北师大版九年级数学上册《二次函数与一元二次方程》导学案

合集下载

北师大版九年级上《一元二次方程》全章导学案

北师大版九年级上《一元二次方程》全章导学案

认识一元二次方程(1)一,自主探究活动内容:问题一:一块四周镶有宽度相等的花边的地毯如下图,它的长为8m,宽为5m.地毯中央长方形图案的面积为18m2。

根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?问题二:你能找到关于102、112、122、132、142这五个数之间的等式吗?得到等式102+112+122=132+142之后你的猜想是什么?根据猜想继续找五个连续整数,使前三个数的平方和等于后两个数的平方和。

问题三:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m.那么梯子的底端滑动多少米?8二,总结归纳活动内容:归纳一元二次方程的概念:结合上面三个问题得到的三个方程,观察它们的共同点,得到一元二次方程的概念及其各部分的名称。

一元二次方程概念:含有一个未知数并且未知数的最高次数是2的整式方程。

经过整理后,一个一元二次方程可化简为ax2+bx+c=0(a≠0),即它的一般形式:ax2+bx+c=0(a ≠0)。

应从两方面理解一元二次方程的一般形式:(1)若ax2+bx+c=0是一元二次方程,则有a≠0;(2) 若a≠0(b、c可以为零),则ax2+bx+c=0是一元二次方程。

判断一个方程是不是一元二次方程,满足三个条件:①含有一个未知数并且未知数的最高次数是2;②必须是整式方程;③二次项系数不能为零。

简而言之是指经化简后,若符合ax2+bx+c=0(a≠0) ,则为一元二次方程,否则不是。

三,学以致用活动内容:1、把方程(3x +2)2=4(x -3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.2.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.易错易混点1. 下列关于x 的方程:(1) ax 2+bx+c=0 ;(2)532=+aa ;(3)0322=--x x ;(4)0223=+-x x x 中,一元二次方程的个数是( )A. 1个B. 2个C. 3个D. 4个2. 判断方程m 2(x 2+m)+2x=x(x+2m)-1是不是关于x 的一元二次方程。

北师大版九年级数学2.5 二次函数与一元二次方程(2)教案

北师大版九年级数学2.5 二次函数与一元二次方程(2)教案

“二次函数与一元二次方程2”教学设计教学目标1.学生能够利用函数图象估算一元二次方程的根. 2.学生能够体会数形结合思想.教材分析重点利用函数图象估算一元二次方程的根.难点利用数形结合思想解决问题.教具课件教学过程一、温故知新二次函数的图象与x轴交点的横坐标就是一元二次方程的根.1.二次函数的图象如图①图象与x轴有_____个交点;②交点坐标为_____________;请直接写出一元二次方程的解:2.二次函数的图象如图所示请直接写出方程的解:二、探究新知二次函数的图象如图452+-=xxycbxaxy++=22=++cbxax452=+-xx232++=xxy232=++xx1022-+=xxy教学过程请直接写出方程的解:学生们由上面两个题可以直接写出nxmx==21,引导学生思考如何根据函数图象对m和n的近似值进行估计。

并通过以下提问来引导学生思考:1.交点的大概位置在哪里?2.如何再将范围更具体一些?3.-4.3和-4.4哪个用来表示m的值更贴近.根据函数值在-5和-4之间随着x的增大而减小,从而可以确定函数值为0的位置,进而估计出m的近似值是-4.3。

再用类似的方法确定出n的近似值,从而得出方程的近似根。

三、巩固提升1.利用二次函数的图象求一元二次方程的近似根.2.请利用二次函数的图象求一元二次方程的近似根.1022=-+xx1422++-=xxy31022=-+xx1322-+=xxy1022-+=xxy教学过程引导学生找出此题与全面两道题的异同,并通过转化尝试分别用两个图象估算方程的根.3.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式是 .柱子OA的高度为多少米?若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?4.利用二次函数与一次函数的图象,求一元二次方程的近似根.四、积累与总结1.小结本节课的收获2.名言导航,养成品质.数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。

