七年级上册数学教学设计
2024年关于七年级上册数学教学计划9篇

2024年关于七年级上册数学教学计划9篇七年级上册数学教学计划篇1一、指导思想湘教版数学教材以课程标准为依据,吸收了有关的最新研究成果,致力于改变学生的学习方式,在课堂中推进素质教育,力求体现三个面向的指导思想。
目的是使学生体会数学与大自然及人类社会的密切联系体会数学的价值,增强理解数学和运用数学的信心,初步学会应用数学的思维方式去观察、分析、解决问题,形成勇于探索,勇于创新的科学精神,获得适应未来社会生活和进一步发展所必需的重要数学事实和必要的应用技能。
也就是让人人学有价值的数学,不同的人在数学上有不同的提高。
二、学情分析本学期我担任本校23班的数学教学。
七年级学生往往对课程增多,课堂学习容量加大不适应,顾此失彼,精力分散,听课效率下降,要重视听法的指导。
学习离不开思维,善于思考则学得活,不善于思考,则学得死,效果差。
七年级学生常常固守小学算术中的思维定势,思维狭窄、呆滞,不利于后续学习,要重视对学生的学法指导。
七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成分较多,理解记忆的成分较少,这就不适应七年级教学的新要求,要重视对学生进行记法的指导。
在数学思维上,学生正处于形象思维向逻辑气象思维的转变期,这期间,结合数学,让学生适当思考部分有利于思维的问题,无疑是对学生终身有用的,在学习习惯上,部分小学的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等都应得到强化,对于小学升入初中,学生有一人适用的过程,刚开起点宜低,讲解宜慢,使学生迅速适应初中的教学与生活。
三、教材分析第一章有理数 __的重点是有理数与相关概念及其运算,难点是有理数运算法则的理解,关键是有理数的加法和乘法中符号的确定。
第二章代数式 __的重点是用字母表示数和列代数式。
关键是明确基本数量关系的语言表达与代数式之间的联系。
第三章图形的欣赏与操作 __主要学习图形欣赏,平面图形与空间图形和物体的三视图,重在培养学生的空间想象力、动手能力、创造能力。
初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。
今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。
初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。
在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。
这为过渡到本节的学习起着铺垫作用。
合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。
其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。
教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
七年级上册数学教案(共12篇)

七年级上册数学教案〔共12篇〕篇1:七年级上册数学教案教学目的(一)通过复习一位数乘整百整十数不进位的口算,学生理解并掌握一位数乘两位数进位乘法的口算方法,能正确地进展一位数乘两位数的口算.(二)通过学生自己动手摆一摆,学生参与到知识的形成过程中,掌握口算的方法,可以比拟纯熟地进展口算.教学重点和难点重点:在理解的根底上,掌握用一位数乘的口算过程.难点:理解并掌握满十向前一位进“1”的算理.教学过程设计(一)复习准备投影出示口算题:老师提问:14×2请你说一说口算过程.(学生答复10×2=20,4×2=8,20+8=28)老师追问:那么你能不能说一说140×2又是怎样口算的呢?(同座位的两个小朋友互相说一说)然后请同学答复(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280)老师提醒课题:(板书:一位数乘两位数、乘整百整十数)(二)学习新课出例如1:板书:口算14×3.想一想14×3的意义是什么?(3个14是多少)根据14×3的意义,用小棒摆出来.想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.板书:14×3=42.比拟14×3与14×2两道口算的异同:(同桌或四人小组的同学互相启发进展讨论)然后请同学答复:两道题口算过程是一样的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满了十,最后一步是整十加上两位数.做一做投影出示:16×2=26×3=25×2=要求同学在练习本上直接写出结果.再把这几道题分别写在小黑板上,请几个同学直接写在小黑板上.待同学写完后集体订正.分别请同学说出口算过程.16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.26×3,25×2分别请同学互相说,集体说,个人说.