对称法求积分

合集下载

对称法求积分

对称法求积分
Vo l. 6, M ar . ,
N o. 1 20 03
S
T
U
D
IES
IN
高等数学研究 C OLL EGE M A THEM
A TICS 3 5
对称法求积分
凌明伟
( 浙江广播电视高等专科学校电子信息工程系数学教研室 浙江杭州 310015)
积分计算是高等数学的基本运算, 巧妙地利用对称性解积分题, 常能化难为易, 简化计算, 收到 事半功倍的效果, 本文拟就此方法作一探讨。
D1
∫∫ ∫ 原积分 = 8
1
1- x
1
x 2d = 8 dx x 2dy = 8 ( x 2 - x 3) dx =
0
0
0
2 3
.
D1
一般地, 设 f ( x , y ) 在有面积的有界闭域 D 上连续, 则 I = f ( x , y ) d 存在 。
D
( 1) 若 D 关于 y 轴对称, 则
一致趋于
0,
由定理知,
即有
l im
x y
→0 →0
x 3y 3 x4 + y8
=
0
参考文献 [ 1] 陈纪修等 . 数学分析 . 高等教育出版社, 2000 [ 2] 菲赫金哥尔茨, . . 微积分学教程( 三卷二分册) ( 吴亲仁, 路见可等译) . 人民教育出版 社, 1957 [ 3] Gof fenm an, C. 多元微积分, ( 史济怀等译) . 人民教育出版社, 1979
2
2 0
1+
1 t an kx
+
1 1 + cotkx
dx =
1 2
2
dx =

积分求解的几种方法

积分求解的几种方法

积分求解的几种方法
积分求解的几种方法有:
求积分的四种方法是:换元法、对称法、待定系数法、分部积分法。

积分是微积分学与数学分析里的一个核心概念。

通常分为定积分和不定积分两种。

求定积分的方法有换元法、对称法、待定系数法;求不定积分的方法有换元法和分部积分法。

换元法是指引入一个或几个新的变量代替原来的某些变量的变量求出结果之后,返回去求原变量的结果。

分部积分法是微积分学中的一类重要的、基本的计算积分的方法。

它是由微分的乘法法则和微积分基本定理推导而来的。

它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。

定积分对称性公式:f(x+a)=f(b-x)记住此方程式是对称性的一般形式,只要x有一个正一个负,就有对称性。

至于对称轴可用吃公式求X=a+b/2。

如f(x+3)=f(5_x)X=3+5/2=4等等。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。

一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

三重积分的对称性公式

三重积分的对称性公式

三重积分的对称性公式三重积分的对称性公式是一种用于计算函数形式的积分运算公式。

它涉及在三个维度上计算函数。

它是一种有效统计和金融分析方法,它能够帮助我们快速、准确地估算多维数据建模的结果。

一、什么是三重积分的对称性公式?三重积分的对称性公式是一种用于求解三元函数的数学方法,它涉及在三维空间内求解函数的积分,其计算过程要求在每一个维度上求解函数的一元积分形式。

也就是说,将一元积分的过程由一个维度拓展到三个不同维度,从而更好地求解函数的结果。

二、三重积分的对称性公式的应用三重积分的对称性公式主要用于统计和金融领域,它有利于准确地估算多维数据建模的结果,这种情况下,多维结果的拓展非常重要。

此外,在复杂的金融模型分析中,三重积分的对称性公式也可以帮助分析复杂的结果,可以加速分析的进行。

三、三重积分的对称性公式的结构1.一元积分:开始计算函数时,首先在每一维度上求解函数的一元积分,即将一元积分所需的变量替换为所求解函数中新增的维度,即三维函数。

2.二级积分:在基本一元积分后,将得到的结果在每个维度上进行平方积分,使其变为二重维平方积分的形式。

3.三重积分:将得到的二重维平方积分公式在多维空间中拓展开来,变成三重维立方积分,即三重积分的对称性公式。

四、三重积分的对称性公式的优势1.速度:三重积分的计算速度要远快于原始数据的计算速度,因为它不再需要多余的时间次数来计算,可以减少对原始数据的频繁计算。

2.准确率:三重积分的计算结果更加准确,因为它综合利用了多次积分,使函数的运算更加准确。

3.可扩展性:三重积分的对称性公式可以轻松扩展到更高维度,从而更好地描述函数,提高计算精度。

五、总结三重积分的对称性公式是一种用于分析多维数据建模的有效数学方法,它涉及在多个维度上计算函数的多重积分,具有极快的计算速度和较高的准确性,可以更好地解释更高维度信息,在统计和金融领域都有广泛的应用。