(北师大版)九年级上册数学第二章《一元二次方程》导学案 配方法

(北师大版)九年级上册数学第二章《一元二次方程》导学案 配方法

2.2.1配方法解一元二次方程【学习目标】1.会用开平方法解一元二次方程;理解配方的概念并掌握配方的技巧;2.通过自主探索和小组合作,学会运用配方法解一元二次方程;3.激情投入,全力以赴学习,在不断的探索中享受学习的快乐。

【学法指导】1.用10分钟左右的时间认真阅读、探究课本基础知识,并借助《教材解读》自主学习,理解配方的概念并掌握配方的技巧。

2.认真完成导学案的问题;3.初步评价自己完成学习目标情况,并把自己的疑问写出来,以求课堂上解决。

【课前导学】一、探究新知:知识点1:直接开平方法解一元二次方程:【知识链接1】求一个非负数的平方根:如果92=x ,则x =_______;如果52=x ,则x =_______;如果02=x ,则x =_______。

试求下列方程的根:(1)092=-x (2)052=-x【提示】当满足方程的解不止一个时,为了区分,应把方程的解写为1x 、2x 的形式。

一般情况下,方程解的个数与其次数一样。

【探究1】1、对于方程4)3(2=+x ,你能用上面的方法来求解吗?你是如何解的?2、你能把方程0562=++x x 转化成4)3(2=+x 吗?你是如何转化的?知识点2 : 配方法解一元二次方程【知识链接2】1、完全平方公式——运算形式形如222b ab a +±的二次三项式。

试着写出两个完全平方式:___________________,_____________________。

【探究2】对于方程02=++q px x ,可先将方程变形为______2=+px x ,然后将方程左边进行配方(根据等式基本性质,两边同时加上2)2(p(一次项系数的一半的平方)即可),如0562=++x x ,移项得:______62=+x x ,两边同时加上_____,可得____________,从而得__________________,这样就可以用“开平方”的方法求解方程了。

