Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling

合集下载

CVD简介

CVD简介

CVD(Chemical Vapor Deposition)原理CVD(Chemical Vapor Deposition)化学气相沉积,指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。

CVD特点淀积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。

CVD制备的必要条件1) 在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室;2) 反应产物除了形成固态薄膜物质外,都必须是挥发性的;3) 沉积薄膜和基体材料必须具有足够低的蒸气压。

CVD是Chemical Vapor Deposition的简称,是指高温下的气相反应,例如,金属卤化物、有机金属、碳氢化合物等的热分解,氢还原或使它的混合气体在高温下发生化学反应以析出金属、氧化物、碳化物等无机材料的方法。

这种技术最初是作为涂层的手段而开发的,但目前,不只应用于耐热物质的涂层,而且应用于高纯度金属的精制、粉末合成、半导体薄膜等,是一个颇具特征的技术领域。

其技术特征在于:(1)高熔点物质能够在低温下合成;(2)析出物质的形态在单晶、多晶、晶须、粉末、薄膜等多种;(3)不仅可以在基片上进行涂层,而且可以在粉体表面涂层,等。

特别是在低温下可以合成高熔点物质,在节能方面做出了贡献,作为一种新技术是大有前途的。

例如,在1000℃左右可以合成a-Al2O3、SiC,而且正向更低温度发展。

CVD工艺大体分为二种:一种是使金属卤化物与含碳、氮、硼等的化合物进行气相反应;另一种是使加热基体表面的原料气体发生热分解。

CVD的装置由气化部分、载气精练部分、反应部分和排除气体处理部分所构成。

目前,正在开发批量生产的新装置。

CVD是在含有原料气体、通过反应产生的副生气体、载气等多成分系气相中进行的,因而,当被覆涂层时,在加热基体与流体的边界上形成扩散层,该层的存在,对于涂层的致密度有很大影响。

三氯化铝—氯化正丁基吡啶类室温熔盐的合成

三氯化铝—氯化正丁基吡啶类室温熔盐的合成

三氯化铝—氯化正丁基吡啶类室温熔盐的合成
谢乃贤;司士辉
【期刊名称】《湖南大学学报:自然科学版》
【年(卷),期】1993(020)004
【摘要】本文报道了三氯化铝-氯化正丁基吡啶类室温熔盐的合成过程.随着熔盐组成的变化,熔盐的电位窗最负为—1.5V,最正为+1.5V(相对于Ag/Ag^+).电导率在12×10^(-3)Ω^(-1)cm^(-1)至8×10^(-3)Ω^(-1)cm^(-1)之间,熔点范围在33℃±1℃至17°±1℃之间变化.
【总页数】5页(P49-52,58)
【作者】谢乃贤;司士辉
【作者单位】不详;不详
【正文语种】中文
【中图分类】O645.4
【相关文献】
1.用离子液体四氟硼酸正丁基吡啶盐作催化剂和反应介质合成3,4 -二氢嘧啶-2-酮[J], 周美云;李毅群
2.离子液体正丁基吡啶硫酸氢盐催化一锅法合成3,4-二氢嘧啶-2(1H)-酮 [J], 周忠强;霍恒瑞;马琼;冉均;吴腊梅
3.含稀散金属铟的室温离子液体氯化正丁基吡啶的电化学分析 [J], 田家明;房大维;邹春阳
4.四甲基苯醌在氯化正丁基吡啶—AlCl3室温熔盐中的循环伏安行为 [J], 谢乃贤;
司士辉
5.室温熔盐溴化丁基吡啶和氟硼酸根丁基吡啶的制备及性能研究 [J], 潘春跃;徐先华;刘清泉
因版权原因,仅展示原文概要,查看原文内容请购买。

23二氯5三氟甲基吡啶 合成工艺

23二氯5三氟甲基吡啶 合成工艺

23二氯5三氟甲基吡啶合成工艺
23二氯5三氟甲基吡啶是一种很常见的粉末物质,常用于杀虫剂、除草剂等领域,其合成工艺也相当重要。

在这篇文章中,我将分步骤阐述23二氯5三氟甲基吡啶的合成工艺。

第一步,将3-氨基-5-(三氟甲基)吡咯烷酮与2-氨基氯苯反应,采用钯催化下的Suzuki偶联反应,可以得到23二氯5三氟甲基吡啶的中间产物23-二氯-5-(三氟甲基)苯基吡啶。

