专题10:四边形

合集下载

【2019-2020】中考数学试题分项版解析汇编第04期专题10四边形含解析

【2019-2020】中考数学试题分项版解析汇编第04期专题10四边形含解析

教学资料参考范本【2019-2020】中考数学试题分项版解析汇编第04期专题10四边形含解析撰写人:__________________部门:__________________时间:__________________一、选择题1. (2017贵州遵义第10题)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【答案】A.考点:三角形中位线定理;三角形的面积.2. (2017湖南株洲第9题)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形【答案】C.考点:中点四边形;平行四边形的判定;矩形的判定;轴对称图形.3. (2017广西百色第2题)多边形的外角和等于()A. B. C. D.【答案】B【解析】试题分析:多边形的外角和是360°,故选B.考点:多边形内角与外角.4. (2017黑龙江绥化第10题)如图,在中,相交于点,点是的中点,连接并延长交于点,已知,则下列结论:①,②,③,④∽,其中正确的是()A.①②③④ B.①④ C.②③④D.①②③【答案】D考点:1.相似三角形的判定与性质;2.平行四边形的性质.5. (2017湖北孝感第10题)如图,六边形的内角都相等,,则下列结论成立的个数是①;②;③;④四边形是平行四边形;⑤六边形即是中心对称图形,又是轴对称图形()A. B. C. D.【答案】D考点:1.平行四边形的判定和性质;2.平行线的判定和性质;3.轴对称图形;4.中心对称图形.6. (2017内蒙古呼和浩特第9题)如图,四边形是边长为1的正方形,,为所在直线上的两点,若,,则以下结论正确的是()A. B. C. D.四边形的面积为【答案】C考点:1.正方形的性质;2.解直角三角形.7. (2017青海西宁第7题)如图,点是矩形的对角线的中点,交于点,若,则的长为()A. 5 B. 4 C. D.【答案】D考点:矩形的性质.8. (2017上海第6题)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABDD.∠BAC=∠ADB【答案】C【解析】试题分析:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD 是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.考点:1.矩形的判定;2.平行四边形的性质;3.菱形的判定.9. (2017海南第11题)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【答案】C.考点:菱形的性质,勾股定理.10. (2017河池第11题)如图,在中,用直尺和圆规作的平分线,若,则的长是()A. B. C. D.【答案】B.【解析】试题分析:连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA==4,∴AG=2AO=8.故选B.考点:作图—基本作图;平行四边形的性质.11. (2017贵州六盘水第4题)如图,梯形中,,( )A. B. C.D.【答案】B.试题分析:已知AB∥CD,∠A=45°,由两直线平行,同旁内角互补可得∠ADC=180°-∠A=135°,故选B.考点:平行线的性质.12. (2017贵州六盘水第10题)矩形的两边长分别为a、b,下列数据能构成黄金矩形的是( )A. B. C. D.【答案】D.考点:黄金分割.13. (2017新疆乌鲁木齐第5题)如果边形每一个内角等于与它相邻外角的倍,则的值是()A. B. C. D.【答案】C.【解析】试题解析:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选C.考点:多边形内角与外角.14. (2017新疆乌鲁木齐第9题)如图,在矩形中,点在上,点在上,把这个矩形沿折叠后,使点恰好落在边上的点处,若矩形面积为且,则折痕的长为()A. B. C. D.【答案】C.考点:翻折变换(折叠问题);矩形的性质.二、填空题1. (2017贵州遵义第14题)一个正多边形的一个外角为30°,则它的内角和为.【答案】1800°.【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.2. (2017内蒙古通辽第15题)在平行四边形中,平分交边于,平分交边于.若,,则 .【答案】8或3②在▱ABCD中,∵BC=AD=11,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∴AB=BE=CF=CD∵EF=5,∴BC=BE+CF=2AB+EF=2AB+5=11,∴AB=3;综上所述:AB的长为8或3.故答案为:.考点:平行四边形的性质3. (2017湖北咸宁第14题)如图,点的矩形纸片的对称中心,是上一点,将纸片沿折叠后,点恰好与点重合,若,则折痕的长为.【答案】6.考点:矩形的性质;翻折变换(折叠问题).4. (2017湖南常德第15题)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为.【答案】(0<x<2).考点:根据实际问题列二次函数关系式;正方形的性质.5. (2017哈尔滨第19题)四边形是菱形,,,对角线与相交于点,点在上,若,则的长为.【答案】4或2【解析】试题分析:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB= BD=3,∴OC=OA= =3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2.考点:菱形的性质.6. (2017哈尔滨第20题)如图,在矩形中,为边上一点,连接,过点作,垂足为,若,,则的长为.【答案】考点:1.矩形的性质;2.全等三角形的判定与性质.7. (2017黑龙江齐齐哈尔第13题)矩形的对角线,相交于点,请你添加一个适当的条件,使其成为正方形(只填一个即可).【答案】AB=BC(答案不唯一)考点:1.正方形的判定;2.矩形的性质.8. (2017黑龙江齐齐哈尔第16题)如图,在等腰三角形纸片中,,,沿底边上的高剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.【答案】10cm或2cm或4cm.【解析】试题分析:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4 cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC= =2cm,故答案为:10cm或2cm或4cm.考点:图形的剪拼.9. (2017黑龙江绥化第13题)一个多边形的内角和等于,则这个多边形是边形.【答案】七考点:多边形内角与外角.10. (2017湖北孝感第14题)如图,四边形是菱形,于点,则线段的长为.【答案】【解析】试题分析:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB= =13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH= ,∴BH= = .考点:1.菱形的性质;2.勾股定理.11. (2017内蒙古呼和浩特第15题)如图,在中,,,是两条对角线的交点,过点作的垂线分别交边,于点,,点是边的一个三等分点,则与的面积比为.【答案】3:4.考点:1.相似三角形的判定与性质;2.平行四边形的性质.12. (2017青海西宁第13题)若正多边形的一个外角是40°,则这个正多边形的边数是.【答案】9【解析】试题分析:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.