50千克,第二天卖出第一天剩下的一半少20千克,最后还剩下100千克。
这个水果店原来有苹果多少千克?(100-20)×2=160(千克)(160-50)×2=220(千克)答:这个水果店原来有苹果220千克。
练习1.(1)某超市的西红柿做活动,上午卖出所有西红柿的一半多20千克,下午又卖出剩下的一半多30千克,此时还剩下40千克。
超市原来有西红柿多少千克?(2)龙龙有一些巧克力,上午吃了所有巧克力的一半少5块,下午又吃了剩下的一半少3块,此时还剩下10块。
龙龙原来有巧克力多少块?2.某商场做活动,第一天卖出所有商品的一半少15个,第二天卖出剩下的一半少20个,第三天又卖出第二天剩下的一半,此时还剩37个。
这个商场原来有商品多少个?例题3:某水果店上午卖出西瓜总数的一半多2个,下午又卖出剩余的一半少8个,此时还剩28个。
水果店原来有西瓜多少个?(28-8)×2=40(个)(40+2)×2=84(个)答:水果店原来有西瓜84个。
四年级奥数第十一讲解析还原问题

第十一讲解析还原知识要点1、一个因素在经过一些运算后得到一个新的因素,以新的因素为基础按照运算顺序倒退回去,计算原来的因素,这种方法就叫作倒退法或还原法。
这类问题就叫作还原问题。
还原问题又叫作逆推运算问题。
解决这类问题常常利用加减、乘除互为逆运算的道理,根据题意得叙述顺序由后向前逆推计算。
在计算过程中采用相反的运算顺序,逐步逆推。
2、解决还原问题的方法:(1)两个相反:运算顺序和原来相反、运算方法和原来相反。
(2)口诀:加减互逆,乘除互逆,要求原数,逆推新数。
芝麻开门学校学生会组织四年级学生到和平广场参加周末大舞台活动,他们的行走路线是:学校东七大厦汽车东站公交公司和平广场。
活动结束后他们要按原来的线路返回,应该怎么走呢?他们返回的路线应该是:和平广场公交公司汽车东站东七大厦学校。
返回的路线就是按照原来的路线发过来走的,这一现象就是生活中的还原,在数学的世界里也有许多这种类似的还原问题。
经典范例例1 一个数加上6、再乘6,在减6,再除6,结果还是6,这个是多少?思路解析:根据题意可以发现:原来的数 +6 ×6 -6 ÷6=6 。
我们可以从结果出发,反过来运算,先乘以6,再加上6,再除以6,再减去6,就可以得到原来的数了。
解:(6×6+6)÷6-6=(36+6)÷6-6=42÷6-6=7-6=1答:这个数是1.例2 小糊涂阿呆在计算一道加法算式时,把一个加数个位上的6看成了9,把十位上的1看成7,结果得到的和是133,求正确的答案?思路解析:阿呆把一个加数16看成了79,单另一个加数没有看错,可以利用错误的结果减去79,还原出另一个正确的加数133-79=54,然后把两个正确的加数相加就可以了。
解:133-79=5454+16=70答:原来正确的和是70。
例3 甲乙两筐苹果各若干千克,如果从甲筐中取出和乙筐一样多的苹果给乙筐,再从乙筐中取出和现在的甲筐一样多的苹果给甲筐,这是甲乙两筐苹果都刚好是16千克。
四年级奥数题:还原问题

专题简析: 已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题⼜叫逆运算问题。
解决这类问题通常运⽤倒推法。
遇到⽐较复杂的还原问题,可以借助画图和列表来解决这些问题。
例1:⼩刚的奶奶今年年龄减去7后,缩⼩9倍,再加上2之后,扩⼤10倍,恰好是100岁。
⼩刚的奶奶今年多少岁? 分析与解答:从最后⼀个条件恰好是100岁向前推算,扩⼤10倍后是100岁,没有扩⼤10倍之前应是100÷10=10岁;加上2之后是10岁,没有加 2之前应是10-2=8岁;没有缩⼩9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,⼩刚的奶奶今年是79 岁。
练习⼀ 1,在□⾥填上适当的数。
20×□÷8+16=26 2,⼀个数的3倍加上6,再减去9,最后乘上2,结果得60。
这个数是多少? 3,⼩红问王⽼师今年多⼤年纪,王⽼师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
”王⽼师今年多少岁? 例2:某商场出售洗⾐机,上午售出总数的⼀半多10台,下午售出剩下的⼀半多20台,还剩95台。
这个商场原来有洗⾐机多少台? 分析与解答:从“下午售出剩下的⼀半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即 95+20=115台正好是上午售后剩下的⼀半,那么115×2=230台就是上午售出后剩下的台数。
⽽230台和10台合起来,即230+10=240 台⼜正好是总数的⼀半。
那么,240×2=480台就是原有洗⾐机的台数。
练习⼆ 1,粮库内有⼀批⼤⽶,第⼀次运出总数的⼀半多3吨,第⼆次运出剩下的⼀半多5吨,还剩下4吨。
粮库原有⼤⽶多少吨? 2,爸爸买了⼀些橘⼦,全家⼈第⼀天吃了这些橘⼦的⼀半多1个,第⼆天吃了剩下的⼀半多1个,第三天⼜吃掉了剩下的⼀半多1个,还剩下1个。
四年级奥数——还原问题

四年级(上) 教师:胡老师学生:还原问题方法点拨一个数量经过若干次变化成了另一种结果,我们从结果出发根据每一次变化情况,一步步地倒着想,把结果还原成开始状态,这类问题叫还原问题,又叫逆运算问题。
对于简单的,每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。
快乐学习例1、一个数减24加上15,再乘以8得432,求这个数。
【思路分析】我们可以从最后结果432出发倒着推理。
最后是乘以8得432,如果不乘以8,那应该是432÷8=54;如果不加上15,那应该是54-15=39;如果不减去24,那应该是39+24=63。