《22.2 二次函数与一元二次方程》教案、教学设计、导学案

《22.2 二次函数与一元二次方程》教案、教学设计、导学案

《22.2 二次函数与一元二次方程》教案【教学目标】1.通过探索,理解二次函数与一元二次方程之间的联系.2.能运用二次函数及其图象确定方程和不等式的解或解集.3.根据函数图象与x轴的交点情况确定未知字母的值或取值范围.【教学过程】一、情境导入如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?二、合作探究探究点一:二次函数与一元二次方程【类型一】二次函数图象与x轴交点情况判断下列函数的图象与x只有一个交点的是( )A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点,故选D.【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x=2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x轴交点情况确定字母取值范围若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0 B.0或2C.2或-2 D.0,2或-2解析:若m≠0,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m=0,原函数是一次函数,图象与x轴也有一个交点.由(m+2)2-4m(12m+1)=0,解得m=2或-2,当m=0时原函数是一次函数,图象与x轴有一个交点,所以当m=0,2或-2时,图象与x轴只有一个交点.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x 轴没有交点.【类型四】利用抛物线与x轴交点坐标确定一元二次方程的解小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax +b=0的解是( )A.无解B.x=1C.x=-4D.x=-1或x=4解析:∵二次函数y=x2+ax+b的图象与x轴交于(-1,0)和(4,0),即当x=-1或4时,x2+ax+b=0,∴关于x的方程x2+ax+b=0的解为x1=-1,x=4,故选D.2方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1解析:观察图象,可知当-3<x<1时,抛物线在x轴上方,此时y>0,即ax2+bx+c>0,∴关于x的不等式ax2+bx+c>0的解集是-3<x<1.故选C.方法总结:抛物线y=ax2+bx+c在x轴上方部分的点的纵坐标都为正,所对应的x的所有值就是一元二次不等式ax2+bx+c>0的解集;在x轴下方部分的点的纵坐标均为负,所对应的x的所有值就是一元二次不等式ax2+bx+c<0的解集.【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x >3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.三、板书设计【教学反思】教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况.体会知识间的相互转化和相互联系.《22.2 二次函数与一元二次方程》教学设计【教学目标】知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.【教学重点和难点】重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.【教学过程设计】(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t—5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2ax bx c++的图像与x轴相交,那么交点的横坐标就是一元二次方程2ax bx c++=0的根.(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x,那么当x=x0时,函数的值是0,因此x=x就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计《22.2 二次函数与一元二次方程(第一课时)》教案【教学目标】:1.知识与技能:通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系.2.方法与过程:使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识.3.情感、态度与价值观:进一步培养学生综合解题能力,渗透数形结合思想.【教学重点】:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点.【教学难点】:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.本节课,请同学们共同研究,尝试解决以下几个问题二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+4 5 .(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?问题2:画出函数y=x2-x-3/4的图象,根据图象回答下列问题.(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y=0?这里x的取值与方程x2-x-34=0有什么关系?(3)你能从中得到什么启发?对于问题(2),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x-34的图象与x轴交点的横坐标,即为方程x2-x-34=0的解;从“数”的方面看,当二次函数y=x2-x-34的函数值为0时,相应的自变量的值即为方程x2-x-34=0的解.更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系.三、课堂练习: P23练习1、2.五、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况.六、作业:《22.2 二次函数与一元二次方程(第二课时)》教案【教学目标】:1.知识与能力:复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.2.方法与过程:让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解.3.情感、态度与价值观:提高学生综合解题能力,渗透数形结合思想.【教学重点】;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点.【教学难点】:提高学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解.(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解.二、探索问题已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m =1所以y1=x+1,P(3,4). 因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k +8 解得 k =2 所以y 1=2x 2-8x +10(2)依题意,得⎩⎪⎨⎪⎧y =x +1y =2x 2-8x +10 解这个方程组,得⎩⎪⎨⎪⎧x 1=3y 1=4 ,⎩⎪⎨⎪⎧x 2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).五、小结: 如何用画函数图象的方法求方程的解?六、作业:《22.2二次函数与一元二次方程》导学案【学习目标】:1.探索二次函数与一元二次方程、一元二次不等式之间的关系.2.掌握一元二次方程(组)的图象解法.【重点、难点】1.重点:探索二次函数与一元二次方程、一元二次不等式之间的关系.2.难点:掌握一元二次方程(组)的图象解法.【导学过程】:阅读教材P16 — 19 , 完成课前预习【课前预习】1:准备知识(1) 一元二次方程根的情况:(2)一次函数与一元一次方程的关系:2:探究1以40米/秒的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线。

九年级数学上册:二次函数与一元二次方程导学案

九年级数学上册:二次函数与一元二次方程导学案

九年级数学上册:二次函数与一元二次方程导学案学习目标:1.探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.一、基础扫描1一元二次方程ax2+bx+c=0根的判别式当△>0时当△﹤0时当△=0时2一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程_______,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程_______的解.二、探究1一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?函数:①y=x2+2x ② y=x2-2x+1 ③y=x2-2x+2图象:一元二次方程:⑴x2+2x=0 ⑵x2-2x+1=0 ⑶x2-2x+2=0一元二次方程根的形式:⑴△__0有_______ ⑵△__0 有_______ ⑶△__0 有_______ 一元二次方程的解:⑴___________ ⑵___________ ⑶___________函数与x轴交点的个数:①___________ ② ___________ ③___________函数与x轴交点的坐标:①___________ ②___________ ③___________结合元二次方程根的形式和函数与x轴交点的个数得出的结论是:结合一元二次方程的解和函数与x轴交点的坐标得出的结论是:(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?探究2我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v 0t+h表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么(1)h与t的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.(3)在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?三、知识超市1.抛物线y=a(x-2)(x+5)与x轴的交点坐标为.2.抛物线y=2x2+8x+m与x轴只有一个交点,则m= .3.二次函数y=kx2+3x-4的图象与x轴有两个交点,则k的取值范围.4.抛物线y=x2-2x+3的顶点坐标是抛物线y=x2-2x+3可变形为y=(x-__)(x+__)且与x轴交点的坐标与y轴交点的坐标,5画出函数y=x2-2x+3的草图6.已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.四、课后总结:。