考点:多边形内角与外角.13. (2017青海西宁第20题)如图,将沿对折,使点落在点处,若,则的长为___.【答案】考点: 1.翻折变换(折叠问题);2.平行四边形的性质.14. (2017湖南张家界第14题)如图,在正方形ABCD中,AD=,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.【答案】.考点:旋转的性质;正方形的性质;综合题.15. (2017辽宁大连第11题)五边形的内角和为.【答案】540°.【解析】试题分析:根据多边形的内角和公式(n﹣2)•180°计算即可.(5﹣2)•180°=540°.故答案为540°..考点:多边形内角与外角.16. (2017海南第17题)如图,在矩形ABCD中,AB=3,AD=5,点E 在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【答案】.考点:轴对称的性质,矩形的性质,余弦的概念.17. (2017河池第18题)如图,在矩形中,,是的中点,于点,则的长是.【答案】.【解析】试题分析:根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE=,BD=,根据三角形的面积公式得到BF=,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,考点:勾股定理;矩形的性质,相似三角形的判定与性质.18. (2017贵州六盘水第16题)如图,在正方形中,等边三角形的顶点、分别在边和上,则【答案】75°.试题分析:∵正方形,∴AD=AB,∠BAD=∠B=∠D=90°,∵等边三角形,∴AE=AF,∠EAF=60°,∴△ABE≌△ADF,∴∠BAE=∠DAF=15°,∴∠AEB=75°.考点:正方形、等边三角形、全等三角形.19. (2017贵州六盘水第18题)如图,在平行四边形中,对角线、相交于点,在的延长线上取一点,连接交于点,若,,,则【答案】.考点:平行四边形,相似三角形.20. (2017新疆乌鲁木齐第12题)如图,在菱形中,,则菱形的面积为.【答案】2【解析】考点:菱形的性质.三、解答题1. (2017贵州遵义第26题)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【答案】(1)证明见解析;(2)当x=3或1时,CE=BC;(3). 结论:PF=EQ,理由见解析.(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC=,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴ ,考点:四边形综合题.2. (2017湖南株洲第22题)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【答案】①.证明见解析;②证明见解析.∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.考点:相似三角形的判定;全等三角形的判定与性质;等腰直角三角形;正方形的性质.3. (2017内蒙古通辽第25题)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第次操作余下的四边形是菱形,则称原平行四边形为阶准菱形,如图1,□为1阶准菱形.(1)猜想与计算邻边长分别为3和5的平行四边形是阶准菱形;已知□的邻边长分别为(),满足,,请写出□是阶准菱形.(2)操作与推理小明为了剪去一个菱形,进行如下操作:如图2,把□沿折叠(点在上),使点落在边上的点处,得到四边形.请证明四边形是菱形.【答案】(1)3,12(2)证明见解析(2)由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形考点:四边形综合题4. (2017湖北咸宁第18题)如图,点在一条直线上,.⑴求证:;⑵连接,求证:四边形是平行四边形.【答案】详见解析.考点:全等三角形的判定与性质;平行四边形的判定.5. (2017广西百色第22题)矩形中,分别是的中点,分别交于两点.求证:(1)四边形是平行四边形;(2)【答案】(1)证明见解析;(2)证明见解析.考点:1.矩形的性质;2.平行四边形的判定与性质.6. (2017广西百色第26题)以菱形的对角线交点为坐标原点,所在的直线为轴,已知,,,为折线上一动点,内行轴于点,设点的纵坐标为(1)求边所在直线的解析式;(2)设,求关于的函数关系式;(3)当为直角三角形,求点的坐标.【答案】(1)直线BC的解析式为y=x﹣2;(2)当点P在边BC上时, y=10a2+24a+48;当点P在边CD上时,y= 10a2﹣40a+48;(3)点P的坐标为(,2﹣),(4,0).Ⅰ、当∠POM=90°时,∴OP2+OM2=PM2,∴5a2﹣16a+16+16=5a2﹣24a+32,∴a=0,∴P(4,0),Ⅱ、当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,∴a=2+ (舍)或a=2﹣,∴P(,2﹣),即:当△OPM为直角三角形时,点P的坐标为(,2﹣),(4,0).考点:四边形综合题.7. (2017黑龙江齐齐哈尔第26题)如图,在平面直角坐标系中,把矩形沿对角线所在的直线折叠,点落在点处,与轴相交于点.矩形的边,的长是关于的一元二次方程的两个根,且.(1)求线段,的长;(2)求证:,并求出线段的长;(3)直接写出点的坐标;(4)若是直线上一个动点,在坐标平面内是否存在点,使以点,,,为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.【答案】(1)OA=8,OC=4;(2)OE=3;(3)D(﹣,);(4)存在;P(﹣,2+3),(,3﹣2),(4,5),(,).考点:四边形综合题.8. (2017黑龙江绥化第28题)如图,在矩形中,为边上一点,平分,为的中点,连接,过点作分别交于,两点.(1)求证:;(2)求证:;(3)当时,请直接写出的长.【答案】(1)证明见解析;(2)证明见解析;(3)4 .理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH∥BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴,即EF2=AF•GF,∵AF•GF=28,∴EF=2 ,∴CE=2EF=4.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质.9. (2017湖北孝感第20题)如图,已知矩形 .(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①以点为圆心,以的长为半径画弧交边于点,连接;②作的平分线交于点;③连接;(2)在(1)作出的图形中,若,则的值为 .【答案】(1)画图见解析;(2) .考点:1.作图﹣基本作图;2.全等三角形的判定与性质;3.解直角三角形.10. (2017内蒙古呼和浩特第18题)如图,等腰三角形中,,分别是两腰上的中线.(1)求证:;(2)设与相交于点,点,分别为线段和的中点.当的重心到顶点的距离与底边长相等时,判断四边形的形状,无需说明理由.【答案(1)证明见解析;(2)四边形DEMN是正方形.(2)四边形DEMN是正方形,理由:∵E、D分别是AB、AC的中点,∴AE=AB,AD=AC,ED是△ABC的中位线,∴ED∥BC,ED=BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN=BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离=BC,∴BD⊥CE,∴四边形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.11. (2017青海西宁第23题)如图,四边形中,相交于点,是的中点,.(1)求证:四边形是平行四边形;(2)若,求的面积.【答案】(1)证明见解析;(2)24.。