【小试身手】一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几?例2、甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?【思路分析】因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7(本)。
【小试身手】小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?例3、李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有多少个鸡蛋?【思路分析】根据题意,画出线段图:从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75(个),那么上午卖出后共剩下鸡蛋75×2=150(个),150个鸡蛋再加上10个就是总数的一半,所以总数的一半为150+10=160(个),李妈妈原有160×2=320(个)鸡蛋。
【小试身手】竹篮内有若干个李子,取它的一半又一枚给第一人,再取余直的一半又两枚给第二人。
竹篮内原有李子多少枚?例4、小红、小青、小宁都喜欢画片。
还原问题四年级奥数题及答案参考
还原问题四年级奥数题及答案参考
还原问题四年级奥数题及答案参考
还原问题
妈妈从副食店买回几个鸡蛋。
第一天吃了全部的一半又半个,第二天吃了余下的一半又半个,第三天又吃了余下的一半又半个,恰好吃完。
妈妈从副食店买回多少个鸡蛋?
余数问题
某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少?
解答:[(0.5×2+0.5)×2+0.5]×2
=(1.5×2+0.5)×2
=3.5×2=7(个)
【小结】有的同学一看每次都吃"一半又半个",认为这不符合实际,于是就不去进行仔细认真地分析,被"半个"这一假象所迷惑。
其实,只要采用倒推法,就很容易知道第三天吃了0.5×2=1(个),于是问题就可以迎刃而解了。
小学(4)四年级奥数试题解析 还原问题
第三十一周还原问题专题简析:已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通常运用倒推法。
遇到比较复杂的还原问题,可以借助画图和列表来解决这些问题。
例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79岁。
练习一1,在□里填上适当的数。
20×□÷8+16=262,一个数的3倍加上6,再减去9,最后乘上2,结果得60。
这个数是多少?3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
”王老师今年多少岁?例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?分析与解答:从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
练习二1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。
粮库原有大米多少吨?2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。
小学四年级奥数-还原问题
还原问题(一)还原问题是指条件中只说明了中间的发展过程和最后结果,要求最初状态的一类问题。
解答这类问题逆向思维很重要,通常要运用倒推法(还原法),即从最后一步出发,一步一步倒着往前推算,逐步倒着往前推算,逐步靠拢已知条件,直到问题解决。
例1.某数加上6,乘以6,减去6,除以6,其结果等于6,求某数。
例2.有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。
”这位老人今年多少岁?例3.在做一道加法式题时,某学生把个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案是多少?例4.工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了余下了一半还少1千米,还剩20千米没有修完。
公路的全长是多少千米?练习与思考1.某数加上10,乘以10,减去10,除以10,结果等于10。
这个数是多少?2.《小学生数学报》少年数学爱好者俱乐部成立的年份数加上2后,缩小100倍,再扩大4倍,最后减去25,正好是55。
这个俱乐部成立于哪一年?3.有一个说:“把我的年龄加上28后除以15,再用8乘,就是32岁。
”这个人多少岁?4.小明在做一道加法计算题时,把个位上的4看作7,十位上的8看作2,结果和是306。
正确的答案应该是多少?5.王大爷去粮站买米,粮站的陈叔叔因粗心,错把一袋米少算了20千克,把另一袋米多算了3千克,合计卖给王大爷60千克米。
王大爷实际购买了多少千克米?6.一捆电线,第一次用去全长了一半多3米,第二次用去余下的一半多5米,还剩下7米。
这捆电线原来长多少米?7.有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次拿出8个,篮里还剩2个鸡蛋。
篮里原来有多少个鸡蛋?8.小刚买毛巾用去所带钱的一半,买手帕用去2元钱,买香皂用去剩余钱的一半,这时还剩4元钱。
小刚买毛巾用去多少钱?一共带了多少钱?9.某仓库运出三次原料,第一次运出总数的一半,第二次运出余下的一半,第三次运出前两次运完后余下的一半,最后把剩下的原料分给甲、乙两个工厂,甲厂得6吨,是乙厂的2倍。
小学四年级奥数课件:还原问题
3,书架上分上、中、下三层,共放192本书。现从上层出与 中层同样多的书放到中层,再从中层取出与下层同样多的书 放到下层,最后从下层取出与上层剩下的同样多的书放到上 层,这时三书架所放的书本数相等。这个书架上中下各层原 来各放多少本书?