九年级数学导学案-一元二次方程

九年级数学导学案-一元二次方程

九年级数学导学案——一元二次方程§2.1.1一元二次方程(一) 导学案【学习目标】1.会根据具体问题列出一元二次方程。

通过“花边有多宽”,“梯子的底端滑动多少米”等问题的分析,列出方程,体会方程的模型思想,培养把文字叙述的问题转换成数学语言的能力。

2.通过分析方程的特点,抽象出一元二次方程的概念,培养归纳分析的能力。

3.会说出一元二次方程的一般形式,会把方程化为一般形式。

【学习重难点】重点:一元二次方程的概念难点:如何把实际问题转化为数学方程【学法指导】通过具体问题列出方程,化简方程,分析方程特点,抽象、归纳出一元二次概念和一般形式。

【知识链接】1.什么是一元一次方程?什么是二元一次方程?【问题导学】自学课本31页至32页内容,独立思考解答下列问题:1.情境问题:列方程解应用题:一个面积为120 m2的矩形苗圃,它的长比宽多2m。

苗圃的长和宽各是多少?解:设____________________, 列方程得:_________________你能将方程化成ax2+bx+c=0的形式吗?2.阅读课本P32,思考下列问题:1)什么是一元二次方程?2)什么是一元二次方程的一般形式?二次项及二次项系数、一次项及一次项系数、常数项?3.课前小练:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。

(1)3x2=5x-1 (2)(x+2)(x-1)=6 (3)4-7x2=0【合作探究】1.一元二次方程应用举例:1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m ,宽为5m ,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?如果设花边的宽为xm ,那么地毯中央长方形图案的长为__________m ,宽为___________m ,根据题意,可得方程_____________。

化成一般形式得_______________。

2)如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简。

《二次函数与一元二次方程、不等式》课件与导学案

《二次函数与一元二次方程、不等式》课件与导学案
结合图像可知 2 − 110 + 3000 < 0的解集为
{|50 < < 60}




一元二次不等式的应用
例题② 某种汽车在水泥路面上的刹车距离(单位:米)和汽车刹车前的速度(单位:
1
1
km/h)之间有如下关系: = 180 2 + 20 .再一次交通
事故中,测得这种车的刹车距离大于39.5米,那么
下方时,对应的的取值范围的集合;
【例题】求不等式 2 − 5 + 6 > 0的解集.
【分析】因为方程 2 − 5 + 6 = 0的根是函数 = 2 − 5 + 6的零点,所以先求
出 2 − 5 + 6 = 0的根,再根据图像求 2 − 5 + 6 > 0的解集.
【解】对于方程 2 − 5 + 6 = 0,因为Δ > 0,所以它有
于20 m 2,则这个矩形的长和宽应该是多少?
【解】由题意设这个矩形的两条边长分别为米和 12 − 米,则:
12 − > 20,其中 ∈ ȁ0 < < 12 ,
整理得 2 − 12 + 20 < 0, ∈ ȁ0 < < 12 ,
即 − 2 − 10 < 0,ቊ
的图像全部在轴下方.
当 = 0时,−2 − 2 < 0,显然对任意不能恒成立;
当 ≠ 0时,由二次函数图像可知有ቊ
<0,
△= 4 − 4( − 2)<0
解得 < 1 − 2
综上可知,解得的取值范围是{| < 1 − 2}
解一元二次不等式的过程
将原不等式化成 + + > > 的形式