反复表达口算过程.出例如2:板书:口算:140×3=请同学想一想应该怎样做,然后试做.(老师巡视,个别指导一下)做完后,小组同学互相说一说自己是怎样做的.集中起来说出不同的想法:因为14×3=42,那么140×3只需在42后面添上一个0得420.把140看成14个十,14个十乘3得42个十,即420.3乘14得42,然后再在得数后面添上一个0.以上这几种算法,要给肯定,尤其第三种方法,给予表扬和鼓励.做一做投影出示:130×5=150×6=每人在自己本上直接写出结果.四人小组进展讨论,能用几种方法说出口算过程.小结今天我们学习了“一位数乘两位数、乘整十整百数”,在学习这部分内容时,要注意个位上、十位上满十向前一位进“1”.(三)稳固反应1.根本练习:(投影出示)首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学互相说一说.最后集体订正.2.填空练习:(投影出示)明确题目要求后,在课本上填括号.订正时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并说明口算过程.3.找朋友游戏.15×318×212×514×435×2240×325×4310×332×326×2160×612×416×514×336×2120×4160×5240×2260×2题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的朋友.45366056708807201009109652960489072424809004805204.文字表达题.投影片出示,同学们在作业本上做.四个同学写在小黑板上,订正时用.(1)乘数是7,被乘数是12,积是多少?12×7=84(2)250的3倍是多少?250×3=750作业:看书第1页.课堂教学设计说明本节课教学内容口算“一位数乘两位数、乘整百整十数”.首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新知识做准备.讲授新课例1时,抓住满十进一这一难点,以旧知识引出新知识,通过新旧知识的比拟,突出新旧知识的连接点,通过学生自己动手、动脑、动口获取知识,表达以学生为主体.使学生真正悟出新旧知识的内在联络.通过形式多样的练习,到达能准确、迅速地口算的目的.板书设计篇2:七年级上册数学教案一、目的1.用它们拼成各种形状不同的四边形,并计算它们的周长。
七年级数学上册《整式的加减》教案、教学设计

为了巩固学生对整式的加减知识的掌握,培养他们独立解决问题的能力,特布置以下作业:
1.基础练习题:完成课本第25页的练习题1、2、3,重点加强对整式的概念、系数和次数的理解,以及对整式加减法则的应用。
-要求学生在完成练习时,仔细审题,规范书写,注重细节。
-鼓励学生尝试用不同的方法解题,培养其思维的灵活性。
2.教学方法:
-采用小组合作学习,培养学生的合作意识和团队精神。
-教师巡回指导,关注学生的讨论过程,给予必要的提示和指导。
(四)课堂练习
1.教学活动设计:
计不同难度的练习题,让学生在课堂上完成,巩固所学知识。
-练习题包括选择题、填空题、解答题等,涵盖整式的加减各个知识点。
2.教学方法:
-采用分层教学,使每个学生都能得到适当的挑战,提高学习效果。
二、学情分析
七年级的学生正处于从小学到初中的过渡阶段,他们在数学学习上已经具备了一定的基础,但在整式的加减方面还未形成系统性的认识。学生在小学阶段主要学习了简单的代数运算,对于整式的概念和加减法则尚需进一步引导和巩固。此外,这个年龄段的学生具有较强的求知欲和好奇心,但注意力容易分散,需要教师通过多样化的教学手段激发学生的学习兴趣。在教学方法上,应注重启发式教学,引导学生主动探究,培养其独立思考和解决问题的能力。同时,针对学生的个体差异,教师需关注每个学生的学习需求,提供个性化的指导,使他们在整式的加减学习中都能获得成就感,增强自信心。通过本章的学习,帮助学生顺利过渡到初中阶段的数学学习,为今后的数学学习打下坚实基础。
2.教学方法:
-采用讲解与示例相结合的方式,帮助学生理解抽象的数学概念。
-使用多媒体辅助教学,形象地展示整式的加减过程。
(三)学生小组讨论
七年级数学上册教案优秀3篇

双眼皮的方法
想要拥有双眼皮,有很多种方法可以选择。
以下将介绍几种常见的双眼皮方法,希望能帮助到你。
首先,最常见的双眼皮方法是通过手术来实现。
双眼皮手术是一种常见的整形手术,通过在眼皮上进行切割和缝合,从而形成双眼皮的效果。
这种方法效果明显,一劳永逸,但手术风险较大,需要考虑清楚再进行选择。
其次,双眼皮贴也是一种常见的方法。
这种方法通过使用特制的双眼皮贴,将眼皮贴出双眼皮的效果。
这种方法简单易行,没有手术风险,但需要经常更换双眼皮贴,而且贴出来的双眼皮效果并不自然。
另外,还有一种叫做埋线法的双眼皮方法。
这种方法通过在眼皮内部进行埋线,从而形成双眼皮的效果。