2013年湖北省各市中考数学分类解析专题10_四边形

2013年湖北省各市中考数学分类解析专题10_四边形

专题10:四边形一、选择题1. (2013年湖北恩施3分)如图所示,下列四个选项中,不是正方体表面展开图的是【】2. (2013年湖北恩施3分)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为【】A.13B.14C.15D.163. (2013年湖北恩施3分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E 为OD的中点,连接AE并延长交DC于点F,则DF:FC=【】A.1:4 B.1:3 C.2:3 D.1:24. (2013年湖北荆门3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有【】A.3种B.4种C.5种D.6种5. (2013年湖北荆门3分)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是【】6. (2013年湖北荆州3分)将一边长为2的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是【】A.1 B.32C.12D.237. (2013年湖北潜江、仙桃、天门、江汉油田3分)若平行四边形的一边长为2,面积为,则此边上的高介于【】A.3与4之间B.4与5之间C.5与6之间D.6与7之间【答案】B。

8. (2013年湖北十堰3分)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为【】A.8 B.9 C.10 D.119. (2013年湖北随州4分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是【】A.25 B.20 C.15 D.1010. (2013年湖北随州4分)如图,正方形ABCD 中,AB=3,点E 在边CD 上,且CD=3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .下列结论:①点G 是BC 中点;②FG=FC ;③FGC 9S 10∆=.其中正确的是【 】A .①②B .①③C .②③D .①②③11. (2013年湖北咸宁3分)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为【】A.1732B.12C.1736D.173812. (2013年湖北襄阳3分)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD 的周长为23,则平行四边形ABCD的两条对角线的和是【】A.18 B.28 C.36 D.46∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36。