新北师大版九年级上册数学导学案

新北师大版九年级上册数学导学案

第二章一元二次方程第一节 认识一元二次方程(1)学习目标:1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用. 学习重点:一元二次方程的概念.学习难点:如何把实际问题转化为数学方程.:预习案一、预习教材 二、感知填空先阅读教材“议一议”前面的内容,然后完成下面问题:1.在第一个问题中,地毯的长可以表示为_____________,宽可以表示为_____________,由矩形的面积公式可以列出方程为_________________________.2.在第二个问题中,如果设五个连续整数中间的一个数为x ,你又能列出怎样的方程呢 答:设五个连续整数中间的一个数为x ,由题意可列方程,得_________________________. 三、自主提问$探究案一、探究一:一元二次方程的概念例1:问题1:有一块矩形铁皮,长100cm ,宽50cm .在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm 2,那铁皮各角应切去多大的正方形你能设出未知数,列出相应的方程吗归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:ax 2+b x +c =0(a 、b 、c 为常数,a ≠0)这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项的系数;b x 是一次项,b 是一次项系数;c 是常数项. 》跟踪练习:1.下列方程中,是一元二次方程的是( )A .x 2+2y -1=0B .x +2y 2=5C .2x 2=2x -1D .x 2+1x -2=02.将方程(x +3)2=8x 化成一般形式为_______,其二次项系数为___,一次项系数是___,常数项是____.二、探究二:一元二次方程有关概念的应用例2:关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足什么条件¥跟踪练习:1.关于x 的方程(a -1)x 2+3x =0是一元二次方程,则a 的取值范围是______. 2.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足______时,它是一元一次方程;当m 满足________时,它是一元二次方程.作业案一、过关习题1.在下列方程中,是一元二次方程的有( )①2x 2-1=0;②ax 2+b x +c =0;③(x +2)(x -3)=x 2-3;④2x 2-1x =0. A .1个 B .2个 C .3个 D .4个 —2.把方程(x -5)(x +5)+(2x -1)2=0化成一元二次方程的一般形式为( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=0 3.下列方程是一元二次方程的是( )A. 12=-y x B. 2560x x ++= C. ()()230x x ++= D. 122,3x x =-=-4.方程2354x x -=中,关于a 、b 、c 的说法正确的是( ) A. 3,4,5a b c ===- B. 3,5,4a b c ==-= C. 3,4,5a b c =-=-=- D. 3,4,5a b c ==-=- 二、能力提升 《1.阅读材料,解答问题:有一块长80cm ,宽60cm 的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm 2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长问题:(1)如果设小正方形的边长为x cm ,那么盒子底面的长为____________;宽为__________,根据题意,所列方程为____________________.(2)所列方程的一般形式是什么是哪一种方程并指出其各项的系数.2.已知关于x 的方程(m -2)x |m |+3x -4=0是一元二次方程,那么m 的值是( )A .2B .±2C .-2D .1第一节认识一元二次方程(2),学习目标:1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.学习重点:判定一个数是否是方程的根.学习难点:会在简单的实际问题中估算方程的解,理解方程解的实际意义.预习案一、预习教材)二、感知填空请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米设梯子底端距墙为xm,那么,根据题意,可得方程为___________列表:45678 x012》3x2-36{问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少设苗圃的宽为x m,则长为_________.根据题意,得________.整理,得______________.列表:1011 x5678;9x2+2x-`120三、自主提问探究案一、探究一:探索一元二次方程的近似解例1:(1)问题1中一元二次方程的解是多少问题2中一元二次方程的解是多少(2)如果抛开实际问题,问题1中还有其他解吗问题2呢%跟踪练习:1.已知关于x的方程x2-k x-6=0的一个根为x=3,则实数k的值为() A.1B.-1C.2D.-2^2.下面哪些数是方程2x2+10x+12=0的根-4,-3,-2,-1,0,1,2,3,4.