沪科版九年级数学上册第22章 相似形测试题

合集下载

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章相似形含答案一、单选题(共15题,共计45分)1、如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50B.60C.70D.802、下列图形相似的是()(1)放大镜下的图片与原来的图片;(2)幻灯的底片与投影在屏幕上的图象;(3)天空中两朵白云的照片;(4)卫星上拍摄的长城照片与相机拍摄的长城照片.A.4组B.3组C.2组D.1组3、如图,,,,则的长为().A. B. C.4 D.64、下列所给条件中,不能使△ABC与△A’B’C’相似的是( )A.AB=AC, A'B'=A'C',∠A=∠A'B.∠A=40°,∠B=80°,∠A'=40°,∠C'=60°C. , ∠B=∠B'D. ,∠A=∠A'5、如图,在△ABC中,DE∥BC,= ,四边形DECB的面积是10,则△ABC 的面积为()A.4B.8C.18D.96、已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cmB.5cmC.6cmD.9cm7、如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则的值为()A. B. C. D.8、如图,D是AB的中点,E是AC的中点,则△ADE与四边形BCED的面积比是()A.1B.C.D.9、下列命题为真命题的是()A.有两边及一角对应相等的两个三角形全等B.方程 x 2+2x+3=0有两个不相等的实数根C.面积之比为1∶2的两个相似三角形的周长之比是1∶4D.顺次连接任意四边形各边中点得到的四边形是平行四边形10、如图,直线l1∥l2∥l3,直线AC和直线DF在l1, l2, l3上的交点分别为:A,B,C,D,E,F.已知AB=6,BC=4,DF=9,则DE=()A.5.4B.5C.4D.3.611、如图,,两条直线与三条平行线分别交于点和.已知,则的值为()A. B. C. D.12、勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以勾股图为背景的邮票。

沪科版九年级数学上册《第二十二章相似形》单元测试卷-带参考答案

沪科版九年级数学上册《第二十二章相似形》单元测试卷-带参考答案

沪科版九年级数学上册《第二十二章相似形》单元测试卷-带参考答案一、单选题1.已知三个数1,2,4,若添一个数使得四个数成比例,这个数可以是( )A .8B .8-C .3D .3-2.已知35x y =,则x x y+的值为( ) A .25 B .38C .32 D .233.已知2a =3b (a≠0,b≠0),那么下列变形中错误的是( )A .23b a = B .32a b = C .32a b= D .b :a =2:34.若x 是3和6的比例中项,则x 的值为( )A .32B .32-C .23±D .32±5.如图,在△ABC 中,DE△BC ,AD =5,AB =12,AE =3,则EC 的长是( )A .365B .215C .20D .156.已知点P 是线段MN 的黄金分割点,MP >NP ,且MP=51)cm ,则NP 等于( )A .2cmB .(35cmC .5﹣1)cmD .5+1)cm7.如图,直线 123l //l //l ,一等腰 Rt ABC 的三个顶点 A 、 B 、 C 分别在直线 1l 、 2l 和 3l上, ACB 90∠=︒ , AC 交 2l 于点 D. 若 1l 与 2l 的距离为 1 , 1l 与 3l 的距离为 4 ,则ABBD的值是( )A 2B 34C 42D 528.如图,AD△BE△CF ,直线l 1、l 2这与三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB=1,BC=3,DE=2,则EF 的长为( )A .4B .5C .6D .89.如图,△ABC 中,AD 是中线,BC =8,△B =△DAC ,则线段AC 的长为( )A .4B .42C .6D .4 310.下列各组数中,能成比例的是( )A .3,4,5,6B .-1,-2, 2,4C .-3,1,3,0D .-1,2,-3,4二、填空题11.如图,已知AB CD EF ,若632AC CE DF ===,,,则BD 的长为 .12.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 .13.如图,在等腰直角△ABC 中,AB=4,点D 在边AC 上一点且AD=1,点E 是AB 边上一点,连接DE ,以线段DE 为直角边作等腰直角△DEF( D 、E 、F 三点依次呈逆时针方向),当点F 恰好落在BC 边上时,则AE 的长是 .三、解答题14.已知:如图,在△ABC 中,△ACB =90°,CD △AB ,垂足为D ,AD =3,BD =6,求CD 的长.15.如图,在矩形ABCD 中,E 是BC 的中点,DF△AE ,垂足为F .(1)求证:△ABE△△DFA . (2)若AB=6,BC=4,求DF 的长.16.在△ABC 中,点D 、E 分别边AB 、AC 上的点,若AD =2,DB =7,AE =3,EC =3,求DE :BC的值.17.如图,四边形ABCD 和四边形EFGH 相似,求△α、△β 的大小和EH 的长度.四、综合题18.在矩形 ABCD 中,点 O 是对角线 AC 、 BD 的交点,直角 EPF ∠ 的顶点 P 与 O 重合, OE 、 OF 分别与 AB 、 BC 边相交于 E 、 F ,连接 EF , BC k AB =⋅ ( k 为常数).(1)发现问题:如图1,若 1k = ,猜想:OEOF= ; (2)类比探究:如图2, 1k ≠ 探究线段 OE , OF 之间的数量关系,并说明理由;(3)拓展运用:如图3,在(2)的条件下,若 FO FC = , 2k =和 6OD =,求 EF 的长.19.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且CD 2=AD •BC .(1)求证:△APD △△PBC ; (2)求△APB 的度数.20.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,在四边形 ABCD 中 80ABC ∠=︒ , 140ADC ∠=︒ 对角线 BD 平分ABC ∠ .求证: BD 是四边形 ABCD 的“相似对角线”;(2)如图2,已知 FH 是四边形 EFGH 的“相似对角线” 30EFH HFG ∠=∠=︒ .