这种方法相对于手术来说风险较小,恢复期较短,但效果可能不如手术明显。
除了以上介绍的方法,还有一些简单的双眼皮操,比如通过化妆来画出双眼皮线条,或者通过眼部按摩来改善眼部肌肤,从而使
双眼皮更加明显。
总的来说,选择双眼皮的方法要根据自己的实际情况来决定,
如果是想要一劳永逸的效果,可以选择手术或者埋线法;如果是暂
时性的需求,可以选择双眼皮贴或者化妆方法。
无论选择哪种方法,都需要在专业医生的指导下进行,确保安全有效。
希望以上介绍的
方法能够帮助到你,祝你早日拥有理想的双眼皮!。
人教版七年级数学上册第一章《有理数》(大单元教学设计)

5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。
七年级数学上册《生活数学》教案、教学设计

4.培养学生的创新意识,鼓励学生勇于尝试,善于发现生活中的数学问题,培养学生的探究精神。
二、学情分析
七年级的学生正处于青春期,他们的认知能力、思维品质和情感态度都在不断发展。在此基础上,针对本章节《生活数学》的学情分析如下:
(二)教学设想
1.采用情境教学法,让学生在生活情境中发现数学问题,激发学生的学习兴趣。通过设置有趣的例子和问题,引导学生主动探究,培养其数学思维。
2.创设互动式课堂氛围,鼓励学生提问、讨论,充分调动学生的主观能动性。同时,教师应及时给予反馈,指导学生解决问题,提高学生的自信心。
3.运用差异化教学策略,针对学生的不同需求,设计不同难度的练习题,使每位学生都能在课堂上得到有效提升。
2.学生练习:学生在规定时间内完成练习,教师及时给予反馈,纠正错误。
3.互助交流:学生相互检查练习,讨论解题方法,提高解决问题的能力。
(五)总结归纳
1.教学内容:教师带领学生回顾本节课所学的生活数学知识,总结运算规则和几何图形性质。
2.学生分享:学生分享自己在课堂中学到的知识和解决问题的经验,促进同伴间的相互学习。
2.案例分析:请学生收集身边的购物小票或价目表,运用所学知识计算折扣、优惠等,并将计算过程和结果整理成文档,以便在课堂上与同学分享。
3.课堂练习巩固:完成课本第15页的练习题,包括选择题、填空题和解答题,要求学生在规定时间内独立完成,家长签字确认。
4.小组合作作业:以小组为单位,探讨生活中存在的其他数学问题,如时间管理、路线规划等,总结解决问题的方法,并以PPT或手抄报的形式展示成果。
难点:培养学生将数学知识应用于生活的能力,提高学生的数据分析、整理和表达能力。
七年级数学上册教学设计5篇

七年级数学上册教学设计5篇在知识的学习过程中,教师应该为学生提供广阔的可供探讨和交流的空间,下面是小编整理的七年级数学上册教学设计,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所帮助。
七年级数学上册教学设计1教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。
3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。
教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。
教学过程:一、复习回顾活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:二、情境引入活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。
三、讲授新课1.利用乘方的意义,提问学生,引出法则:计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.2.引导学生建立幂的运算法则:将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·an=am+n.3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.三、应用提高活动内容:1.完成课本“想一想”:a?a?a等于什么?2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教案(七年级上册)第一章有理数1.3.1有理数的加法(一)教学目标:1、使学生在现实情境中理解有理数加法的意义2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则重点:异号两数相加的法则教学过程:二、讲授新课1、同号两数相加的法则问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。
向右运动5m记作5m,向左运动5m记作-5m。
如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?学生回答:两次运动后物体从起点向右运动了8m。