二、探究二:一元二次方程根的判定及应用例2:若x=1是关于x的一元二次方程ax2+b x+c=1(a≠0)的一个根,求代数式2016(a+b +c)的值.跟踪练习:1.若x=1是一元二次方程ax2+b x+c=0的解,则a+b+c=___;若x=-1是一元二次方程ax2+b x+c=0的解,则a-b+c=____.,2.如果x=1是方程ax2+b x+3=0的一个根,求(a-b)2+4a b的值.作业案一、过关习题1.已知长方形宽为xcm,长为3xcm,面积为24cm2,则x最大不超过())A.1B.2C.3D.422+p x+q=0,可列表如下:&则方程x2+p x+q=0的正数解满足( )A.0<x<B.<x<1 C.1<x<D.<x<二、能力提升1.2'2~分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A. <x<B. <x<C. <x<D. <x<3.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A. 2018 B. 2008 C. 2014 D. 2012])第二节用配方法求解一元二次方程(1)学习目标:1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.学习重点:会用配方法解二次项系数为1的一元二次方程.学习难点:用配方法解二次项系数为1的一元二次方程的一般步骤.^预习案一、预习教材二、感知填空1.如果一个数的平方等于4,则这个数是________.2.已知x2=9,则x=______.3.填上适当的数,使下列等式成立.(1)x2+12x+____=(x+6)2;x2-6x+_____=(x-3)2.三、自主提问、探究案一、探究一:应用配方法求解二次项系数为1的一元二次方程 例1:用配方法解方程x 2-2x -3=0<归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x +m )2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法. 跟踪练习:用配方法解方程:x 2+2x -1=0.*作业案一、过关习题1.用配方法解方程,原方程应变形为( ) A. B. C. D.2.用配方法解方程x 2+4x -5=0,则x 2+4x +____=5+____,所以x 1=______,x 2=________.3.若三角形的两边长分别是6和8,第三边的长是一元二次方程(x -8)2=4的一个根,则此三角形的周长为________.4.下列解方程的过程中,正确的是( ) )A .x 2=-2,解方程,得x =± 2B .(x -2)2=4,解方程,得x -2=2,x =4C .4(x -1)2=9,解方程,得4(x -1)=±3,x 1=74,x 2=14 D .(2x +3)2=25,解方程,得2x +3=±5,x 1=1,x 2=-4 5.解下列方程: (1)()2590x --=(2)4(x +6)2-9=0\(3)x 2-10x +25=7 (4)x 2-14x =8|(5)x 2+3x =1 (6)x 2+2x +2=8x +4二、#三、能力提升1.若2246130a a b b ++-+=,则a b +=( )A. 1B. 1-C. 5D. 5-2.若a ,b ,c 是△ABC 的三条边,且a 2+b 2+c 2+50=6a +8b +10c ,试判断这个三角形的形状.~第二节 用配方法解一般一元二次方程(2)学习目标: (1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.学习重点:用配方法解一般一元二次方程.学习难点:用配方法解一元二次方程的一般步骤.预习案一、预习教材 @二、感知填空1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( ) A .加上32 B .加上94 C .减去32 D .减去94 2.解方程(x -3)2=8,得方程的根是( )A .x =3+2 2B .x =3-2 2C .x =-3±2 2D .x =3±22 3.方程x 2-3x -4=0的两个根是____________. 三、自主提问探究案!一、探究一:用配方法解二次项系数不为1的一元二次方程 例1:用配方法解方程2x 2-6x +1=0@用配方法求解一般一元二次方程的步骤是什么归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.跟踪练习:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度》作业案一、过关习题1.要使方程x 2-72x =-32左边配方成完全平方式,应在方程两边同时加上( )A.2)27( B .72 D.2)47(@2.用配方法解下列方程时,配方有错误的是( )A. x 2-2x-99=0化为(x-1)2=100B. x 2+8x+9=0化为(x+4)2=25C. 2t 2-7t-4=0化为2781416t ⎛⎫-= ⎪⎝⎭D. 3y 2-4y-2=0化为221039y ⎛⎫-= ⎪⎝⎭3.把方程21503x x --=,化成(x +m)2=n 的形式得 ( ) A. 232722x ⎛⎫-= ⎪⎝⎭ B.232924x ⎛⎫-= ⎪⎝⎭ C. 236924x ⎛⎫-=⎪⎝⎭ D. 235124x ⎛⎫-= ⎪⎝⎭4.