第二步,将上述中间产物与环氧乙烷反应,去除其中的氯离子和三氟甲基基团,可以得到所需的23二氯5三氟甲基吡啶。

需要注意的是,采用Suzuki偶联反应时,反应溶液需在惰性气体下进行反应,保证反应物无氧化。

反应温度一般为室温,反应时间约2-3小时。

而在环氧乙烷反应时,反应温度一般为50-60℃,反应时间为2-3小时。

在实际生产中,除上述两步反应外,还需要进行反应后的中间产物精制、干燥等步骤,保证最终得到的产品质量符合要求。

同时,对于反应物和中间产物的储存也需要格外注意,避免其受潮、受热、受光等因素的影响,造成反应异常。

总的来说,23二氯5三氟甲基吡啶的合成工艺相对来说较为简单,但其中所涉及的催化反应、化学反应等步骤都需要严格控制。

只有精细化操作、科学管理,才能保证最终得到的产品质量优良。

镀膜技术CVD

镀膜技术CVD
化学气相沉积(CVD——Chemical vapor deposition)
概 念:气态反应物在一定条件下,通过化学反应,将反应形成的固相产物沉积于基片表面,
形成固态薄膜的方法。
基本特征:由反应气体通过化学反应沉积实现薄膜制备!
设备的基本构成:
气体输运
气相反应 去除副产品 (薄膜沉积)
Chemical vapor deposition, CVD
一、反应过程【以TiCl4(g)+CH4(g)TiC(s)+4HCl(g)为例说明】
■ 各种气体反应物流动进入扩散层;
■ 第①步(甲烷分解):CH4 C + H2 ■ 第②步(Ti的还原):H2+TiCl4 Ti + HCl ■ 第③步(游离Ti、C原子化合形成TiC):Ti + C TiC
二、CVD形成薄膜的一般过程:
单晶 (外延)
板状 单晶
针状 单晶
树枝晶
柱状晶
T
微晶
非晶
粉末 (均相形核)
T
Chemical vapor deposition, CVD
CVD沉积装置
一、概述:
反应气体和载气的供给和计量装置
1)基本系统构成:加热和冷却系统
反应气体的排出装置或真空系统
2)最关键的物理量:沉气积相温反度应物的过饱和度
( E h hc / )
② 基片温度 只影响扩散传输、不影响化学反应
主要优点:
① 沉积温度低、无需高能粒子轰击,可获得 结合好、高质量、无损伤的薄膜;
② 沉积速率快; ③ 可生长亚稳相和形成突变结(abrupt junction)。
主要应用场合:
低温沉积各种高质量金属、介电、半导体薄膜。

化学气相沉积CVD

化学气相沉积CVD
16
3. PECVD装置 普通CVD+高频电源(用于产生等离子体)
图8.3.4 卧式管状PECVD装置
用高频产生辉光放电等离子体的卧式反应 器,用于沉积氮化硅等薄膜。
在 350~400℃的低温下,以50~ 100nm/min的沉积速率进行成膜。
图8.3.5 立式PECVD反应器
SiH4生长Si外延层的立式管状 PECVD反 应器,当T=650℃,P<1.3Pa时,可得 到均匀优质的硅外延层。
(3) PECVD工艺的主要缺点是:由于等离子体轰击,使沉 积膜表面产生缺陷,反应复杂,也会使薄膜的质量有 所下降。
PECVD是20世纪80年代崛起的新沉积制膜
技术,特别适用于金属化后钝化膜和多层布 线介质膜的沉积!
18
三、光CVD(PCVD)
光化反应:用光束来激活反应物,促进生成物形成的化学反 应。
相沉积中的最简单形式,例如:
SiH4 (气) 800℃~1200℃ Si(固)+2H2 ↑
2
Ni(CO)4(气) 190~240℃ Ni(固)+4 CO↑ CH4(气) 900~1200℃ C(固)+2H2 ↑ TiI4(气) 加热 Ti(固)+2I2 ↑
用作热分解反应沉积的气态化合物原料主要有: 硼的氯化物,氢化物; 第IV族大部分元素的氢化物和氯化物; VB、VIB族的氢化物和氯化物; 铁、镍、钴的羰基化合物和羰基氯化物; 以及铁、镍、铬、铜等的金属有机化合物等。
12
2024/10/15
13
5. CVD的优缺点
(1)优点: ① 膜层纯度一般很高,很致密,容易形成结晶定向好的材料;
例如:用蓝宝石作基片,用CVD制备的-Al2O3单晶材料, 其杂质含量为30~34ppm,远小于蓝宝石本身的杂质含量; ② 能在较低温度下制备难熔物质;