写成算式就是5+3=8(m)教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?学生回答:两次运动后物体从起点向左运动了8m。
写成算式就是(-5)+(-3)=-8(m)师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?学生回答:两次运动后物体从起点向右运动了2m。
写成算式就是5+(-3)=2(m)师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?学生回答:经过两次运动后,物体又回到了原点。
也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零教师:你能用加法法则来解释这个法则吗?学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
三、巩固知识课本P18 例1,例2、课本P118 练习1、2题四、总结运算的关键:先分类,再按法则运算;运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
五、布置作业课本P24习题1.3第1、7题。
1.3.1有理数的加法(二)教学目标:1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。
2、培养学生观察、比较、归纳及运算能力。
重点:有理数加法运算律及其运用。
重点:灵活运用运算律教学过程:二、讲授新课教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?(学生回答省略)师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。
即:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
即(a+b )+c=a+(b+c )三、巩固知识课本P20 练习1、2题四、总结本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。
解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。
五、布置作业课本P24习题1.3第2、8题。
1.3.2有理数的减法(一)教学目标:1、经历探索有理数减法法则的过程,理解有理数的减法法则2、能较熟练地进行有理数的减法运算3、初步体验由减法法则把有理数的减法运算转化为有理数加法运算的数学转化思想。
重点:有理数减法法则及应用重点:运用有理数减法法则解决数学问题教学过程:二、讲授新课课本P22 “探究”计算:9-8,9+(-8);15-7,15+(-7)问题1:下列等式成立吗?(1)15-5=15+(-5)(2)15-(-5)=15+5(3)8844-(-392)=8844+392问题2:上面的关系式把有理数的减法转化成了有理数的加法,由此我们得到了有理数的减法法则,你能用文字来描述吗?减去一个数,等于加上这个数的相反数。
问题3:若用a 、b 表示两数,你能用数学式子描述有理数的减法法则吗?三、巩固知识课本P22 例5、课本P23 练习1、2题四、总结在小学里学习的减法,差总是小于或等于被减数,在有理数的减法中仍是这样吗?有什么规律?做有理数的减法一定要化成加法吗?怎样做才能提高计算的速度?五、布置作业课本P24习题1.3第3、4题。
1.3.2有理数的减法(二)教学目标:1、了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算。
2、通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。
3、通过加法运算练习,培养学生的运算能力。
减数变为相反数作加数减号变加号 a - )重点:依据运算法则和运算律准确迅速地进行有理数的加减混合运算重点:省略加号的代数和的计算教学过程:二、讲授新课讲解-20+(+3)-(-5)-7,看到这个题你会想怎么做?我们对此类题目经常采用先把减法转化为加法,这时就成了-20+3,+5,-7的和,加号通常可以省略,括号也可以省略。
即:原式=-20+(+3)+(+5)+(-7)=-20+3+5-7提出问题:虽然加号、括号省略了,但-20+3+5-7仍表示-20,+3,+5,-7的和,所以这个算式可以读作-20,+3,+5,-7的和,或者读作“负20加3加5减7”从而可以得出有理数加减混合运算的方法和步骤:①运用减法法则,将有理数加减混合运算中的减法转化为加法,然后省略加号和括号②运用加法交换律、加法结合律进行运算。
课本P23 “归纳”引入相反数后,加减混合运算可以统一为加法运算。
a+b-c=a+b+(-c)三、巩固知识课本P24 练习教师小结:有理数加减混合运算的几个主要环节为:①减法转化为加法②省略加号、括号③运用加法交换律使同号两数分别相加④按有理数加法法则计算四、总结1、怎样做加减混合运算的题目;2、代数和形式的两种读法五、布置作业课本P24习题1.3第5题。