用配方法解方程:(1)4x 2+8x -3=0 (2)3x 2-9x +2=0 (3)2x 2+6=7x)<二、能力提升 先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2310x x +-=的根.{第三节 用公式法求解一元二次方程^学习目标:1.理解求根公式的推导过程和判别公式.2.使学生能熟练地运用公式法求解一元二次方程.3.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.学习重点:求根公式的推导和公式法的应用.学习难点:理解求根公式的推导过程及判别公式的应用.预习案一、预习教材'二、感知填空1.方程3x2-x=2化成一般形式后,式中()A.a=3,b=-1,c=2B.a=2,b=1,c=-2C.a=3,b=-1,c=-2 D.a=3,b=1,c=-22.用配方法解下列方程:(1)x2-x-1=0(2)2x2-4x=1,三、自主提问探究案一、探究一:探索一元二次方程的求根公式例1:用配方法解方程:ax2+b x+c=0(a≠0).$^归纳总结:由上可知,一元二次方程ax2+b x+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+b x+c=0,当b2-4a c≥0时,将a、b、c代入式子x=-b±b2-4ac2a,就可求出方程的根;(2)这个式子叫做一元二次方程的求根公式;(3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程最多有两个实数根. 二、探究二:用公式求解一元二次方程例2:用公式法解下列方程,根据方程根的情况你有什么结论(1)2x 2-3x =0 (2)3x 2-23x +1=0 (3)4x 2+x +1=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.有两个不相等的实数根 B.有两个异号实数根 C
我的收获: 我的疑惑:
达 标 测 试
2、△=0得到一元二次方程ax2+bx+c=0有两个相等的实数根 得到 抛物线与x轴有 个交点 3、△﹤0得到一元二次方程ax2+bx+c=0没有实数根得到 抛物线与x轴 交点 练习 (1)如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数 根,则m=____,此时抛物线 y=x2-2x+m与x轴有____ 个交点. (2).不与x轴相交的抛物线是( ) A y=2x2–3 B y= - 2 x2+ 3 C y= - x2 –3x D y=-2(x+1)2 - 3 (3).求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标
.
问 题 探 究
问题1、画出.二次函数y=x2+2x, y=x2-2x+1, y=x2-2x+2图象. 观察(1)y=x2+2x与x轴的交点坐标是( )。 方程x2+2x=0 的解是 (2) y=x2-2x+1, 与x轴的交点坐标是 方程x2-2x+1=0的解是 (3)y=x2-2x+2与x轴的交点坐标是 方程x2-2x+2=0的解是 问题2:二次函数y=ax2+bx+c的图象和x轴交点横坐标与一 元二次方程ax2+bx+c=0的根有什么关系? 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的 坐标就 是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根. (4)每个图象与x轴有几个交点? 二次函数y=ax2+bx+c的图象和x轴交点有三种情况: ①有 个交点, ②有 个交点, ③ 交点. 二次函数y=ax2+bx+c的图象和x轴交点个数与一元二次方 程ax2+bx+c=0根的关系 1、△>0 得到 一元二次方程ax2+bx+c=0有两个不等的实数 根得到抛物线与x轴有 个交点
杨庄一中
九年级数学导学案
主 备
杨淑旭
课 题
二次函数与一元二次方程
学习 (1)掌握二次函数与x轴交点个数的判断方法。 (2)能正确理解二次函数与x轴交点的横坐标与一元二次方程 目 2+bx+c=0根的关系。 ax 标 学习 重难 点 旧知 识链 接
能正确理解二次函数与x轴交点的横坐标与一元二次方程 ax2+bx+c=0根的关系。 ①一元二次方程的一般形式 一元二次方程根的情况与b²-4ac的关系: ②.解方程: x2+2x=0 x2-2x+1=0 x2-2x+2=0
1、判断下列各抛物线是否与x轴相交,如果相交,求出交 点的坐标。 (1)y=x2+x (2)y=x2-6x+9 (3)y=x2-x+1
2、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若 抛物线与x轴有两个交点,则a的范围是 ; 2 3、已知抛物线y=x -3x+a+1与x轴最多只有一个交点,则a的 范围是 。 4、已知抛物线y=x2+px+q与x轴的两个交点为(-2,0), (3,0),则p= ,q= 。 2 5、已知抛物线y=x +2x+m+1,若抛物线与x轴只有一个交 点,求m的值。
6.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次 方程ax2+bx+c=0( ) A.没有实根
B.只有一个实根 C.有两个实根,且一根为正,一根为负 D.有两个实根,且一根小于1,一根大于2 7.函数y=ax2+bx+c的图象如图所示,那么关于x的方 程ax2+bx+c-3=0的根的情况是( )
相关文档
最新文档