(部编版)2020年中考数学试题分项版解析汇编第期专题10四边形含解析6

(部编版)2020年中考数学试题分项版解析汇编第期专题10四边形含解析6

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .18 【答案】B. 【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n ×150°,解得:n=12.故选B. 考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠ 【答案】C.考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20 【答案】D 【解析】试题分析:根据菱形的对角线互相垂直,可知OA=3,OB=4,根据勾股定理可知AB=5,所以菱形的周长为4×5=20. 故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn的值为( ) A .22 B .21C .215-D .随H 点位置的变化而变化【答案】B 【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m=8a , 设CM=x ,DE=y ,则DM=2a-x ,EM=2a-y , ∵∠EMG=90°, ∴∠DME+∠CMG=90°. ∵∠DME+∠DEM=90°, ∴∠DEM=∠CMG ,又∵∠D=∠C=90°△DEM ∽△CMG , ∴CG CM MGDM DE EM==,即22CG x MG a x y a y ==-- ∴CG=(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM+CG+MG=24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a-x )2+y 2=(2a-y )2整理得4ax-x 2=4ay∴CM+MG+CG=2444ax x aya y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( ) A .四边形 B .五边形 C .六边形 D .八边形 【答案】C 【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n-2)·180°=720°,解得n=6,故是六边形. 故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD CD =,则四边形AEDF 是菱形 D .若AD 平分BAC ∠,则四边形AEDF 是菱形 【答案】D 【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形. 若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误; 若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误; 若BD=CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误; 若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721 D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则ta n B D E ∠的值是 ( )A B .14 C .13D【答案】A. 【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DFEB EF BF==,因点E 是边BC 的中点且AD=BC,所以AD AF DFEB EF BF===2,设EF=x ,可得AF=2x ,在Rt △ABE 中,由射影定理可得 ,再由AD AF DFEB EF BF ===2可得,在Rt △DEF 中,tan BDE ∠=4EF DF ==,故选A. 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A ...8【答案】A. 【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点4AF EF EL ∴==∴=,P 是F E 的中点,2PK ∴=DH =1PP CD ∴=高为82S ∴==L K H故答案选A.考点:平行四边形的面积,三角函数.10.(2017江苏苏州第7题)如图,在正五边形CDAB E中,连接BE,则∠ABE的度数为A.30 B.36 C.54 D.72【答案】B.【解析】试题分析:∠ABE=3601=3652︒⨯︒故答案选B.考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE BF=,将,AEH CFG∆∆分别沿,EH FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AEEB为()A.53B.2 C.52D.4【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题) 二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【解析】试题分析:连结AC,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG的边长分别为3和1,根据勾股定理可求得,AC=3,即可得AE=2,因P 为AE 的中点,可得,再由正方形的性质可得GM=EM=2,FG 垂直于AC ,在Rt △PGM 中,PM=2 ,由勾股定理即可求得2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB 等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③ 【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)A C B OB ∴=,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODFBDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40),F CF OC CFO COF ∴=<∴∠>∠,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似. 则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1,22FG OB FG OB ∴==D E 、 是OB 的三等分点,DE ∴=1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯=解得:1162AN OB=,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确133OD OB == ,故④错误.综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70° 【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70° 考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24 【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA=OC ,OB=OD=12BD=5,CD=AB=4,由sin ∠BDC=35,证出AC⊥CD ,OC=3,AC=2OC=6,得出▱ABCD 的面积=CD•AC=24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD=32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH=EH ,设AH=x ,则DH=EH=8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x=3,即可得AH=3,EH=5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EHBE BF EF==,即3452BF EF ==,解得BF=83 ,EF=103 ,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA+PE 的最小值是 .9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】5. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB=BG=EF=CD=5,AD=GF=3,在Rt △BCG 中,根据勾股定理求得CG=4,再由1122BCGSBC CG BG CM =⋅=⋅,即可求得CM=125,在Rt △BCM 中,根据勾股定理求得95==,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE=MN=3,BM=EN=95,所以CN=MN-CM=3-125=35,在Rt △ECN 中,根据勾股定理求得===.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】5. 【解析】试题分析:连接AG,设DG=x,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC ==''CC BB ∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB,已知菱形的周长为cm 24,根据菱形的性质可得AB=6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE=33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和 三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 , ∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 .考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.【答案】(1)证明见解析.(2【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解. 本题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ,1);(2)1;(3)33(,22-或3(,22. 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A 的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB=2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B ,∴根据题意,由折叠的性质可得△A ’OP ≌△AOP.∴OA ’由OB B A ⊥',得∠A ’BO=90°.在Rt △A ’OB 中,'A B =∴点A ,1).(2) 在Rt △AOB 中,∴2AB ==∵当P 为AB 中点, ∴AP=BP=1,OP=12AB=1. ∴OP=OB=BP,∴△BOP 是等边三角形 ∴∠BOP=∠BPO=60°, ∴∠OPA=180°-∠BPO=120°. 由(1)知,△A ’OP ≌△AOP , ∴∠OPA’=∠OPA =120°,P ’A=PA=1, 又OB=PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B=OP=1.(3)33(22或3(,22. 4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF=4【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由 ,从而可得 .试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC =,185=,∴PC=2CQ =365 ,∴AP=AC-PC=145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC=∠PDF=90°,即∠ADP+∠PDC=∠PDC+∠CDF ,∴∠ADP=∠CDF ,∵∠BCD=90°,OE=OD ,∴OC=12 ED ,在矩形PEFD 中,PF=DE ,∴OC=12PF ,∵OP=OF=12PF ,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,又∵∠OPC +∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,即∠PCD+∠FCD=90°,在Rt △ADC 中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD ,∴△ADP ∽△CDF ,∴34C F C DA P A D==, ,∴CF=4 .5.(2017广东广州第24题)如图13,矩形ABCD的对角线AC,BD相交于点O,COD∆关于CD的对称图形为CED∆.(1)求证:四边形OCED是菱形;(2)连接AE,若6cmAB=,BC=.①求sin EAD∠的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1/cm s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动.当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【答案】(1)详见解析;(2)①2sin3EAD∠=②32AP=和Q走完全程所需时间为32s【解析】(2)①连接OE ,直线OE分别交AB于点F ,交DC于点G COD∆关于CD的对称图形为CED∆,OE DC DC AB∴⊥,OF AB EF AD∴⊥在矩形ABCD中,G为DC的中点,且O为AC的中点OG∴为CAD∆的中位线OG GE∴==同理可得:F为AB的中点,3OF AF==92AE∴===32sin sin932EAD AEFEAD AEF∠=∠∴∠=∠==②过点P作PM AB⊥交AB于点MQ∴由O运动到P所需的时间为3s由①可得,23AM AP=∴点O以1.5/cm s的速度从P到A所需的时间等于以1/cm s从M运动到A即:11OP PAOP MAt t t OP MA=+=+=+Q∴由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到1P ,即1PO AB时,所用时间最短.3t OP MA∴=+=在11Rt APM∆中,设112,3AM x AP x==222221111(3)=(2)AP AM PM x x=+∴解得:12x=32AP∴=32AP∴=和Q走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置 6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