连接EG ,若 EFG ∆ 的面积为 3,求 FH 的长.21.(教材呈现)下图是华师版九年级上册数学教材第78页的部分内容.例2 如图:在ABC 中,D 、E 分别是边BC 、AB 的中点, AD 、CE 相交于点G .求证:13GE GD CE AD ==. 证明:连接ED .(1)请根据教材提示,结合图①,写出完整的证明过程.(2)(结论应用)如图②,在ABC 中,D 、F 分别是边BC 、AB 的中点,AD 、CF 相交于点G ,GE AC 交BC 于点E ,GH AB 交BC 于点H ,则EGH 与ABC 的面积的比值为 .答案解析部分1.【答案】A【解析】【解答】解:设添加的数是x根据题意得 124x =:: 即24=1x ⨯⨯ 解得:=8x 故答案为:A .【分析】如果两个数的比值与另两个数的比值相等 就说这四个数成比例 据此解答即可.2.【答案】B【解析】【解答】解:∵35x y =∴设x=3k y=5k∴33358x k x y k k ==++故答案为:B .【分析】根据35x y = 设x=3k y=5k 再将x 、y 的值代入x x y+计算即可。

沪科版九年级数学上册试题 第22章《相似形》单元测试卷(含答案详解)

沪科版九年级数学上册试题  第22章《相似形》单元测试卷(含答案详解)

第22章《相似形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P 是线段AB 上一点(AP >BP ),若满足,则称点P 是AB 的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x 米时恰好站在舞台的黄金分割点上,则x 满足的方程是( )A .(20﹣x )2=20xB .x 2=20(20﹣x )C .x (20﹣x )=202D .以上都不对2.如图,点D ,E ,F 分别在的边上,,,,点M 是的中点,连接并延长交于点N ,则的值是( )A .B .C .D .3.将含有的三角板按如图所示放置,点在直线上,其中,分别过点,作直线的平行线,,点到直线,的距离分别为,,则的值为( )BP APAP AB=ABC V 13AD BD =DE BC ∥EF AB ∥EF BM AC ENAC32029161730︒ABC A DE 15BAD ∠=︒B C DE FG HIB DE HI 1h 2h 12h hA .1 BCD4.如图,点D 是△ABC 中AB 边上靠近A 点的四等分点,即4AD =AB ,连接CD ,F 是AC 上一点,连接BF 与CD 交于点E ,点E 恰好是CD 的中点,若S △ABC =8,则四边形ADEF 的面积是( )A .4B .C .2D .5.如图,在边长为的小正方形组成的网格中,建立平面直角坐标系,的三个顶点均在格点(网格线的交点)上.以原点为位似中心,画使它与的相似比为,则点的对应点的坐标是( )A .B .C .或D .或6.如图,已知、,与相交于点,作于点,点是的中点,于点,交于点,若,,则值为( )11-1181171ABC V O 111A B C △ABC V 2B 1B ()42,()42--,()42,()42--,()42,()42,-AB BC ⊥DC BC ⊥AC BD O OM BC ⊥M E BD EF BC ⊥G AC F 4AB =6CD =OM EF -A.B .C .D .7.如图,在平面直角坐标系中,为原点,为平面内一动点,,连接,点是线段上的一点,且满足.当线段取最大值时,点的坐标是( )A .B .C .D .8.如图,四边形是矩形,平分,,、的延长线交于点,连接,连接交于点.下列结论错误的是()A .图中共有三个等腰直角三角形B .C .D .9.如图,在平面直角坐标系中,点,点B 是线段上任意一点,在射线上取一点C ,使,在射线上取一点D ,使.所在直线的关系式为,点F 、G分别为线段的中点,则的最小值是()751253525O OA OB ==C 32BC =AC M AC :1:2CM MA =OM M36,55⎛⎫ ⎪⎝⎭612,55⎛⎫ ⎪⎝⎭ABCD CE BCD ∠AE CE ⊥EA CB F DE BD CE G DGC EBC∠=∠AB AD CG CE⋅=⋅∽CDG CEBV V ()E OE OA OB BC =BC BD BE =OA 12y x =OC DE 、FGABC .D .4.810.如图所示,正方形由四个全等的直角三角形和一个小正方形组成,且内接于正方形,连接,.已知正方形与正方形面积之比为,若,则( )A BCD .二、填空题(本大题共8小题,每小题4分,共32分)11.已知,且,则 .12.在中,M ,N 分别是BC ,AC 边上一点,连接AM ,BN 交于点P ,若,,则 .13.正方形中,E ,F 分别是,上的点,连结交对角线于点G ,若恰好平分,,则的值为 .ABCD FGHI DE BE CE>ABCD FGHI 59DE CH ∥BECE=32::3:5:7a b c =10a b c -+=a b c ++=ABC V :2:3BM CM =:1:4AN CN =:AP MP =ABCD AD DC EF BD BE AEF ∠413DG GB =DE AE14.宽与长的比等于黄金比的矩形称为黄金矩形.古希腊很多矩形建筑中宽与长的比都等于黄金比,如图,矩形ABCD 为黄金矩形,AB <AD ,以AB 为边在矩形ABCD 内部作正方形ABEF ,若AD =1,则DF = .15.如图,矩形的两条对角线相交于点O ,,垂足为E ,F 是的中点,连接交于点P,那么.16.如图,中,,,,若正方形的顶点在上,顶点、都在上,射线交边于点,则长为 .17.如图:等腰直角三角形中,E 为边上一点,.将沿着翻折得到线段,连接,若.ABCD AC BD ,OE AB ⊥OC EF OB OPPB=ABC V 90ACB ∠=︒2BC =4AC =DEFC D AB F G AC AF BC H CH ABC BC 3BE CE =AB AE AD CD AB =CD =18.如图,在矩形中,,,点在直线上,从点出发向右运动,速度为每秒,点在直线上,从点出发向右运动,速度为每秒,相交于点,则的最小值为 .三、解答题19.(8分)如图,,于点D ,M 是的中点,交于点P ,.若,求的长.ABCD 5cm AB =6cm BC =E AD A 0.5cm F BC B 2cm BE AF 、G BG CG +cm AB AC =AD BC ⊥AD CM AB DN CP ∥6cm AB =PN20.