低温吸咐脱水法一步合成二甲氧基丙烷

低温吸咐脱水法一步合成二甲氧基丙烷

28'- )(' 〕 大 燥剂3 存 下或 用 馏 法才 得 或 量干 〔 在 利 精 催化 可以 〕
到较高产率。丙酮与甲醇的反应 , 在常温情况下, 当丙酮与
80r- ,烘千四小时, 趁热移人干燥器中冷却即可。 (五)含水混合液配制 用电子天平称取 411. 8g 丙酮, 454. 48 甲醇, 两者混合,
(二)实验仪器 电热鼓风干燥箱、 马弗炉、 分析天平、 一 SQ 206 气相色谱
果差别很大, 无水硫酸钠、 无水碳酸钠的干燥效果较差, 体系 水量分别为5.49%,6. 25%, 4A 分子筛干燥效果中等, 无水
收稿日期:2004 - 11 一10 作者简介:补朝阳( 1969 一) , , 男 湖南省怀化市人 , , 硕士 讲师。研究 向: 有机化学。
时间 。
[2 ] Lorette N B, Howard Wletal. Preparetion of Ketone Acetals from Linear Ketone and Alcohols. J Org Chem, 1959 , 24 ( 11) : 1731 一 1732. [3] Rolland M W, Freeport John M L. Preparation of ketals [J 1. US 2837575 , 1958 . [4 ] Chhao 一Yang Hsu, Media , Paul E Ellis. Process for the Production of 2 , 2 一 Dimethoxy 一 propane [ J 】 US .
三、 结果与讨论
(一)干燥剂吸附脱水能力的考察
在千 燥剂筛选中, 分别取含水6.58%混合液 l og 于各锥 形瓶中, 分别加人混合液 40%重量的4g 无水碳酸钠、 无水硫

3-氯苯过氧甲酸(3-氯过氧苯甲酸)[含量≤57%,惰性固体含量≤3%,含水≥40%]安全技术说明书

3-氯苯过氧甲酸(3-氯过氧苯甲酸)[含量≤57%,惰性固体含量≤3%,含水≥40%]安全技术说明书

3-氯苯过氧甲酸(3-氯过氧苯甲酸)[含量≤57%,惰性固体含量≤3%,含水≥40%]安全技术说明书修改日期:SDS编号:1421-2产品名称:3-氯苯过氧甲酸[含量≤57%,惰性固体含量≤3%,含水≥40%]版本:V1.0.0.3第一部分化学品名称化学品中文名:3-氯苯过氧甲酸[含量≤57%,惰性固体含量≤3%,含水≥40%]化学品英文名:3-chloroperoxybenzoic acid(not more than57%,and inert solid not more than3%,and water not less than40%)化学品别名:-CAS No.:937-14-4EC No.:213-322-3分子式:C7H5ClO3第二部分危险性概述|紧急情况概述固体。

遇热有火灾危险。

|GHS危险性类别根据GB30000-2013化学品分类和标签规范系列标准(参阅第十六部分),该产品分类如下:有机过氧化物,D型。

警示词:危险危险信息:加热可能起火。

防范说明预防措施:远离热源、热表面、火花、明火以及其它点火源。

禁止吸烟。

只能在原包装中存放。

保持低温。

容器和接收设备接地和等势联接。

戴防护手套/穿防护服/戴防护眼罩/戴防护面具。

事故响应:不适用。

安全储存:存放在通风良好的地方。

防日晒。

分开存放。

废弃处置:按照地方/区域/国家/国际规章处置内装物/容器。

|危害描述物理化学危险遇热有火灾危险。

健康危害吸入该物质可能会引起对健康有害的影响或呼吸道不适。

意外食入本品可能对个体健康有害。

通过割伤、擦伤或病变处进入血液,可能产生全身损伤的有害作用。

眼睛直接接触本品可导致暂时不适。

环境危害请参阅SDS第十二部分。

第三部分成分/组成信息物质混合物危险组分:3-氯苯过氧甲酸浓度或浓度范围:<=57.0CAS No.:937-14-4第四部分急救措施|急救措施描述一般性建议:急救措施通常是需要的,请将本SDS出示给到达现场的医生。