2020年中考数学中考真题分类专题解析汇编:专题10:四边形

2020年中考数学中考真题分类专题解析汇编:专题10:四边形

2020年中考数学试题分类解析汇编专题10:四边形一、选择题1. (2019广东佛山3分)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是【】A.平行四边形B.矩形C.菱形D.梯形【答案】A。

【考点】三角形中位线定理,平行四边形的判定。

【分析】根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC。

∴EF=GH,EF∥GH。

∴四边形EFGH是平行四边形。

由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断。

故选A。

2.(2019广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【】A.26B.25C.21D.20【答案】C。

【考点】等腰梯形的性质,平行四边形的判定和性质。

【分析】∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形。

∴BE=AD=5。

∵EC=3,∴BC=BE+EC=8。

∵四边形ABCD是等腰梯形,∴AB=DC=4。

∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21。

故选C。

3. (2019广东广州3分)在平面中,下列命题为真命题的是【】A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形【答案】C。

【考点】命题与定理,正方形的判定,菱形的判定,矩形的判定,平行四边形的判定。

【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例排除:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如铮形(如图),故此选项错误。

浙江省温州市2001-2012年中考数学试题分类解析 专题10 四边形

浙江省温州市2001-2012年中考数学试题分类解析 专题10 四边形

2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题10:四边形一、选择题1. (2002年浙江温州4分)如图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC,如果这个梯形的周长为30,则AB的长是【】A.4 B.5 C.6 D.7【答案】C。

【考点】等腰梯形的性质,角平分线的定义,三角形内角和定理,含30度角直角三角形的性质,平行的性质,等腰三角形的判定。

【分析】∵在梯形ABCD中,AB=DC,∠C=60°,∴∠ABC=60°。

∵BD平分∠ABC,∴∠CBD=∠ABD=30°。

∴∠BDC=90°。

设AB=DC=x,则BC=2x。

∵AD∥BC,∴∠CBD=∠ADB。

∴∠ABD=∠ADB。

∴AD=AB= x。

∵梯形的周长为30,∴AD+BC+AB+DC=30,即5x=30,x=6。

故选C。

2. (2003年浙江温州4分)梯形的上底长为3,下底长为5,那么梯形的中位线长等于【】A.2 B.4 C.6 D.8【答案】B。

【考点】梯形的中位线定理。

【分析】根据梯形的中位线等于上下底和的一半的性质,得所求梯形的中位线长等于3+5=42。

故选B。

3. (2006年浙江温州4分)如图,在梯形ABCD中,AD∥BC,CA平分∠BCD,CD=5,则AD的长是【】A.6B.5C. 4D. 3【答案】B。

【考点】角平分线的定义,平行的性质,等腰三角形的判定。

【分析】∵CA平分∠BCD,∴∠ABC=∠ACD。

∵AD∥BC,∴∠ABC=∠CAD。

∴∠ACD=∠CAD。

∴AD=AC=5。

故选B。

4. (2010年浙江温州4分)如图,AC,BD是矩形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有【】A.1个 B.2个 C.3个 D.4个【答案】D。