(8分)如图,四边形ABCD 中,AB=AC=AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD .(1)证明:∠BDC=∠PDC ;(2)若AC 与BD 相交于点E ,AB=1,CE :CP=2:3,求AE 的长.21.(10分)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.若铁塔底座宽CD=12m ,塔影长 m ,小明和小华的身高都是1.6m ,同一时刻小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,求塔高AB.18DE22.(10分)如图1,在,,,D 为上一点,连接,分别过点A 、B 作于点N ,于点M .(1)求证:;(2)若点D 满足,求的长;(3)如图2,若点E 为中点,连接,求证:.图1 图2Rt ABC △90ACB ∠=︒1AC BC ==AB CD AN CD ⊥BM CD ⊥ACN CBM V V ≌21BDAD =∶∶DM AB EM 45EMN ∠=︒23.(10分)如图,在正方形中,点是对角线上一点,的延长线交于点,交的延长线于点,连接.(1)求证:;(2)求证:;(3)若的长.ABCD G BD CG AB E DA F AG CG AG =2AB BE DF =⋅GE =GC =EF24.(12分)如图,在平面直角坐标系中,点A 在轴的正半轴上,点在轴的负半轴上,点在轴的正半轴上,且,线段、的长是一元二次方程的两个根,且.(1)求点A 、点的坐标;(2)求点的坐标;(3)若直线过点A 交线段于点,且,求点坐标;(4)在平面内是否存在一点,使得以为直角顶点的与相似,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.x B x C y 90ACB ∠=︒OB OA 213360x x -+=OB OA <B C l BC D :1:2ABD ADC S S =△△D P P APC △ABC V P答案一、单选题1.A【分析】点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,则,即可求解.解:由题意知,点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,∴,∴(20−x )2=20x ,故选:A .2.A【分析】过点F 作交AC 于点G,可证.同理,可得,,;由,得,于是;设,则,,,从而得.解:过点F 作交AC 于点G,∴∴.BP AP AP AB=BP AP AP AB =FG BN ∥EN GN =13AE AD EC DB ==3EC AE =13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC a =203AC a =320EN AC =FG BN ∥1EN EM GN FM==EN GN =∵,∴.∴.∵,∴.∵,∴.∴.设,则,∴∴.∴.∴.∴.故选:A3.B【分析】设交于点,由,得三角形BCM 为等腰直角三角形,再由含30度角直角三角形三边长比及等腰直角三角形的边长比,设BC 为x ,可得MA 为,再由平行线分线段成比例求解.解:设交于点,∵,,DE BC ∥13AE AD EC DB ==3EC AE =EF AB ∥13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC EN NG GC a=++=35EC AE a ==53AE a =520+533AC AE EC a a a =+==320203EN a AC a ==CE FG M 45DAC BAD CAB ∠=∠+∠=︒MA x =-CE FG M 30CAB ∠=︒15BAD ∠=︒∴,∵,∴,三角形为等腰直角三角形,在Rt △ABC 中,设长为,则,∵,∴,∴,∵,∴,故选:B .4.D【分析】过D 点作DG∥EF ,连接AE ,,GF =FC ,再计算△ADE 和△AEF 的面积即可.解:过D 点作DG ∥EF ,连接AE ,∵点E 恰好是CD 的中点,4AD =AB ,∴,GF =FC ,设AG =k ,则AF =4k ,GF =3k ,FC =3k ,∴,∵,S △ABC =8,∴,∴,∵,∴,∴=.45DAC BAD CAB ∠=∠+∠=︒//FG DE 45CMB DAC ∠=∠=︒BCM BC x CM BC x ==30CAB ∠=︒CA ==MA x =-////HI FG DE 121h MA h CM ===14AG AD AF AB ==14AG AD AF AB ==43AF FC =14ACD ABC S AD S AB ∆∆==124ACD ABC S S ∆∆==112ADE AEC ACD S S S ∆∆∆===43AEFCEF S AF S CF ∆∆==4477AEF AEC S S ∆∆==417ADE AEF ADEF S S S ∆∆=+=+四边形117故选:D .5.C【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点的位置写出坐标即可.解:如图所示,当和在原点同侧时,∵与的相似比为2,,∴,即;如图所示,当和在原点两侧时,∵与的相似比为2,,∴,即;综上所述,或,故选C.1B ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B ⨯⨯()142B ,ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B -⨯-⨯()142B --,()142B --,()142B ,6.A【分析】证明,,,,求出,求出,,得出即可得出答案.解:、,,∴,,,∴,,∴,,∴,,∴,点是的中点,,,,∴,,∴,∴,故选:.7.DCOM CAB △∽△BOM BDC V V ∽OM CM AB BC =OM BM DC BC =125OM =132EG CD ==122FG AB ==1EF EG FG =-=AB BC ⊥ DC BC ⊥OM BC ⊥OM AB CD ∥∥COM CAB ∴V V ∽BOM BDC V V ∽OM CM AB BC =OM BM DC BC =4OM CM BC =6OM BM BC=125OM =EF BC ⊥ EG AB CD ∥∥ E BD BE DE ∴=BG CG ∴=CF AF ∴=132EG CD ==122FG AB ==1EF EG FG =-=75OM EF -=A【分析】由题意可得点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,先证,得,从而当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,然后分别证,,利用相似三角形的性质即可求解.