二重积分计算技巧总结

二重积分计算技巧总结

二重积分计算技巧总结二重积分是微积分中的一个重要概念,是对二元函数在特定区域上的面积进行求解,也可以理解为一个函数在一个平面区域上的平均值。

在实际计算中,可以通过一些技巧来简化计算过程,提高计算效率。

本文将总结一些常用的二重积分计算技巧,帮助读者更加灵活地应用二重积分。

1.利用对称性在计算二重积分时,如果被积函数具有对称性,可以通过利用对称性简化计算过程。

常见的对称性有x轴对称、y轴对称、原点对称等。

对称性可以减少计算量,提高计算效率。

2.变量替换变量替换是处理二重积分的常用方法。

通过合适的变量替换,可以将原来的二重积分转化为更简单的形式。

常见的变量替换包括极坐标变换、矩形坐标变换等。

极坐标变换是将矩形坐标转化为极坐标的过程,从而转化为极坐标上的二重积分。

极坐标变换的公式如下:x = r*cosθy = r*sinθ其中,r是极径,θ是极角。

矩形坐标变换则是将原来的矩形区域映射为一个更简单的区域,从而简化计算过程。

常见的矩形坐标变换包括矩形到正方形的变换、矩形到单位圆的变换等。

3.积分次序交换对于一些特定的被积函数,可以通过交换积分次序来简化计算过程。

一般来说,交换积分次序需要满足一些条件,比如被积函数在给定的积分区域上连续可微。

需要注意的是,交换积分次序可能会改变积分的范围,因此在交换积分次序时需要注意积分区域的变化。

4.多次积分的简化二重积分常常需要进行多次积分,这时可以使用多次积分的简化方式来提高计算效率。

常见的多次积分简化方式包括积分区域分割、积分区域的对称性利用、积分范围的变量替换等。

通过适当地选择简化方式,可以大大减少计算量,提高计算效率。

5.划分区域的选择在计算二重积分时,划分区域的选择对于计算结果具有一定的影响。

对于一些特定的区域,可以选择合适的划分方式来简化计算过程。

常见的划分区域的选择方式包括将区域分为两个相互重叠的子区域、将区域分为若干个均匀分布的子区域等。

通过合适的划分方式,可以简化计算过程,提高计算效率。

计算二重积分的几种简便方法

计算二重积分的几种简便方法

计算二重积分的几种简便方法
1. 直接计算法:
这是最常见的计算二重积分的方法。

直接按照积分的定义,将被积函数与微元面
积相乘后进行求和即可。

一般来说,要根据具体的被积函数和积分区域的形状,选择合适
的坐标系来进行计算。

3. 对称性法:
如果被积函数在某个轴或者平面上具有一定的对称性,可以利用对称性简化计算。

如果被积函数关于某个轴对称,可以将积分区域分成两部分,然后只计算其中一部分的积分,最后再乘以2。

类似地,如果被积函数关于某个平面对称,可以将积分区域分成两个
对称的部分,然后只计算其中一个部分的积分,最后再乘以2。

4. 等值线法:
对于一些复杂的被积函数,可以通过画出函数的等值线图来简化计算。

通过观察
等值线的形状和分布,可以选择合适的积分路径和积分限,使得函数在该路径上的积分更
容易计算。

5. 枚举法:
当积分区域非常复杂、函数表达式非常复杂或者积分路径不容易选择时,可以考
虑使用枚举法进行计算。

将积分区域分成若干个简单的子区域,然后分别计算每个子区域
的积分,最后将它们相加得到最终的积分值。

积分的对称性问题

积分的对称性问题

例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4

对称性在积分中的应用

对称性在积分中的应用

华北水利水电学院数学实践报告华北水利水电学院对称性在积分中的应用学院:环境与市政工程学院专业:建筑环境与设备工程班级:2010108成员:王永辉 201010804朱虹光 201010810余维召 201010811对称性在积分中的应用积分的计算是积分运用中的一个难点.在某些积分的计算过程中,若能利用对称性,则可以简化积分的计算过程.本文介绍了几种常见的对称性在积分计算过程中的几个结论及其应用,并通过实例讨论了利用积分区域的对称性及被积函数的奇偶性简化重积分,曲线积分,曲面积分的计算方法.另外,对于曲面积分的计算,本文还给出了利用积分曲面关于变量的轮换对称性简化曲面积分的计算,是曲面积分的计算更加便捷.积分的对称性包括重积分,曲线积分,曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分相关的定理和结论,再结合相关的实例进行具体的探讨.本文结合积分域关于平行于坐标轴的直线,平行于坐标面的平面,平行于坐标轴对角线的直线的对称性定义,以及相应对称区域上定理中的函数约定在该区域都连续或偏导数连续定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D 关于a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a --D ∈,则D 关于直线z y ±=对称) 1、 二重积分的对称性定理定理1:设有界闭区域12D D D =,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)Dif x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)Dif x y d σ⎰⎰1(=i ,)2注释:设函数),(y x f 在有界闭区域D 上连续(ⅰ)若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f