【考点】矩形的性质,平行四边形的判定和性质,全等三角形的判定。

2024年中考数学二次函数压轴题专题10平行四边形的存在性问题(学生版)

2024年中考数学二次函数压轴题专题10平行四边形的存在性问题(学生版)

专题10平行四边形的存在性问题_、知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1) 对应边平行且相等;(2) 对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:x A -x B =x D - x cy A -y B = yD-y c可以理解为点B 移动到点A,点。

移动到点O,移动路径完全相同.(2)对角线互相平分转化为:\ z 乙,、2 一 2可以理解为AC 的中点也是BQ 的中点.D【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:X A~X B =X D~ X C -y B = yD-y c + x c = + X by A + % = % + 为x A +x c ^x B +x D2 _ 2 \X A +X C=X B +X D总 + % 二 % + 北 U a + %=% + %、2 — 2当AC 和BQ 为对角线时,结果可简记为:A+C = B + D (各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系 中的4个点A 、B 、。

、D 满足"A+O8+ZT,则四边形ABCQ 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCQ 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化, 故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1) 四边形A8CQ 是平行四边形:AC. BQ 一定是对角线.(2) 以A 、B 、。

、。

四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.1.三定一动已知A (1, 2) B (5, 3) C (3, 5),在坐标系内确定点。

使得以A 、B 、。

、。

四个点为顶点的四边形是 平行四边形.思路1:利用对角线互相平分,分类讨论:设。

专题10:--平面直角坐标系与平行四边形

专题10:--平面直角坐标系与平行四边形

18.18专题16:--平面直角坐标系与平行四边形一.【知识要点】1.平面直角坐标系与平行四边形二.【经典例题】1.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).如图,当α=30°时,点D的坐标为.2.如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB→BC→CO以每秒2个单位长的速度作匀速运动.过点M作直线MP 垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动,设运动时间为t s.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合.3.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC的中点,连接BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:B的坐标为;(2)求BF的长。

4.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0).点D是对角线AC上一动点(不与A、C重合),连接BD,作DE⊥DB.交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为.(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由.三.【题库】【A】【B】1.在平面直角坐标系xOy中,边长为2的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;【C】1. 在平面直角坐标系中,有点A(0,4)、B(9,4)、C(12,0)。

山东省17市2011年中考数学试题分类解析汇编 专题10 四边形

山东省17市2011年中考数学试题分类解析汇编 专题10 四边形

山东17市2011年中考数学试题分类解析汇编专题10:四边形一、选择题1. (济南3分)如图,菱形ABCD的周长为16,∠A=60º,则对角线BD的长度是A.2 B.2 3 C.4 D.4 3【答案】C。

【考点】菱形的性质,正三角形的的判定和性质。

【分析】根据菱形四边相等的性质,得AB=AD=4,∵∠A=60º,∴△ABD是正三角形,∴BD=AB=4。

故选C。

2.(济南3分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.下列结论不一定正确.....的是A.AC=BD B.∠OBC=∠OCBC.S△AOB =S△CODD.∠BCD=∠BDC【答案】D。

【考点】等腰梯形的性质,全等三角形的判定和性质。

【分析】A.根据等腰梯形对角线相等的性质,得AC=BD,∴选项正确;B.根据等腰梯形腰和同一底上的底角相等的性质以及全等三角形SAS的判定,得△ABC≌△DCB,从而由全等三角形对应角相等的性质,得∠OBC=∠OCB,∴选项正确;C.由△ABO≌△DCO,得S△AOB=S△COD,∴选项正确;D.∵BD不一定等于BC,∴∠BCD不一定等于∠BDC,∴选项不一定正确。

故选D。

3.(潍坊3分)已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论不正确...的是.A.CP平分∠BCD B.四边形ABED为平行四边形C.CQ将直角梯形ABCD分为面积相等的两部分 D.△ABF为等腰三角形【答案】C。

【考点】直角梯形的性质,全等三角形的判定和性质,平行四边形的判定和性质。

【分析】用排除法证明,即证明A、B、D正确,C不正确:A.易证△BCF≌△DCE(SAS),∴∠FBC=∠EDC,BF=ED,∴△BPE≌△DPF(AAS),∴BP=DP,∴△BPC≌△DPC(SSS),∴∠BCP=∠DCP,即A正确;B.∵AD=BE且AB∥BE,∴四边形ABED为平行四边形,B正确;D.∵BF=ED,AB=ED,∴AB=BF,即D正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1. (重庆市2001年4分)已知:如图,在矩形ABCD 中,BC =2,AE⊥BD,垂足为E ,∠BAE =30°,那么△ECD 的面积是【 】.A .32B .3C .23 D .332. (重庆市2002年4分)已知:如图AB//CD ,AE DC ,AE=12,BD=15,AC=20,则梯形ABCD 的面积是【 】A 130B 140C 150D 160 【答案】D 。