解:∵点为平面内一动点,,∴点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,∵∴∴,∵,∴,∵,∴,∴,∴当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD BDO CDF V V ∽AEM AFC V V ∽C 32BC =C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OA OB ==AD OD OA =+=23OA AD =:1:2CM MA =23OA CM AD AC==OAM DAC ∠∠=OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD∵∴,∴,∵,∴,∵轴轴,,∴,∵,∴,∴,解得同理可得,,∴,解得∴∴当线段取最大值时,点的坐标是,故选D .8.A【分析】根据矩形的性质以及角平分线的性质得,是等腰直角三角形,,是等腰直角三角形,由证明,可得,,则,是等腰直角三角形,由,可得,由三角形外角的性质可得,证明,列比例式并结合等量代换可得.OAOB ==OD =BD =152==9CD BC BD =+=23OM CD =6OM =y x ⊥CF OA ⊥90DOB DFC ∠∠==︒BDO CDF ∠∠=BDO CDF V V ∽OB BD CF CD =1529=CF =AEM AFC V V ∽23ME AM CF AC ==23=ME =OE ===OM M 45DCE BCE ∠=∠=︒CEF △45F DCE ∠=∠=︒ABF △SAS (SAS)≌EBF EDC V V FEB CED ∠=∠BE ED =90FEB CEB CEB CED ∠+∠=∠+∠=︒BED V EBF EDC △≌△FEB CED ∠=∠DGC EBC ∠=∠∽CDG CEB V V AB AD CG CE ⋅=⋅解:如图:四边形是矩形,,,,平分,,,,是等腰直角三角形,,,是等腰直角三角形,,,,,,,,是等腰直角三角形,是等腰直角三角形,故A 错误;,,,,故B 正确;,,故D正确;ABCD AB CD ∴=90ABC BCD ADC ∠=∠=∠=︒90ABF ∴∠=︒CE BCD ∠45DCE BCE ∴∠=∠=︒AE CE ⊥ 90FEC ∴∠=︒CEF ∴V EF CE ∴=45F ∠=︒ABF ∴V BF AB CD ∴==45F DCE ∠=∠=︒ (SAS)≌EBF EDC ∴V △FEB CED ∴∠=∠BE ED =90FEB CEB CEB CED ∴∠+∠=∠+∠=︒BE ED = BED ∴V DCH V 45EBD ∴∠=︒45DGC GCB CBG CBG ∠=∠+∠=︒+∠ 45EBC EBD CBG CBG ∠=∠+∠=︒+∠DGC EBC ∴∠=∠DCG ECB ∠=∠ ∽CDG CEB ∴V V,,,,,故C 正确.故选:A .9.A【分析】如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,先根据三线合一定理得到,,进而证明四边形是矩形,得到,,故当点B 与点M 重合时,最小,即最小,最小值为,设,则,求出,利用相似三角形的性质求出(舍去),则的最小值为.解:如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,∵,,点F 、G 分别为线段的中点,∴,,∵,∴,即,∴四边形是矩形,∴,,∴当最小时,最小,∴当点B 与点M 重合时,最小,即最小,最小值为,∵点H 在直线上,∴可设,∴,∵,CD CG CE CB∴=CD AB = BC AD =AB CG CE AD∴=AB AD CG CE ∴⋅=⋅BF BG ,ED OA HM OE ⊥BH BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠BFHG FG BH =90OHE ∠=︒BH FG HM ()2H m m ,2OM m HM m ==,OE =OMH HME △∽△m =0m =FG BF BG ,ED OA HM OE ⊥BH OB BC =BD BE =OC DE 、BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠180OBF CBF DBG EBG +++=︒∠∠∠∠90CBF DBG +=︒∠∠90FBG ∠=︒BFHG FG BH =90OHE ∠=︒BH FG BH FG HM 12y x =()2H m m ,2OM m HM m ==,()E∴∵,∴,又∵,∴,∴,∴∴(舍去),经检验,∴,故选A .10.A【分析】设,,则,根据正方形与正方形面积之比为,得到,求出,作交于点M ,作交于点P ,证明出,设,则然后利用相似三角形的性质得到,然后解方程求解即可.解:由题意可得,∴设,,则,∵,∴,OE =90MEH HOE MHO MOH +=︒=+∠∠∠∠MHO MEH =∠OMH HME =∠∠OMH HME △∽△OM HM HM ME=2m m =m =0m =m =FG CI DH a ==CH b =IH a b =+ABCD FGHI 59()22259a b a b +=+2BI CH a ==BM GH ⊥GH NE BM ⊥BM BPE ENC ∽V V CN m =IN BP a m ==+a m a a m +=BIC CHD ≌V V CI DH a ==CH b =IH a b =+90H ∠=︒22222CD CH DH a b =+=+∵正方形与正方形面积之比为,∴,即,∴整理得,∴,解得或(舍去),∴,∴,如图所示,作交于点M ,作交于点P ,由题意可得,,∵,∴四边形,是矩形,∴,,∴,∴设,则,∵,∴,∵,∴,∴,又∵,∴,ABCD FGHI 592259CD IH =()22259a b a b +=+222520a ab b -+=25220a a b b ⎛⎫-+= ⎪⎝⎭12a b =2a b=2b a =2BI CH a ==BM GH ⊥GH NE BM ⊥BM AGD DHC ≌V V ED CH ∥BINP ENHD 2PN BI a ==EN DH a ==PE PN EN a =-=CN m =IN BP a m ==+BE CE ⊥90BEP CEN ∠+∠=︒BP PN ⊥90BEP PBE ∠+∠=︒CEN PBE ∠=∠90BPE ENC ∠=∠=︒BPE ENC ∽V V∴,即,∴整理得,∴,∴解得,∴故选:A .