化学气相沉积法的英文缩写

化学气相沉积法的英文缩写

化学气相沉积法的英文缩写Chemical Vapor Deposition (CVD) is a technique widely used in the semiconductor industry to deposit thin films on substrates. It involves the reaction of gaseous precursors at the substrate surface, leading to the formation of a solid material.This process is highly advantageous due to its ability to produce high-quality films with excellent uniformity and purity. The versatility of CVD allows for the deposition of a variety of materials, including metals, semiconductors, and insulators.CVD systems can be tailored to specific applications by adjusting parameters such as temperature, pressure, and gas flow rates. This customization enables precise control over the film's properties, making it an indispensable tool in material science.One of the key benefits of the CVD process is its scalability. It can be applied to both small-scale laboratory experiments and large-scale industrial production, providing a flexible solution for various needs.Environmental considerations are also a significant aspect of CVD technology. The use of gaseous precursors can be more efficient and less wasteful compared to other deposition methods, contributing to a greener manufacturingprocess.In the field of nanotechnology, CVD plays a crucial role in the synthesis of nanostructures, such as nanowires and carbon nanotubes. These materials have unique properties that are driving innovation in electronics, energy storage, and other industries.The future of CVD looks promising, with ongoing research aimed at improving efficiency, reducing costs, and expanding the range of materials that can be deposited. As technology advances, the applications of CVD are expected to grow, further cementing its importance in the world of materials science.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chemical Vapor Deposition of Pd(C 3H 5)(C 5H 5)to Synthesize Pd@MOF-5Catalysts for Suzuki Coupling ReactionMingming Zhang •Jingchao Guan •Bingsen Zhang •Dangsheng Su •Christopher T.Williams •Changhai LiangReceived:18November 2011/Accepted:7January 2012/Published online:19January 2012ÓSpringer Science+Business Media,LLC 2012Abstract The highly porous metal organic framework MOF-5was loaded with the metal–organic compound [Pd(C 3H 5)(C 5H 5)]by metal–organic chemical vapor deposition (MOCVD)method.The inclusion compound [Pd(C 3H 5)(C 5H 5)]@MOF-5was characterized by powder X-ray diffraction (PXRD),Fourier-transform infrared (FT-IR)spectroscopy,and solid-state nuclear magnetic reso-nance spectroscopy.It was found that the host lattice of MOF-5remained intact upon precursor insertion.The –C 3H 5ligand in the precursor is easier to lose due to the interaction between palladium and the benzenedicarbox-ylate linker in MOF-5,providing a possible explanation for the irreversibility of the precursor adsorption.Pd nano-particles of about 2–5nm in size was formed inside the cavities of MOF-5by hydrogenolysis of the inclusion compound [Pd(C 3H 5)(C 5H 5)]@MOF-5at room tempera-ture.N 2sorption of the obtained material confirmed that high surface area was retained.In the Suzuki coupling reaction the Pd@MOF-5materials showed a good activity in the first catalytic run.However,the crystal structure of MOF-5was completely destroyed during the following reaction runs,as confirmed by PXRD,which caused a big loss of the activity.Keywords MOF-5ÁPalladium ÁMOCVD ÁSuzuki coupling1IntroductionRecently,there has been a considerable upsurge in the study of porous hybrid organic–inorganic materials-metal organic frameworks,referred to as MOFs.Because of their tunable cavities,high surface area,controlled porosity and low density,MOFs have been applied in a lot of fields including chemical sensing [1,2],drug release [3],gas sorption or storage [4],and catalysis [5].However,their application in catalysis has been very limited mainly due to two factors:first,the stability of the materials toward temperature,moisture,and some reactants and impurities is much lower compared to inorganic porous materials;sec-ond,in many MOF structures,the coordination positions around the metal ion are occupied by organic linkers,leaving no available place for reactants sorption [6–8].However,as an alternative concept,MOF can be used as a catalyst support and applied in fine chemical synthesis.Opelt et al.[9]prepared a 0.5wt%Pd@MOF-5catalyst by the coprecipitation method.In the hydrogenation of ethyl cinnamate with molecular hydrogen,the activity of the sample was twice as high as that of a commercial Pd/C catalyst with the same Pd content.Sabo et al.