分析 与解答:
从“下午售出剩下的一半还多20台”和 “还剩95台”向前倒推,从图中可以看出, 剩下的95台和下午多卖的20台合起来,即 95+20=115台正好是上午售后剩下的一半, 那么115×2=230台就是上午售出后剩下的 台数。而230台和10台合起来,即
230+10=240台又正好是总数的一半。那么, 240×2=480台就是原有洗衣机的台数。
例5 、两只猴子拿26个桃,甲 猴眼急手快,抢先得到,乙看 甲猴拿得太多,就抢去一半; 甲猴不服,又从乙猴那儿抢走 一半;乙猴不服,甲猴就还给 乙猴5个,这时乙猴比甲猴多5 个。问甲猴最初准备拿几个?
分析 :先求出两个猴现在各拿多少,根据
“有26个桃”和“这时乙猴比甲猴多2个”,可 知乙猴现在拿(26+2)÷2=14个,甲猴现在拿 26-14=12个。甲猴从乙猴那儿抢走一半,又还 给乙猴5个后有12个,如果甲猴不还给乙猴,那 么甲猴有12+5=17个;如果甲猴不抢乙猴一半, 那么乙猴现在有(26-17)×2=18个。乙猴看 甲猴拿得太多,抢去甲猴的一半后有18个,如 果不抢,那么甲猴最初准备拿
练习一
1,在□里填上适当的数。 20×□÷8+16=26
2,一个数的3倍加上6,再减去9,最后乘 上2,结果得60。这个数是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数题:还原问题
专题简析:
已知某个数经过加、减、乘、除运算后所得的结果,要求原数,
这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通
常使用倒推法。
遇到比较复杂的还原问题,能够借助画图和列表来解决这些问题。
例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?
分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍
后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是
10岁,没有加 2之前应是10-2=8岁;没有缩小9倍之前应是
8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79 岁。
练习一
1,在□里填上适当的数。
20×□÷8+16=26
2,一个数的3倍加上6,再减去9,最后乘上2,结果得60。
这
个数是多少?
3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
”王老师今年多少岁?
例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售
出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?
分析与解答:从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中能够看出,剩下的95台和下午多卖的20台合
起来,即 95+20=115台正好是上午售后剩下的一半,那么
115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240 台又正好是总数的一半。
那么,240×2=480台就是原
有洗衣机的台数。
练习二
1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运
出剩下的一半多5吨,还剩下4吨。
粮库原有大米多少吨?
2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,
还剩下1个。
爸爸买了多少个橘子?
3,某水果店卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉
了剩下的一半多1个,第三次卖掉第二次卖后剩下的一半多1个,这
时只剩下一外菠萝。
三次共卖得48元,求每个菠萝多少元?
例3:小明、小强和小勇三个人共有故事书60本。
如果小强向小
明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原来各有故事书多少本?
分析与解答:不管这三个人如何借来借去,故事书的总本数是60本,根据结果三个人故事书本数相同,能够求最后三个人每人都有故
事书60÷3=20本。
如果小强不借给小勇5本,那么小强有20+5=25本,小勇有20-5=15本;如果小强不向小明借3本,那么小强有25-
3=22本,小明有20+3=23 本。
练习三
1,甲、乙、丙三个小朋友共有贺年卡90张。
如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同。
问三人原来各
有贺年卡多少张?
2,小红、小丽、小敏三个人各有年历片若干张。
如果小红给小丽
13张,小丽给小敏23张,小敏给小红3张,那么他们每人各有40张。
原来三个人各有年历片多少张?
3,甲、乙、丙、丁四个小朋友有彩色玻璃弹子10颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,四人的个数相等。
他们原来各有弹
子多少颗?
例4:甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两
桶油恰好都是36千克。
问两桶油原来各有多少千克?
分析与解答:如果后来乙桶不倒出和甲桶同样多的油放入甲桶,
甲桶内应有油36÷2=18千克,乙桶应有油36+18=54千克;如果开始
不从甲桶倒出和乙桶同样多的油倒入乙桶,乙桶原有油应为54÷2=27
千克,甲桶原有油18+27=45千克。
练习四
1,王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画
片送给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都
有24张。
问王亮和李强原来各有画片多少张?
2,甲、乙、丙三个小朋友各有玻璃球若干个,如果甲按乙现有的
玻璃球个数给乙,再按丙现有的个数给丙之后,乙也按甲、丙现有的
个数分别给甲、丙。
最后,丙也按同样的方法给甲、乙,这时,他们
三个人都有32个玻璃球。
原来每人各有多少个?
3,书架上分上、中、下三层,共放192本书。
现从上层出与中层
同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最
后从下层取出与上层剩下的同样多的书放到上层,这时三书架所放的
书本数相等。
这个书架上中下各层原来各放多少本书?
例5:两只猴子拿26个桃,甲猴眼急手快,抢先得到,乙看甲猴
拿得太多,就抢去一半;甲猴不服,又从乙猴那儿抢走一半;乙猴不。