二、填空题11.30【分析】设,,,根据得到,求得,从而得出,,,代入进行计算即可.解:,设,,,,,解得:,,,,,故答案为:30.12.【分析】过点M 作,交于点Q ,根据平行线分线段成比例可得,设,求出,即可求解.解:过点M 作,交于点Q ,BP PE BE EN CN CE ==a m a a m+=220a am m -+=210a a m m ⎛⎫-+= ⎪⎝⎭a m =BE CE =3a k =5b k =7c k =10a b c -+=35710k k k -+=2k =6a =10b =14c =::3:5:7a b c = ∴3a k =5b k =7c k =10a b c -+= 35710k k k ∴-+=2k =6a ∴=10b =14c =6101430a b c ∴++=++=5:8MQ BN ∥AC 23BM NQ CM CQ ==2,3NQ k CQ k ==54k AN =MQ BN ∥AC∵,∴,设,∴,∵,∴,则,∵,∴,故答案为:.13.或4【分析】延长交于R ,作于T ,不妨设,,,可证得是等腰三角形,可推出,进而表示出,然后解,从而求出x 的值,进而可得结果.解:如图,延长交于R ,作于T ,,不妨设,,则,设,MQ BN ∥23BM NQ CM CQ ==2,3NQ k CQ k ==5CN NQ CQ k =+=:1:4AN CN =154AN k =54k AN =MQ PN ∥55428kAP AN MP NQ k ===5:812EF BC GT DE ⊥4DG =13GB =4DE x =REB V 413EG DE DG RG BR BG ===EG DEG △EF BC GT DE ⊥ 413DG GB =∴4DG =13GB =17BD =4DE x =四边形是正方形,,,,,,恰好平分,,,,,在中,,由勾股定理得,解得,,当,当,综上所述,或4,故答案为:或4.14【分析】先根据黄金矩形求出AB ,再利用正方形的性质求出AF ,然后进行计算即可解答.解:∵矩形ABCD 为黄金矩形,AB <AD ,ABCD ∴BC AD ∥AD ==∴EBC AEB ∠=∠4AE AD DE x =-=413EG DE DG RG BR BG ===∴13BR x = BE AEF ∠∴AEB FEB ∠=∠∴EBC FEB ∠=∠∴13ER BR x ==∴4521717EG ER x ==Rt EGT V GT DT DG ===4ET DE DT x =-=-((22252417x x ⎛⎫+-= ⎪⎝⎭1x =2x =∴4DE x ==DE =AE ==∴4DE AE=DE =AE ==∴12DE AE =12DE AE =12∴∴∵四边形ABEF 是正方形,∴∴DF=AD -AF=15.【分析】根据矩形性质得到,利用三角形的三线合一得,过O 作交于点Q ,则有,,计算即可.解:∵是矩形,∴,∵F 是的中点,∴,又∵,∴,过O 作交于点Q ,∴,,∴,故答案为:.16.AB AD =AB AD ==1=13OA OB OC ==AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽ABCD OA OB OC ==OC 1122OF OC OA ==OA OB =OE AB⊥AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽13OP OQ OQ OF PB BE AE AF ====1343【分析】证明,,由相似三角形的性质得出 , ,设, 可得,, 从而可得出答案.解:∵四边形为正方形, ,∴,,∴,, ∴, , 设, ∴,, ∴, ∴, ∴.故答案为 .17.2【分析】如图,作,使,连接,,交于,过作于,可得,,可得,求解,,可得,由对折可得:,,,证明,可得,再证明,可得,有,,求解,可得,从而可得答案.解:∵等腰直角三角形,∴,如图,作,使,连接,,交于,过作于,△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24x AG =4x AG x CH +=DGFE 90ACB ∠=︒DG EF BC ∥∥DG EF =△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24xAG =4x AG x CH +=2AG x =24x x x CH +=43CH =43AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△454590BCH ∠=︒+︒=︒BE CH ==CE EF ==AH AE ===52EH ==AB AD ==BAE DAE ∠=∠DE BE =45ADE ABE ∠=∠=︒()SAS AEC AHD V V ≌90ECH EDH ∠=∠=︒()Rt Rt HL HEC EHD V V ≌HED CHE ∠=∠CH DE ==EK HK =CK DK =EK HK ==CK DK ===HKE CKD V V ∽ABC AB =AB AC ==BC =AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F∵等腰直角三角形,∴,,∴,∴,∴,,∴,∵,∴,,∴∴,由对折可得:,,,∵,∴,∴,∵,,∴,∴,∴,∴,∵,,∴,ABC 90BAC EAH ∠=︒=∠AB AC ==45B ACB ∠=∠=︒BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△BE CH =45B ACH ∠=∠=︒454590BCH ∠=︒+︒=︒3BE CE =BE CH ==CE EF ==AH AE ===52EH =AB AD ==BAE DAE ∠=∠DE BE ==45ADE ABE ∠=∠=︒90BAC EAH ∠=∠=︒90BAE EAC DAE DAH ∠+∠=︒=∠+∠EAC DAH ∠=∠AE AH =AB AC AD ==()SAS AEC AHD V V ≌45ACE AHD ∠=∠=︒CE HD ==454590EDH ∠=︒+︒=︒90ECH EDH ∠=∠=︒EH EH =CE DH =()Rt Rt HL HEC EHD V V ≌∴,,∴,,由勾股定理可得:,∴,∴,∴,∴,,∴,∴,∴,故答案为:218.10【分析】过点作直线,分别交、于点,过点作直线,分别交、于点,易知四边形、、为矩形,证明,由相似三角形的性质可得;设两点运动时间为,则,,易得,;作点关于直线的对称点,由轴对称的性质可得,故当三点共线时,的值最小,即取最小值,此时,在中,由勾股定理求得的值,即可获得答案.