[10]depos-ited 1wt%Pd on MOF-5by an incipient wetness method and the sample exhibited higher activity in the hydroge-nation of styrene compared to conventional 1wt%Pd/Ccatalysts.Schro¨der et al.[11]reported a Ru@MOF-5cat-alyst prepared by metal–organic chemical vapor deposition (MOCVD)method,in which the Ru particles had about a narrow size range of 1.5–1.7nm.The sample was used as a catalyst for alcohol oxidation,and the kinetic data revealedM.Zhang ÁJ.Guan ÁC.Liang (&)Laboratory of Advanced Materials and Catalytic Engineering,Dalian University of Technology,Dalian 116024,China e-mail:changhai@URL:http://fi/liangchanghaiB.Zhang ÁD.SuDepartment of Inorganic Chemistry,Fritz Haber Institute of the Max Planck Society,14195Berlin,Germany C.T.WilliamsDepartment of Chemical Engineering,University of South Carolina,Columbia,SC 29208,USACatal Lett (2012)142:313–318DOI 10.1007/s10562-012-0767-7the limitation of the water-sensitive MOF-5host material for catalytic applications.Hermes et al.[12]also generated Pd nanocrystallites of about1.4nm size on MOF-5via the MOCVD method.The sample contained a very high loading of36wt%,but was only weakly active in the hydrogenation of cyclooctene.As a catalyst support,MOF-5has been used in hydro-genation[8],polymerization[13],and isomerization reac-tions[14].However,its use in C–C bond coupling reactions is very limited.Gao et al.[15]used a heteroge-neous Pd@MOF-5catalyst by immersion method in ligand-and copper-free Sonogashira coupling reactions. The sample showed a high activity and stability through several uses.Few reports have been found for application of MOF-5in Suzuki reaction,which is perhaps the most powerful and versatile method for formation of new biaryls [16–18].In this work,MOF-5is employed as a support for Pd supported catalysts prepared by MOCVD method.MOF-5 is a typical and common representative among the array of MOF materials available,consisting of Zn4O6?clusters as metal nodes and benzene-1,4-dicarboxylate as organic linker[19].A highly volatile palladium metal–organic complex[Pd(C3H5)(C5H5)]was chosen as the precursor. The resulting supported Pd catalyst showed good initial activity for Suzuki reaction in the solvent of DMF with K2CO3as base,before suffering from deactivation due to the instability of the pore structure in the MOF-5support. 2Experimental2.1SynthesisSamples of MOF-5[20]and[Pd(C3H5)(C5H5)][21,22] were synthesized according to literature reports.The loading of MOF-5with the volatile[Pd(C3H5)(C5H5)] followed the procedure described by Hermes[11]with some modifications.500mg of freshly activated MOF-5 and a certain amount of the precursor were mixed together in a Schlenk bottle,which was then evacuated to1Pa.The loading was carried out under static vacuum at room temperature for10h.The hydrogenation procedure was operated in a long glass tube with a sieve plate.The sample of[Pd(C3H5)(C5H5)]@MOF-5was placed on the sieve plate with H2passing through for1h,at which point the gas was switched to Ar and kept for1h.2.2Catalytic ReactionThe general procedure for the Pd@MOF-5-catalyzed Suzuki coupling reaction was as follows.A100mL three neckedflask was charged with Pd@MOF-5(50mg)and a certain base and purged with Ar.The solvent(10mL)and phenylboronic acid(1.1mmol)were added followed by bromobenzene(1.0mmol).Theflask was maintained at 90°C in an oil bath and stirred for appropriate time.The reaction products were analyzed by GC.2.3CharacterizationPowder X-ray diffraction(PXRD)was carried out using a D/MAX2400diffractometer with Cu K a monochroma-tized radiation source(k=1.5418A˚)operated at40kV and100mA.Fourier transform infrared(FT-IR)spectra were collected at room temperature on a Nicolet Impact 410with a resolution of4cm-1.The surface area,pore volume,and pore size distribution of the support and cat-alyst were determined from nitrogen adsorption–desorption isotherms at-196°C using a Micromeritics2020appa-ratus.A FEI Cs-corrected Titan80-300microscope was employed to acquire TEM images operated at80kV. Finally,13C MAS NMR spectra were recorded on Bruker DSX400MHz instrument in ZrO2rotors with a rotational frequency of8kHz.3Results and Discussion3.1Loading of MOF-5with[Pd(C3H5)(C5H5)]The[Pd(C3H5)(C5H5)]precursor was selected because of its high volatility and low decomposition temperature under H2.This compound can be sublimed without decomposition at room