y x f d y x f !),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y x(ii )若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y x f d y x f 2),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中2D 是D 的上半部分:2D =}0|),{(≥∈y D y x定理2:设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续且),(y x f 关x 和y 均为偶函数,则⎰⎰⎰⎰=DD d y x f d y x f 3),(4),(σσ其中3D 是D 的第一象限的部分:3D =}0,0|),{(≥≥∈y x D y x 定理3:则设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y x 例1:计算⎰⎰Dxydxdy ,其中D 由下列双纽线围成:(1) )(2)(22222y x y x -=+ (2)xy y x 2)(222=+解:(1)由于)(2)(22222y x y x -=+围成的区域关于x 轴y 轴均对称,而被积函数xy 关于x (或y 轴)为奇函数则有⎰⎰Dxydxdy 0=(2)由)(2)(22222y x y x -=+围成的区域对称于原点,而被积函数xy 是关于x ,y 的偶函数则有⎰⎰Dxydxdy =2⎰⎰1D xydxdy由极坐标知θθsin ,cos r y r x ==,代入xy y x 2)(222=+得θ2sin =r 且由xy 0>,知02sin 212>θr则20πθ≤≤于是⎰⎰Dxydxdy 61cos 2sin 220sin 03=⎰⎰dr r d θθθπθ定理4:设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰例2:设函数f(x)在]1,0[上的正值连续函数 证明:()()1()()()2Daf x bf y dxdy a b f x f y +=++⎰⎰,其中b a,为常数,1}y x,0|y){(x,D ≤≤=证明:∵积分区域D 关于x y =对称∴(,)(,)DDf x y d f y x d σσ=⎰⎰⎰⎰设()()()()Daf x bf y I dxdy f x f y +=+⎰⎰由函数关于两个变量()()()()Daf x bf y I dxdy f x f y +=+⎰⎰,以上两式相,得2()DI a b dxdy a b =+=+⎰⎰,从而1()2I a b =+一般地,有以下定理:定理5:设有界闭区域12D D D =,1D 与2D 关于直线0:=++c by ax L 对称, 函数),(y x f 在D 上连续,那么:(ⅰ)若),(y x f 是关于直线L 的奇函数,则(,)Df x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于直线L 的偶函数,则(,)Df x y d σ=⎰⎰2(,)Dif x y d σ⎰⎰1(=i ,)22、三重积分的对称性定理定理6:设空间有界闭区域12Ω=ΩΩ,1Ω与2Ω关于xoy 坐标面对称,函数),,(z y x f 在Ω上连续,那么:(ⅰ)若),,(z y x f 是关于z 的奇函数,则(,,)f x y z dv Ω⎰⎰⎰=0(ⅱ)若),,(z y x f 是关于z 的偶函数,则:(,,)f x y z dv Ω⎰⎰⎰=2⎰⎰⎰Ω1),,(dv z y x f同时,若Ω关于yox 坐标面对称,),,(z y x f 关于奇函数或偶函数;或者若Ω关于xoz 坐标面对称),,(z y x f 关于y 为奇函数或偶函数,同样也有类似结论.例7:求下列曲面所界的均匀物体的重心坐标222x y z a b c++,c z =解: 若令cos ,sin ,x ar y br z z θθ===,则质量为203zcc abcM ab dz d rdr ππθ==⎰⎰⎰设重心坐标为0x ,0y ,o z 由对称性知000==y x ,而o z =22033..44z cc abc cdz d rdr abc ππθπ=⎰⎰⎰于是,重心为点(0,0,34c ) ※曲线积分的对称性1、第一型曲线积分的对称性定理定理7:设平面内光滑曲线12L L L =+,1L 与2L 关于x (或y )轴对称,函数),(y x f 在L 上连续,那么:(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)f x y ds ⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则(,)f x y ds ⎰=2(,)if x y ds ⎰1(i =,)2注:设平面分段光滑曲线L 关于y 轴对称,则10,(,)(,)(,),(,)LL f x y f x y ds f x y ds f x y x ⎧⎪=⎨⎪⎩⎰⎰如果关于变量x 为奇函数2如果关于变量为偶函数其中1L 是L 的右半段:1L =}0|),{(≥∈x D y x定理8:设平面内光滑曲线12L L L =+,1L 与2L 关于x 轴对称且方向相反,函数),(y x p 在L 上连续,那么:(ⅰ)若),(y x p 是关于x 