解:如下图,过点作直线,分别交、于点,过点作直线,分别交、于点,HED CHE ∠=∠CH DE ==EK HK =CK DK =222EK CE CK =+222EK EK ⎫=-+⎪⎪⎭EK HK ==CK DK ===45DK CK EK HK ===HKE DKC ∠=∠HKE CKD V V ∽45CD CK HE HK ==4452552CD EH ==⨯=G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、ABNM PBNG GNCQ GAE GFB V V ∽AE GM BF GN =E F 、t 0.5AE t =2BF t =1cm GM =4cm GN =C PQ K CG KG =B G K 、、BG KG +BG CG +Rt BCK △BK G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、易知四边形、、为矩形,,∵四边形为矩形,∴,∴,,∴,∴,设两点运动时间为,则,,则有,即,∵,∴,,∵四边形为矩形,∴,作点关于直线的对称点,如图,则,,由轴对称的性质可得,当三点共线时,的值最小,即取最小值,此时,在中,,∴的最小值为.故答案为:10.三、解答题19.ABNM PBNG GNCQ 5cm MN AB ==ABCD AD BC ∥AB DC∥GAE GFB ∠=∠GEA GBF ∠=∠GAE GFB VV ∽AEGM BF GN=E F 、t 0.5AE t =2BF t =0.5124GM t GN t ==4GN GM =5cm MN =1cm GM =4cm GN =GNCQ 4cm QC GN ==C PQ K 4cm QK QC ==8cm KC QK QC =+=CG KG =B G K 、、BG KG +BG CG +Rt BCK △10cm BK ===BG CG +10cm解:∵,,∴,又∵,∴,∴,∵点M 是线段的中点,,∴,∴,∴,∵,∴.20.解:(1)证明:∵AB=AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD+∠BDC=90°,∵AC=AD ,∴∠ACD=∠ADC ,∴∠ADC+∠BDC=90°,∵PD ⊥AD ,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC ;(2)解:过点C 作CM ⊥PD 于点M ,AB AC =AD BC ⊥BD DC =DN CM ∥1BN BD PN DC==BN NP =AD DN CM ∥1AP AM PN MD==AP PN =13PN AB =6cm AB =()1162cm 33PN AB ==⨯=∵∠BDC=∠PDC ,∴CE=CM ,∵∠CMP=∠ADP=90°,∠P=∠P ,∴△CPM ∽△APD ,∴=,设CM=CE=x ,∵CE :CP=2:3,∴PC=x ,∵AB=AD=AC=1,∴=,解得:x=,故AE=1-=.21.解:如图,过点D 作,交AE 于点F ,过点F 作,垂足为点G.由题意得,,∴,∵,,∴,∴,答:塔高AB 为24m.CM AD PC PA32x 13x 23x 12+131323DF CD ⊥FG AB ⊥1.62DF DE =18 1.6214.4(m)DF =⨯÷=16m 2GF BD CD === 1.61AG GF =1.669.6(m)AG =⨯=14.49.624(m)AB =+=22.解:(1)证明:∵,,∴,,又∵,∴,∴∵,∴;(2)解:∵,,∴,∴,设,则,由(1)知,,∵,∴,∴,∴,∴,∴;(3)解:延长,相交于点H,AN CD ⊥BM CD ⊥90ANC ∠=︒90BMC ∠=︒90ACB ∠=︒90ACN BCM BCN CBM ∠+∠=∠+∠=︒ACN CBM∠=∠AC BC =()ACN CBM ASA V V ≌AND BMD ∠=∠ADN BDM ∠=∠AND BMD V V ∽12AN DN AD BM DM DB ===AN x =2BM x =AN CM x ==2BM CN x ==222AN CN AC +=()22221x x +=x =CM =CN =MN 2233DM MN ===ME AN∵E 为的中点,∴∵,,∴,∴,,∴,∴,又∵,∴,又∴,∴,∴.23.解:(1)证明:∵是正方形的对角线,∴,,在和中,,∴,∴;(2)证明:∵四边形是正方形,∴,,,AB AE BE=90ANM ∠=︒90BMN ∠=︒AN BM ∥HAE MBE ∠=∠AHE BME ∠=∠()AAS AHE BME V V ≌AH BM =BM CN =CN AH =CM AN=MN HN =45HMN ∠=︒45EMB ∠=︒BD ABCD 45C D B A D B ∠=∠=︒DC DA =CDG V ADG △DC DA CDG ADG DG DG =⎧⎪∠=∠⎨⎪=⎩()SAS CDG ADG ≌△△CG AG =ABCD 90CBE FDC ∠=∠=︒CB CD AB ==CB DF ∥∴,∴,∴,即,∴;(3)解:∵∴,∵四边形是正方形,∴,,,∴,∴,,∴,∴,设,则,∴,∵,∴,,∴,∴,∴,∴的长为24.(1)解:∵,∴.∴.∵点A 在轴的正半轴上,点在轴的负半轴上,BCE DFC ∠=∠BCE DFC ∽△△CB FD BE DC =AB FD BE AB=2AB BE DF =⋅GE =GC =CE CG GE =+=ABCD CD AB ∥CD AB =CB AD ∥BE CD ∥EBG CDG ∠=∠BEG DCG ∠=∠BEG DCG ∽△△BE GE DC GC ==BE =6CD x =(66AE AB BE CD BE x x =-=-==AF CB ∥FAE CBE ∠=∠AFE BCE ∠=∠AFE BCE △∽△EF AE EC BE==EF =EF 213360x x -+=(4)(9)0x x --=124,9x x ==x B x∴A 点坐标为,B 点坐标为,(2)∵A 点坐标为,B 点坐标为,∴,设点C 的坐标为,则,∵,,∴,∴,∴,∴,∴,解得,经检验,是方程的解且符合题意,∴点C 的坐标是;(3)过点D 作轴于点E ,轴于点F ,如图,则,∴,,∵,∴.