temperature under6910-2Pa. Thus,the loading process was carried out under static vacuum(6910-2Pa)at room temperature(23°C)for 10h.Different from other reports[11,12,23]in which the metallic precursor was in high excess,[Pd(C3H5)(C5H5)] was added in a certain mass ratio(1,2.5,5and10%).The XRD pattern of[Pd(C3H5)(C5H5)]@MOF-5 (Fig.1)shows almost no difference from the pattern of pure activated MOF-5,which indicates that MOF-5is intact after the loading process.The intensity ratio of reflections at2h=6.9°and9.7°is lowered upon inclusion of the precursor,which is a commonly observed phenom-enon on MOF-5when the pore canal is occupied by guest molecules[24].The FT-IR spectra of pure MOF-5and the intercalation compound[Pd(C3H5)(C5H5)]@MOF-5are shown in Fig.2.The strong bands at1511,1581and1607cm-1are ascribed to the asymmetric stretching of carboxyl group of the BDC linker in MOF-5.The band at1,397cm-1is attributed to symmetric stretching of the carboxyl group. The signals of the out of plane vibrations of the BDC linker are observed at1018,889,823and748cm-1.The314M.Zhang et al.intercalation compound still exhibits all the bands of pure MOF-5,which indicates that the support material has remained intact.Several new bands at 1050,1093and 1161cm -1appeared due to the out of plane vibrations of the cyclopentadiene group in the precursor.The new emerged at 2,980cm -1can be caused by symmetric stretching of the allylic C–H bond in the precursor.The 13C MAS NMR spectra of pure MOF-5,[Pd(C 3H 5)(C 5H 5)]and inclusion compound [Pd(C 3H 5)(C 5H 5)]@MOF-5are given in Fig.3.The carbon resonance signals of the bdc (1,4-benzenedicarboxylate)linker in MOF-5are found at 175.3(COO),136.7(C(COO)),and 131.2(C 6H 6)ppm,which are consistent with published information for pure MOF-5[12].The characteristic signals of [Pd(C 3H 5)(C 5H 5)]are shown at 96.6(C 5H 5)and 49.1(C 3H 5)ppm.After inclusion,it is found that the signal of C 3H 5is missing.It is known that the [Pd(C 3H 5)(C 5H 5)]@MOF-5can be turned to Pd@MOF-5by photolysis [11].A color change from pink to brown of the compound was also observed in our experiment.So it is obvious that the [Pd(C 3H 5)(C 5H 5)]started to decompose at room temperature when exposed to light.According to the 13C MAS NMR spectrum it can be deduced that the functional group of –C 3H 5is more unstable than –C 5H 5during this decomposition.This may be the reason why the palladium compound adsorption process is not reversible,as opposed to the FeCp 2precursor [13].This facile liberation of the –C 3H 5allows the palladium to more readily coordinate with the bdc link in MOF-5,thus trapping the precursor in the cage.A similar phenomenon was also found by Esken et al .[12]for a Ru(cod)(cot)(cod =1,5-cyclooctadiene,cot =1,3,5-cyclooctatriene)precursor.They found that the precursor preferred to lose the cot ligand first,thus leaving the [Ru(cod)]fragment that could be coordinated to bdc linker in MOF-5.They referred to this phenomenon as a ‘‘caging’’effect of MOF-5.However,in their work they did not describe this effect for Pd@MOF-5.3.2Reduction of [Pd(C 3H 5)(C 5H 5)]@MOF-5Four samples with different Pd loading amounts (0.17,0.69, 1.3,and 4.2wt%)as determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES)analysis were prepared.The XRD patterns of Pd@MOF-5(0.7wt%Pd and 1.3wt%Pd)are shown in Fig.1.The characteristic signals of MOF-5show no apparent difference after the hydrolysis process,except that the intensity of all peaks is strengthened.The characteristic peaks of palladium are not obviously found due to the low loading amounts and the good distribution [25].However,Fig.1XRD patterns of MOF-5(a ),Pd(C 3H 5)(C 5H 5)@MOF-5(b ),and Pd@MOF-5before (c 0.69wt%Pd,d 1.3wt%Pd)and after reaction (e)Fig.2FT-IR of pure MOF-5(a ),Pd(C 3H 5)(C 5H 5)@MOF-5(b ),Pd@MOF-5(c)Fig.313C MAS NMR spectra of MOF-5(a ),Pd(C 3H 5)(C 5H 5)(b ),Pd(C 3H 5)(C 5H 5)@MOF-5(c ),and Pd@MOF-5(d ).The signals with ‘‘asterisk ’’are spinning sidebandsChemical Vapor Deposition of Pd(C 3H 5)(C 5H 5)315the broadened signal at 2h =40.0°is assigned to an effect caused by the insertion of palladium [26].The FT-IR spectrum of Pd@MOF-5compared to [Pd(C 3H 5)(C 5H 5)]@MOF-5and pure MOF-5is shown in Fig.2.The bands from the palladium precursor disap-peared completely after the reduction process.However,the signals of MOF-5remained,except for some new bands at 1,698and 1,290cm -1.These can be explained by the trace amounts of hydrocarbon by-products