的偶函数,则(,)p x y dx ⎰0=(ⅱ)若),(y x p 是关于y 的奇函数,则(,)2(,)ip x y dx p x y dx =⎰⎰1(i =,)2例4:求曲线积分[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰,其中c 是单位圆周221x y +=,方向为逆时针方向解: ∵曲线积分c 可分为上,下两个对称的部分,在对称点),(y x 与),(y x -上, 函数22()cos(2)xy e xy dx -+大小相同,但投影元素dx 在上半圆为负,下半圆为正∴22()cos(2)xy e xy dx -+在对称的两个半圆上大小相等,符号相反故22()cos(2)xy ce xy dx -+⎰0=类似可知22()sin(2)xy ce xy dy -+⎰0=因此[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰0=定理9:设L 是xoy 平面上关于直线a x =对称的一条曲线弧 (ⅰ)若),(y x f =),2(y x a f --,则(,)Lf x y ds ⎰0=(ⅱ)若),(y x f =),2(y x a f -,则(,)Lf x y ds ⎰=21(,)L f x y ds ⎰})|),{((1a x L y x L ≤∈=例5:计算3(2)LI y y x ds =+-⎰,其中L 是曲线22(2)4x y -+=所围成的回路解: ∵L 关于轴及直线2=x 对称∴3(2)(2)2LLLI y y ds x ds ds =+--+⎰⎰⎰设),(y x f =32y y + 则),(y x f =),(y x f -设 ),(y x g =2-x则),2(y x f --=2-x =),(y x f 即200I ++=lds ⎰=8π2、第二类曲线积分的对称性定理定理1:对于第二类曲线积分还需考虑投影元素的符号.当积分方向与坐标正方向之间的夹角小于2π时,投影元素为正,否则为负.就(,)p x y dx ⎰而言,考察(,)p x y dx 在对称点上的符号定理2:若积分曲线T 关于x ,y ,z 具轮换对称性,则(,,)(,,)(,,)tttp x y z dz p y z x dy p z x y dx ==⎰⎰⎰=13 (,,)(,,)(,,)tp x y z dz p y z x dy p z x y dx ++⎰ 定理3:设L 是xoy 平面上关于a x =对称的一条光滑曲线弧,12L L L =+,任意),(y x ∈L ,有),2(y x a -∈2L ,且1L ,2L 在y 轴投影方向相反,则(ⅰ)若θ),(y x =-θ),2(y x a -,则(,)Lx y dy θ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)L x y dy θ⎰=2(,)Lx y dy θ⎰定理3中,若1L ,2L 在x 轴投影方向相同,其他条件不变,则有 (ⅰ)若p ),(y x =-p ),2(y x a -,则(,)Lp x y dx ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)Lp x y dx ⎰=21(,)L p x y dx ⎰例:计算I =|2|(2)(1)LLx x y dx -+--⎰⎰,其中抛物线2(2)x -上从)1,1(A 到)1,3(B 的一段弧解:I =|2|(2)(1)LLx x y dx -+--⎰⎰=12I I +因为关于2=x 对称θ),4(y x =|2|-x θ),(y x由定理3有)1)(2(),4(---=-y x y x p =),(y x p -所以2I =0,即12I I I =+0=※曲面积分的对称性定义1:若∀)(),,(321N n R D x x x x p n n n ∈⊂∈⋅⋅⋅⋅⋅有),,(1211111-+⋯⋯i x x x x x x p n)2,1(n i D n ⋯=∈成立,则称n D 关于),,(321n x x x x p ⋅⋅⋅⋅⋅具有轮换对称性.定义2:若函数),,(321n x x x x F ⋅⋅⋅⋅⋅),,(321n x x x x F ⋅⋅⋅⋅⋅≡)2,1(n i X ⋅⋅⋅⋅⋅⋅=,则称函数),,(321n x x x x F ⋅⋅⋅⋅⋅关于函数n x x x x ⋅⋅⋅⋅⋅321,,具有轮换对称性. 1、第一类曲面积分对称性定理定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上被积函数的绝对值相等{即光滑曲面S 关于xoy (或yoz ,或zox )坐标面对称},则有(ⅰ)(,,)sf x y z ds ⎰⎰0=,在对称点上),,(z y x f 取相反的符号{即),,(z y x f 关于z(或x ,或y )的奇函数}(ⅱ)(,,)sf x y z ds ⎰⎰=2(,,)sf x y z ds ⎰⎰,在对称点上),,(z y x f 取相同的符号{即),,(z y x f 为关于z (或x ,或y )的偶函数}推论1:若光滑曲面S 可以分成对称的两部分12S S S =+,且关于原点对称, 则(ⅰ)(,,)sf x y z ds ⎰⎰0=,为关于z (或x ,或y )的奇函数(ⅱ)(,,)sf x y z ds ⎰⎰=81(,,)s f x y z ds ⎰⎰,),,(z y x f 为关于z (或x ,或y )的偶函数例1:计算下列面积的曲面积分,()x y z ds ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分解: 利用对称性知xds yds ∑∑=⎰⎰⎰⎰0=设xy D ={|),(y x 2222x y a h +≤-} 则()x y z ds ∑++⎰⎰=zds ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-例2:计算曲面积分x ∑⎰⎰,其中2222:x y z a ∑++=解: 令22221:x y z a ∑++=,0,0,0x a y a z a ≤≤≤≤≤≤ 则 2221:,0,0D x y a x a y a +≤≤≤≤≤ds ==∑关于原点对称,解被积函数),,(z y x f =x 为关于),,(z y x 的偶函数由推论1.1x ∑⎰⎰=8x ∑⎰⎰=a881D x dsdy ⎰⎰⎰⎰=189cos 8D d r a θθdr r d a a⎰⎰=209cos 8πθθ=a810117!!7.108!!264a a ππ= 定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)f x y z ds f y z x ds f z x y ds ∑∑∑==⎰⎰⎰⎰⎰⎰1(,,)(,,)(,,)3f x y z ds f y z x ds f z x y ds ∑∑∑=++⎰⎰⎰⎰⎰⎰ 例3:计算曲面积分2z ds ∑⎰⎰,其中s 是球面2222x y z a ++=解:如果按照常规方法来解,计算量比较大,如果利用对称函数的特性,非常简捷∵球面2222x y z a ++=关于x ,y ,z 具有对称性∴222x ds y ds z ds ∑∑∑==⎰⎰⎰⎰⎰⎰∴2z ds ∑⎰⎰=2221()3x y z ds ∑++⎰⎰ =21133a ds ds ∑∑=⎰⎰⎰⎰ 22214.433a a a ππ== 2、第二类曲面积分的对称性定理利用对称性计算第二类曲面积分同样需要注意投影元素的符号.现以曲面积分(,,)sf x y z ds ⎰⎰为例来讨论.当曲面指定侧上动点的法线方向与z 轴正向成锐角时,面积元素ds 在xoy 面上的投影dxdy 为正减钝角时为负.一般地,有如下定理:定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上|f|的值相等,则有(ⅰ)1(,,)s f x y z dxdy ⎰⎰0=,在对称点上fdxdy 取相反的符号(ⅱ)1(,,)s f x y z dxdy ⎰⎰=21(,,)s f x y z dxdy ⎰⎰,在对称点上fdxdy 的符号相同,对于积分1(,,)s f x y z dydz ⎰⎰,1(,,)s f x y z dzdx ⎰⎰也有类似的结论定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)p x y z dydz p y z x dzdx p z x y dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰=1(,,)(,,)(,,)3p x y z dydz p y z x dzdx p z x y dxdy ∑++⎰⎰ 例3:计算sxdydz ydxdy zdxdy ++⎰⎰,其中S 是球面2222x y z R ++=的外侧解: ∵球面2222x y z R ++=关于x ,y ,z 具有对称性∴sssxdydz ydxdz zdxdy ==⎰⎰⎰⎰⎰⎰先计算sxdydz ⎰⎰为此应分别考虑前半球面(记为1S )及后半球面(记为2S )上的曲面部分1S的方程为x =它在oyz 平面上的投影域y D 为圆域222y z R +≤,因此,若用1w S 表示前半球面的外侧则有:1S w Dyxdydz σ=⎰⎰=230023R d r R πθπ=⎰⎰ 对于在后半球面2S 上的曲面积分,由于2S的方程为:x =后外侧,故关于后半球面外侧(记为2w S )的曲面积分为:2S w xdydz =⎰⎰Dy σ=323R π 因此S xdydz =⎰⎰31243S w S wxdyxz xdydz R π+=⎰⎰⎰⎰ 3S Sxdydz ydxdz zdxdy xdyxz ++=⎰⎰⎰⎰ 334343R R ππ=⋅= ※小结应用对称性计算积分时应注意以下几点:1.必须兼顾被积函数和积分区域两个方面,只有当两个方面面都具有某种对称性是才能利用,如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,在考虑利用上述结论2.对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路 线的方向和曲面的侧,确定投影元素的符号,需慎重3.有些问题利用轮换对称性可得到简便的解答对于重积分,曲线积分,曲面积分等定理的研究,是积分学运用的一个难点.本 文在探讨相关定理的同时,特别是巧妙的运用其对称性的特点,通过具体实例对积分运用的几个重要的定理进行了一些列研究,发现积分区域与被积函数二者均具对称性时,运用上述对称性定理可以极大地简化计算过程,尤其对于第二类曲线积分和第二类曲面积分来说,应用此方法能够 方向和曲面侧的讨论,简化了计算的过程,给积分的运算带来了便捷,.在以后的学习中,只要我们能把对称性这个重要的特点结合在实际中,相信一定会达到了事倍功半的效果.。