∴;,∵,,∴;,()9,0()4,0-()9,0()4,0-9,4OA OB ==()0,t ()0t >OC t =90ACB ∠=︒90AOC COB ∠=∠=︒90OCB ACO OCB OBC ∠+∠=∠+∠=︒ACO OBC ∠=∠ACO CBO V V ∽OC AO OB OC=94tt =6t =6t =()0,6DE x ⊥DF y ⊥DE OC ∥DF OB∥BED BOC V V ∽CDF CBO V V ∽:1:2ABD ADC S S =△△:1:2BD DC =13DE BD OC BC ==23DF CD BO BC ==4OB =6OC =2DE =243DF =解得.∴.(4)解:存在,求解过程如下:设,由题意可得:,,当时,,即,,解得,或,即点坐标为或,当时,,即,,解得或,即点坐标为或,综上可知,满足条件的P 点为:或或或83DF =8,23D ⎛⎫- ⎪⎝⎭(,)P x y 13AB OB OA =+=BC ===AC ===AP =CP =APC ACB △∽△AP AC PC AC AB CB ==29AC AP AB===6AC CB CP AB ⨯===00x y =⎧⎨=⎩721310813x y ⎧=⎪⎪⎨⎪=⎪⎩P (0,0)72108,1313⎛⎫⎪⎝⎭APC BCA △∽△AP AC PC BC AB AC ==6AC BC AP AB ⨯===29AC CP AB===96x y =⎧⎨=⎩45133013x y ⎧=⎪⎪⎨⎪=-⎪⎩P ()9,64530,1313⎛⎫- ⎪⎝⎭(0,0)72108,1313⎛⎫ ⎪⎝⎭()9,64530,1313⎛⎫- ⎪⎝⎭。

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章相似形含答案一、单选题(共15题,共计45分)1、图中的两个三角形是位似图形,它们的位似中心是()A.点PB.点OC.点MD.点N2、如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为()A.1B.2C.3D.43、以下变换可以改变图形的大小的是()A.位似变换B.旋转变换C.轴对称变换D.平移变换4、如图,直线l1∥l2∥l3,直线AC分别交l1, l2, l3于点A,B,C;直线DF分别交l1, l2, l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A. B.2 C. D.5、如图,△ABC∽△ADE ,则下列比例式正确的是()A. B. C. D.6、已知2x=5y(y≠0),则下列比例式成立的是( )A. B. C. D.7、如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距6m,与树相距15m,则树的高度为( )A.4mB.5mC.7mD.9m8、在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是()A. B. C. D.9、如图,在中,点D为AB边上一点,E、F分别为AC、BC边上的点,,连接AF交DE于点G,则下列结论中一定正确的是()A. B. C. D.10、下列各组中的四条线段成比例的是()A.a=1,b=3,c=2,d=4B.a=4,b=6,c=5,d=10C.a=2,b=4,c=3,d=6 D.a=2,b=3,c=4,d=511、某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A.1.25mB.10mC.20mD.8m12、已知P,Q是线段AB的两个黄金分割点,且AB=10,则PQ长为()A.5( -1)B.5( +1)C.10( -2)D.5(3- )13、书画经装裱后更便于收藏.如图,画心ABCD为长90cm、宽30cm的矩形,装裱后整幅画为矩形A′B′C′D′,两矩形的对应边互相平行,且AB与A′B'的距离、CD与C′D′的距离都等于4cm.当AD与A′D′的距离、BC与B'C′距离都等于acm,且矩形ABCD∽矩形A′B′C′D'时,整幅书画最美观此时,a的值为()A.4B.6C.12D.2414、如图,D、E分别是△ABC的边AB、AC的中点,H、G是边BC上的点,且=12,则图中阴影部分的面积为()HG= BC,S△ABCA.6B.4C.3D.215、如图,在菱形ABCD中,点E为边AD的中点,且∠ABC=60°,AB=6,BE交AC于点F,则AF=()A.1B.2C.2.5D.3二、填空题(共10题,共计30分)16、已知AM是△ABC中BC边上的中线,P是△ABC的重心,过P作EF(EF∥BC),分别交AB、AC于E、F,则=________.17、已知点P把线段分割成AP和PB两段(AP>PB),如果AP是AB和PB的比例中项,那么AP:AB的值等于________ .18、已知线段a=2cm,b=8 cm,若线段c是a,b的比例中项,那么c=________cm19、将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义为“白银矩形”.事实上,“白银矩形”在日常生活中随处可见.如,我们常见的A纸就是一个“白银矩形”.请根据上述信息4纸的较长边与较短边的比值.这个比值是________求A420、如图,内接于,于点,若,,的半径,则的值为________.21、如图,点,分别在的边,的延长线上,.若,的面积为3,则的面积为________.22、如图,在直角坐标系中,点,,以O为位似中心,按2:1的相似比把缩小为,则点E的对应点的坐标为________ .23、一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C 的坐标为(﹣3,0),∠B=30°,则点B的坐标为________ .24、如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE 沿CE折叠,使点B落在矩形内点F处,下列结论正确的是________(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.25、小颖测得2m高的标杆在太阳下的影长为1.2m,同时又测得一棵树的影长为2.4m,请你帮助小颖计算出这棵树的高度为________m.三、解答题(共5题,共计25分)26、已知xyz≠0且,求k的值.27、如图,小明在地面上放置一个平面镜来测量铁塔的高度,镜子与铁塔的距离米,镜子与小明的距离米时,小明刚好从镜子中看到铁塔顶端.已知小华的眼睛距地面的高度CD=1.6米,求铁塔的高度.(根据光的反射原理,)28、如图,在△ABC中,AB=8,AC=6,D是AC上的一点,且AD=2,试在AB上确定一点E,使得△ADE与原三角形相似,并求出AE的长.29、如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,求球拍击球的高度h.30、如图,△ABC中,DE∥BC,EF∥AB求证:△ADE∽△EFC.参考答案一、单选题(共15题,共计45分)1、A2、A3、A4、D5、D6、C7、C8、C9、C10、C11、C12、C14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