remaining in MOF-5after the precursor decomposition.In the 13C MAS NMR spectrum (Fig.3),the sample of Pd@MOF-5only reveals the characteristic resonances of intact MOF-5at 175.3(COO),136.7(C(COO)),and 131.2(C 6H 6)ppm.No hydrocarbon impurities or hydrogenation of bdc linkers can be detected in 13C NMR spectrum.The Pd 3d3/2and Pd 3d5/2XPS spectrum of Pd@MOF-5is shown in Fig.4.It is observed that the Pd 3d3/2and Pd 3d5/2regions can both be deconvoluted into two peaks,which indicates the existence of two different palladium species.According to the NIST XPS Database,the Pd with the binding energy at 340.4eV (3d3/2)is characteristic of PdOx/Pd [27]and 335.8eV (3d5/2)is characteristic of PdO [28].The signals at 341.1eV (3d3/2)and 334.9eV (3d5/2)are characteristic of Pd metal [29,30].The results reveal that the Pd in MOF-5is so activated that a consid-erable amount of the metal is oxidized to PdO.The N 2sorption isotherms and pore size distributions were measured for MOF-5with and without Pd at 77K (Fig.5).The data of the inclusion compound [Pd(C 3H 5)(C 5H 5)]@MOF-5are not given because the precursor would be decomposed at the desorption temperature (200°C)[22].Type I isotherms according to IUPAC classification were observed,which are typical for microporous materials.MOF-5exhibited a Brunauer–Emmett–Teller (BET)surface area of 316m 2/g,which slightly decreased after Pd loading.The pore size distributions prove that there are two types of micropores in the range of 1–2and 3.5–4.2nm.Loading of Pd reduces the number of micropores with smaller size,while simultaneously creates larger micropores,which indirectly prove that the Pd particles are not just formed on the surface of MOF-5.The TEM images also show that the Pd particles are mostly grown in the canal of MOF-5.It has been proven that the characteristic reflections for MOF-5framework in the XRD would be reduced or completely missing while the high surface area is still left when the Pd loading is up to 26.4%(ref.12).So the long-range order of the MOF-5host can be destroyed by the loading of Pd.But in this paper,the Pd loading is much lower.The damage to MOF-5is so little that’s why only small differences can be detected in N 2adsorption results but no apparent differences can be seen from XRD,FT-IR and NMR data.The TEM images of MOF-5and Pd@MOF-5are shown in Fig.6.The typical rectangular shapes of MOF-5crys-tallites can still be revealed in both MOF-5and Pd@MOF-5TEM images,indicating that the MOF-5crystal structure is intact under the relatively low electron beam dosage (80kV).The typical size of the embedded Pd particles is around 2–5nm.The particles are well dispersed in the canal of MOF-5and no apparent aggregation on the surface of MOF-5can be seen.It has been proven that when the Pd loading is high,the Pd particles can fully spread though the MOF-5matrix [31].In this work the Pd loading is much lower,because of which some of the particles are formed near the surface of MOF-5.3.3Suzuki Coupling Reaction over Pd@MOF-5Phenylboronic acid and bromobenzene were chosen as the substrates to investigate the catalytic performance of Pd@MOF-5.Initially,DMF was chosen as the solvent to research the appropriate base.The organic base triethylaminewasFig.4XPS of Pd@MOF-5.Black is the original pattern.Red is the simulated pattern.Blue lines are deconvolutedpeaksFig.5N 2adsorption desorption isotherms and pore size distributions of MOF-5and Pd@MOF-5316M.Zhang et al.firstly chosen,since an organic solvent was used,but almost no transformation was observed.Then some typical inor-ganic bases—NaHCO 3,Na 2CO 3,Na 3PO 4and K 2CO 3—were selected.It was found that very low yield was obtained by NaHCO 3and Na 2CO 3due to their relatively low basicity and only Na 3PO 4and K 2CO 3gave a good activity.Different solvents were also investigated.Since the support of MOF-5is very sensitive to water,the reaction can only be carried out in organic solvents.Several organic solvents were tested,with acetone and ethanol achieving only very low conver-sion,and CH 3OH achieving almost the same yield as DMF.The effects of different solvents and bases are shown in Table 1.The effect of Pd loading on the catalytic performance was tested in DMF solvent with K 2CO 3as the base.The condition for the reaction was at 90°C for 20h.When the loading amount was 0.17wt%,the conversion was very low.The conversion considerably increased when the loading amount was higher,rising to 81%yield at 4.2wt%.A significant