【考点】梯形的面积,平行四边形的判定和性质,勾股定理,化归思想的应用。

【分析】此题的关键是作辅助线,作好辅助线后将梯形的面积转化为与直角三角形的面积相等:3. (重庆市2003年4分)已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为【】A B..D.3【答案】A。

4. (重庆市2004年4分)如图,在菱形ABCD中,∠BAD=800,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于【】A、800B、700C、650D、600【答案】D。

5. (重庆市2004年4分)已知任意四边形ABCD中,对角线AC、BD交于点O,且AB=CD,若只增加下列条件中的一个:①AO=BO;②AC=BD;③AO DOOC BO;④∠OAD=OBC,一定能使∠BAC=∠CDB成立的可选条件是【】A、②④B、①②C、③④D、②③④【答案】D。

【考点】全等、相似三角形的判定和性质,平行的判定,圆周角定理。

【分析】根据全等、相似三角形的判定和性质来综合分析,逐条排除即可:①由AO=BO,只能得出△AOB为等腰三角形,不一定能使∠BAC=∠CDB成立。

②AC=BD,再由AB=CD,BC=BC,可证△ABC≌△DCB,则∠BAC=∠CDB,能使∠BAC=∠CDB成立。

③AO DOOC BO,再由∠AOD=∠COB,可证AD∥BC,可推出ABCD等腰梯形,一定能使∠BAC=∠CDB成立。

④∵∠OAD=∠OBC,∴A,B,C,D四点共圆,一定能使∠BAC=∠CDB成立。

故选D。

6. (重庆市大纲卷2005年4分)顺次连结任意四边形四边中点所得的四边形一定是【】A、平行四边形B、矩形C、菱形D、正方形7. (重庆市2010年4分)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB= 5 .下列结论:①△APD≌△AEB;②点B到直线AE的距离为 2 ;③EB⊥ED;④S△APD+S△APB=1+ 6 ;⑤S正方形ABCD=4+ 6 .其中正确结论的序号是【】A.①③④ B.①②⑤ C.③④⑤ D.①③⑤【答案】D。

【考点】正方形的性质,全等三角形的判定,勾股定理。

【分析】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD。

又∵AE=AP,AB=AD,∴△APD≌△AEB(SAS)。

故①成立。

③∵△APD≌△AEB,∴∠APD=∠AEB。

又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°。

∴EB ⊥ED 。

故③成立。

②过B 作BF ⊥AE ,交AE 的延长线于F , ∵AE=AP ,∠EAP=90°,∴∠AEP=∠APE=45°。

又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB=∠FBE=45°。

又∵BE = 故②不正确。

二、填空题1. (重庆市2001年4分)已知:如图,在正方形ABCD 中,F 是AD 的中点,BF 与AC 交于点G ,则△BGC 与四边形CGFD 的面积之比是 ▲ .【答案】6:5。

【考点】正方形的性质,三角形的面积。

【分析】设正方形的边长是a ,可分别求得△BFC,△ABC,△AFG 的面积,从而可求得四边形CGFD 的面积,则不难求△BFC 与四边形CGFD 的面积之比:∵F 是AD 的中点,∴AF=12AD=12BC 。

设正方形的边长是a ,则△BFC 的面积和△ABC 的面积都是21a 2,AF=1a 2。

∴22ABF 11S a a a 24∆=⨯⨯=,FG 1BG 2=。

∴2AFG AFB 11S S a 312∆∆==。

∴2222CGFD115S a a a a 21212=--=四形边。

∴△BFC 与四边形CGFD 的面积之比是6:5。

2. (重庆市2003年4分)如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、交AB 于点N ,交CB 的延长线于点P ,若MN=1,PN=3,则DM 的长为 ▲ .3. (重庆市2004年4分)如图,平行四边形ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则该平行四边形的面积是 ▲ 。

【答案】72。

【考点】平行四边形的性质,相似三角形的判定和性质,勾股定理的逆定理。

【分析】如图,设AM 与BD 相交于点O 。

由平行四边形ABCD 可知AD∥BC,∴△AOD∽△MOB。

又∵BM=12AD ,∴OB OM BM 1OD OA AD 2===。

∴在△BOM中,MO=3,OB=4,BM=5,∴△BOM是直角三角形。

∴S△BOM=12•OB•OM=6。

又∵S△BOM:S△ABO=OM:OA=1:2,∴S△ABO=12。

∴S△ABM=18。

∵M是BC的中点,∴S▱ABCD=4S△ABM=72。

4. (重庆市课标卷2005年3分)如图,是根据四边形的不稳定性制作的边长均为15㎝的可活动菱形衣架.若墙上钉子间的距离AB=BC=15㎝,则∠1=▲度.5. (重庆市课标卷2005年3分)如图,在等腰梯形ABCD中,AD∥BC,AC、BD相交于点O,有如下五个结论:① △AOD∽△BOC;②∠DAC=∠DCA;③梯形ABCD是轴对称图形;④△AOB≌△AOD;⑤AC=BD.请把其中正确结论的序号填写在横线上▲.【答案】①③⑤。