对称性解决积分问题方法

对称性解决积分问题方法

利用对称性、奇偶性求积分
有关对称性的结论
(1 )对于对称区间上的积分,有
(a )当在区间上为奇函数[ 即] 时
(b )当在区间上为偶函数[ 即] 时
(2 )对于平面区域D 上的二重积分,有
1 )设D 关于y 轴对称,则
(a )当为的奇函数[ 即] 时,得
(b )当为的偶函数[ 即] 时,得
其中是的右半部分:
2) 设D 关于x 轴对称,则
(a )当为的奇函数[ 即] 时,得
(b )当为的偶函数[ 即] 时,得
其中是的上半部分:
3) 设D 关于原点对称,则
(a )当时,得
(b )当时,得
其中,。

4 )设D 关于x 轴和y 轴均对称,且关于变量和均为偶函数,则
其中是在第一象限的部分:
5 )设D 关于直线对称,则
(3 )积分区域上的三重积分有类似于二重积分的性质。

例如,
设关于坐标面对称,则
(a )当是关于变量为奇函数[ 即] 时,得
(b )当是关于变量为偶函数[ 即] 时,得
其中是的前半部分:
如果积分区域关于坐标面(或)对称,而被积函数
是(或)的奇函数或偶函数时,有类似的结论。

(4 )第一型曲线积分和曲面积分也有类似的结论。

例如
1 )设平面分段段线关于轴对称,则
(a )当为的奇函数[ 即] 时,得
(b )当为的偶函数[ 即] 时,得
其中是的右半段:
2 )设分片光滑曲面关于坐标面对称,则
(a )当是关于变量为奇函数[ 即] 时,得
(b )当是关于变量为偶函数[ 即] 时,得
其中是的前半部分:
说明:以上结论不适用于第二型曲线积分和第二型曲面积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档