decrease of the activity is observed in second run,with further runs resulting in much smaller nega-tive effect.The results are summarized in Table 2.TheFig.6TEM images of MOF-5(a ,b )and Pd@MOF-5before (c ,d )and after reaction (e )Chemical Vapor Deposition of Pd(C 3H 5)(C 5H 5)317characteristic reflections for MOF-5in the XRD of the sample after thefirst run were completely missing as shown in Fig.1e.However,no particle growing or aggre-gation is found after reaction from the TEM results (Fig.5e).Thus,it is speculated that the collapse of the pore canals in MOF-5is the main reason for the drop of the activity.4ConclusionThe embedding of palladium nanoparticles into the metal organic framework MOF-5has been successfully prepared by metal–organic chemical vapor deposition method,and been used as catalyst for Suzuki reaction.The XRD and 13C MAS NMR results all revealed that the MOF-5was intact after MOCVD and reduction procedure.The pre-pared Pd@MOF-5had a very high BET surface area with Pd particles in size of2–5nm.The precursor was easier to lose–C3H5ligand than to lose–C5H5,which may explain why the precursor adsorption process is not reversible.The Pd@MOF-5was used as a heterogeneous catalyst for the Suzuki coupling reaction and achieved a good activity in thefirst run.The activity significantly decreased in the second run and dropped slowly in the following runs, which was confirmed that the collapse of pore canals in MOF-5was the main reason for the weak performance of the reused catalysts.Acknowledgments We gratefully acknowledge thefinancial sup-port provided by the National Natural Science Foundation of China (No.21073023).C.T.W.thanks Dalian University of Technology for a‘‘Seasky’’professorship.References1.Bauer CA,Timofeeva TV,Settersten TB,Patterson BD,Liu VH,Simmons BA,Allendorf MD(2007)J Am Chem Soc129:7136 2.Chen B,Yang Y,Zapata F,Lin G,Qian G,Lobkovsky EB(2007)Adv Mater19:16933.Horcajada P,Serre C,Vallet-Regı´M,Sebban M,Taulelle F,Fe´rey G(2006)Angew Chem Int Ed45:59744.Mueller U,Schubert M,Teich F,Puetter H,Schierle-Arndt K,Pastre´J(2006)J Mater Chem16:6265.Cho SH,Ma B,Nguyen ST,Hupp JT,Albrecht-Schmitt TE(2006)Chem Commun24:25636.Llabre´s i Xamena FX,Abad A,Corma A,Garcia H(2007)J Catal250:2947.Llabre´s i Xamena FX,Xamena FX,Corma A,Garcia H(2007)JPhys Chem C111:808.Alaerts L,Seguin E,Poelman H,Thibault-Starzyk F,Jacobs PA,De Vos DE(2006)Chem Eur J12:73539.Opelt S,Tu¨rk S,Dietzsch E,Henschel A,Kaskel S,Klemm E(2008)Catal Commun9:128610.Sabo M,Henschel A,Fro¨ede H,Klemm E,Kaskel S(2007)JMater Chem17:382711.Schro¨der F,Esken D,Cokoja M,van den Berg MWE,LebedevOI,Tendeloo GV,Walaszek B,Buntkowsky G,Limbach H, Chaudret B,Fischer RA(2008)J Am Chem Soc130:6119 12.Hermes S,Schro¨der MK,Schmid R,Khodeir L,Muhler M,Tissler A,Fischer RW,Fischer RA(2005)Angew Chem Int Ed 44:623713.Perles LJ,Iglesias M,Martin-Luengo MA,Monge MA,Ruiz-Valero C,Snejko N(2005)Chem Mater17:583714.Schlichte K,Kratzke T,Kaskel S(2004)Microporous Meso-porous Mater73:8115.Gao SX,Zhao N,Shu MH,Che SA(2010)Appl Catal A388:19616.Miyaura N,Suzuki A(1995)Chem Rev95:245717.Stanforth SP(1998)Tetrahedron54:26318.Han J,Liu Y,Guo R(2009)J Am Chem Soc131:206019.Li HL,Eddaoudi M,O’Keeffe M,Yaghi OM(1999)Nature402:27620.Tranchemontagne DJ,Hunt JR,Yaghi OM(2008)Tetrahedron64:855321.Dent WT,Long R,Wilkinson AJ(1964)J Chem Soc8:158522.Shaw BL(1960)Proc Chem Soc7:24723.Mu¨ller M,Lebedev OI,Fischer RA(2008)J Mater Chem18:527424.Jasmina H,Morten B,Unni O(2007)J Am Chem Soc129:361225.Wan Y,Wang H,Zhao Q,Klingstedt O,Terasaki O,Zhao D(2009)J Am Chem Soc131:454126.Esken D,Zhang XN,Lebedev OI,Schro¨der F,Fischer RA(2009)J Mater Chem19:1314–131927.Moddeman WE,Bowling WC,Carter DC,Grove DR(1988)SurfInterface Anal11:31728.Sakurada O,Takahashi H,Taga M(1980)Bunseki Kagaku38:40729.Tressaud A,Khairoun S,Touhara H,Watanabe NZ(1986)AnorgAllg Chem291:54030.Budhani RC,Banerjee A,Goel TC,Chopra KL(1983)J NoncrystSolids55:9331.Turner S,Lebedev OI,Schro¨der F,Esken D,Fischer RA,Tendeloo GV(2008)Chem Mater20:5622Table1Effects of solvents and bases on Suzuki reactionSolvent Base t(h)T(°C)Conversion(%)DMF Triethylamine2090\1DMF NaHCO32090\1DMF Na2CO32090\1DMF K2CO3209081DMF Na3PO4209072CH3OH K2CO3209076Acetone K2CO32090\1Ethanol K2CO3209020Table2Effect of Pd loading on catalytic performance andreusabilityEntry Run t(h)Conversion(%)0.17%Pd0.69%Pd 1.3%Pd 4.2%Pd112072348812220n.t.n.t.n.t.383320n.t.n.t.n.t.294420n.t.n.t.n.t.21n.t.=not tested318M.Zhang et al.。

相关文档
最新文档