【考点】相似三角形的判定,等腰梯形的性质,全等三角形的判定。

【分析】采用排除法,以各个结论进行验证从而得出正确的结论:①正确,可以根据对应角相等,对应边对应成比例从而得到两三角形相似。

②不正确。

③正确,根据等腰梯形的性质。

④不正确。

⑤正确,根据等腰梯形的性质。

所以正确的结论有①③⑤。

6. (重庆市2008年3分)如图,在□ABCD 中,AB=5cm ,BC=4cm ,则□ABCD 的周长为 ▲ cm.三、解答题1. (重庆市2001年10分)已知:如图,在矩形ABCD 中,正为AD 的中点,EF 上EC 交AB 于F ,连结FC .(AB >AE )(1)△AE F 与△EFC 是否相似,若相似,证明你的结论;若不相似,请说明理由;(2)设ABBC=k ,是否存在这样的k 值,使得△AEF∽△BFC.若存在,证明你的结论并求出k 的值;若不存在,说明理由. 【答案】解:(1)相似。

证明如下:如图延长EF 与CD 的延长线交于点G 。

在Rt△AEF 与Rt△DEG 中,∵E 是AD 的中点,∴ AE=ED ,∠AEF=∠DEG,∴△AFE≌△DGE(ASA )。

∴EF=EG ,即 E 为FG 的中点。

又∵CE⊥FG,∴ FC=GC。

∴ ∠CFE=∠G。

∴∠AFE=∠EFC。

又∵△AEF与△EFC均为直角三角形,∴ △AEF∽△EFC。

2. (重庆市大纲卷2005年7分)如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF。

【答案】证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD。

∴∠ABE=∠CDF。

又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=900。

∴Rt△ABE≌Rt△CDF(AAS)。

∴∠BAE=∠DCF。

【考点】平行四边形的性质,全等三角形的判定和性质。

【分析】要证∠BAE=∠DCF只要证得△ABE≌△CDF即可,根据平行四边形的性质和已知的AE⊥BD,CF⊥BD即可由AAS证得。

3. (重庆市大纲卷2005年10分)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设a=PM·PE,b=PN·PF,解答下列问题:(1)当四边形ABCD是矩形时,见图1,请判断a与b的大小关系,并说明理由;(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图2,(1)中的结论是否成立?并说明理由;(3)在(2)的条件下,设BPPDk=,是否存在这样的实数k,使得PEAMABD49SS∆=平行四形边?若存在,请求出满足条件的所有k的值;若不存在,请说明理由。

【答案】解:(1)a=b。

理由如下:∵ABCD是矩形,∴MN∥AD,EF∥CD。

∴四边形PEAM、PNCF也均为矩形。

∴a=PM•PE=S矩形PEAM,b=PN•PF=S矩形PNCF。

又∵BD是对角线,∴△PMB≌△BFP,△PDE≌△DPN,△DBA≌△DBC。

∵S矩形PEAM=S△BDA-S△PMB-S△PDE, S矩形PNCF=S△DBC-S△BFP-S△DPN,∴S矩形PEAM=S矩形PNCF,∴a=b。

(2)成立,理由如下:∵ABCD是平行四边形,MN∥AD,EF∥CD,∴四边形PEAM、PNCF也均为平行四边形。

根据(1)可证S平行四边形PEAM=S平行四边形PNCF。

过E作EH⊥MN于点H,则sin∠MPE=EHPE,即EH=PE•sin∠MPE。

∴S平行四边形PEAM=PM•EH=PM•PEsin∠MPE。

同理可得S平行四边形PNCF=PN•PFsin∠FPN。

又∵∠MPE=∠FPN=∠A,∴sin∠MPE=sin∠FPN。

∴PM•PE=PN•PF。

即a=b。

【考点】矩形的判定和性质,平行四边形的性质,锐角三角函数定义。

【分析】(1)当四边形ABCD是矩形时,对角线BD把矩形ABCD分成两个全等三角形,即S△ABD=S△BCD,又MN∥AD,EF∥C D,所以四边形MBFP和四边形PFCN均为矩形,即S△MBF=S△BFP,S△EPD=S△NPD,根据求差法,可知S四边形AMPE=S四边形PFCNA,即a=b。

(2)(1)的方法同时也适用于第二问。

(3)由(1)(2)可知,任意一条过平行四边形对角线交点的直线将把平行四边形分成面积相等的两部分,利用面积之间的关系即可解答。

4. (重庆市2006年10分)如图,在梯形ABCD中,AB//DC,∠BCD=90︒,且AB=1,BC=2,tan∠ADC=2.(1)求证:DC=BC;(2)E是梯形内的一点,F是梯形外的一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135︒时,求sin∠BFE的值。

相关文档
最新文档