1.4.1有理数的乘法(一)教学目标:1、经历探索有理数乘法法则的过程,发展学生观察、归纳、猜测的能力2、会进行有理数的乘法运算3、了解有理数的倒数定义,会求一个数的倒数。
重点:有理数的乘法法则重点:积的符号的确定教学过程:二、讲授新课问题:如图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰好是L上的点O,求:(1)若蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)若蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)若蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)若蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?规定:向左为负,向右为正,同样规定:现在前为负,现在后为正。
学生回答:(1)3分钟后蜗牛应在O点的右边6cm处。
可以表示为:(+2)×(+3) =+6(2) 3分钟后蜗牛应在O点的左边6cm处。
可以表示为:(-2)×(+3) =-6(3) 3分钟前蜗牛应在O点的左边6cm处。
可以表示为:(+2)×(-3) =-6(4) 3分钟前蜗牛应在O点的右边6cm处。
可以表示为:(-2)×(-3) =+6请学生观察下列式子:(1)(+2)×(+3)=+6 (2)(-2)×(+3)=-6 (3)(+2)×(-3)=-6 (4)(-2)×(-3)=+6 可以得出什么结论?根据对有理数乘法的思考,总结填空:正数乘正数积为__正_ 数负数乘正数积为__负__数正数乘负数积为__负__数负数乘负数积为__正__数乘积的绝对值等于各乘数绝对值的__积__问题:当一个因数为0时,积是多少?学生回答:积为0师生归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
注意:1、上面的法则是对于只有两个因子相乘而言的。
2、做乘法的步骤是:先确定积的符号,再确定积的绝对值。
课本P30 例1教师:像上题中提到的两个数-2与-1/2它们的乘积为1,那么这两个数也可说互为倒数倒数的定义:乘积为1的两个数互为倒数,0没有倒数,比如说,2与1/2,-3与-1/3,-0.3与-10/3……例:求下列各数的倒数:-2,3/4,-0.2,8/3,-1.解:-2的倒数为-1/2;¾的倒数为4/3;-0.2的倒数为-5;8/3的倒数为3/8;-1的倒数仍为-1;思考:如何求一个数的倒数?两个数互为倒数有何特点?总结:1、求倒数的办法,把作任何一个非0有理数看成是分数,然后颠倒其分子分母即可2、两个数互为倒数,这两个数同号,且它们的绝对值(除1与-1之外)分布于1的两侧。
课本P30 例2三、总结本节课主要学习了有理数的乘法法则以及如何利用乘法法则进行运算,学习了有理数的倒数定义,求一个数的倒数。
四、布置作业课本P30 练习1、2、3题1.4.1有理数的乘法(二)教学目标:1、经历探索多个有理数乘法过程,发展学生观察、归纳、猜测的能力2、理解并掌握有理数乘法的运算步骤3、能运用乘法法则计算,进一步提高学生的运算能力重点:多个有理数相乘的顺序,以及积的符号与负因数的个数关系重点:积的符号由负因数的个数确定教学过程:一、创设情境,引入新课师生归纳:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
二、讲授例题课本P31 例3问题:从例3中,多个不是0的数相乘,先做哪一步,再做哪一步?可以得出:先确定积的符号,再求各个绝对值的积。
课本P32 “思考”,从思考中,我们可以得出几个数相乘,如果其中有因数为0,积就等于0。
三、巩固知识课本P32 练习四、总结本节课主要学习了多个有理数相乘的运算步骤以及顺序,并掌握积的符号由负因数的个数确定。
五、布置作业课本P38 习题1.4 第7题中的(1)(2)(3)(6)1.4.1有理数的乘法(三)教学目标:1、经历探索有理数乘法的运算律的过程,发展学生观察、归纳、猜测的能力2、理解并掌握有理数乘法的运算律:乘法交换律、乘法结合律、分配律3、能运用乘法运算律简化计算,进一步提高学生的运算能力重点:运用乘法运算律进行乘法运算重点:运用乘法法则和乘法运算律进行乘法运算教学过程:二、讲授新课问题1:你能用语言描述乘法交换律、乘法结合律、分配律吗?学生:乘法交换律:两个数相乘,交换因数的位置,积相等。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
问题2:如果用a 、b 、c 分别表示任何一个有理数,那么,你能用这些字母表示这些运算律?乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)分配律:a (b+c )=ab+aca ×b 也可以写成a ·b 或ab 。