沪科版九年级上册数学第22章 相似形含答案

沪科版九年级上册数学第22章 相似形含答案

沪科版九年级上册数学第22章相似形含答案一、单选题(共15题,共计45分)1、如图,在正方形中,点是边的中点,连接,交边于点,已知,则的长为()A. B. C.1 D.22、下列四组线段中,是成比例线段的是()A.5cm,6cm,7cm,8cmB.3cm,6cm,2cm,5cmC.2cm,4cm,6cm,8cmD.12cm,8cm,15cm,10cm3、下列命题中不成立的是()A.矩形的对角线相等B.三边对应相等的两个三角形全等C.两个相似三角形面积的比等于其相似比的平方D.一组对边平行,另一组对边相等的四边形一定是平行四边形4、如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2, AC=3, BC=6,则⊙O的半径是()A.3B.4C.4D.25、下列各选项的两个图形(实线部分),不属于位似图形的是()A. B. C. D.6、在一比例尺为1:100 000的地图上,一块绿地面积为3cm2,则这块绿地实际面积为()A.300000cm 2B.300m 2C.900000m 2D.3×10 6m 27、在相同时刻的物高与影长成比例,如果高为1.5m的测杆的影长为2.5m,那么影长为30m的旗杆是()A.20mB.16mC.18mD.15m8、如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9、如图,在正方形中,为中点,.联结.那么下列结果错误的是()A. 与相似B. 与相似C. 与相似 D. 与相似10、两个相似三角形的面积比为1∶4,那么这两个三角形的周长比为()A.1∶2;B.1∶4;C.1∶8;D.1∶16.11、如图,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是( )A.4B.2C.4D.值不确定12、如图,在△ABC中,∠BAC=90°,F是BA延长线上一点,FD⊥BC于D,交AC于点E,则图中相似三角形共有几对()A.6对B.5对C.4对D.3对13、生活中到处可见黄金分割的美.如图,点C将线段AB分成AC、CB两部分,且AC>BC,如果,那么称点C为线段AB的黄金分割点.若C是线段AB的黄金分割点,AB=2,则分割后较短线段长为()A. B. C. D.14、下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似15、如图,点D、E分别在AB、AC上,且若,,;则AB的长为(A.16B.8C.10D.5二、填空题(共10题,共计30分)16、甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为________米.17、如图,在平面直角坐标系中有两点A(4,0),B(0,2),如果点C在x 轴上(C与A不重合)当点C的坐标为________时,使得△BOC∽△AOB.18、在△ABC中,AB=9,AC=12,BC=18,D是AC边上一点,DC= AC,在AB边上取一点E,连接DE,若两个三角形相似,则DE的长为________.19、如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为________.20、如图,已知点A在反比例函数y=(x<0)上,作Rt ABC,点D是斜边AC的中点,连接DB并延长交y轴于点E,若BCE的面积为7,则k的值为________.21、在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,则高楼的高度是________米.22、如图,中,平分,,,,,则________.23、如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点F为DM中点,点E为DC上的动点.当∠DFE=45°时,则DE=________ .24、如图,平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB 的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是________ .25、如图,O为坐标原点,点C的坐标为(1,0),∠ACB=90°,∠B=30°,当点A在反比例函数y= 的图象上运动时,点B在函数________(填函数解析式)的图象上运动.三、解答题(共5题,共计25分)26、已知xyz≠0且,求k的值.27、如图,▱ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是线段OA、OB、OC、OD的中点,那么▱ABCD与四边形EFGH是否是位似图形?为什么?28、如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且.(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△ACD是否相似?并说明理由.29、如图,等腰的顶角,请用尺规作图法,在边上求作一点,使得∽.(保留作图痕迹,不写作法)30、如图,已知,求证:△ABD∽△ACE参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、D5、C6、D7、C8、D9、C10、A11、A12、A13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、30、。

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章相似形含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是()A. B. C. D.2、如图,△ABC∽△DEF ,相似比为1:2.若BC=1,则EF的长是()A.1B.2C.3D.43、由 5a=6b(ab≠0),可得比例式()A. B. C. D.4、如图,点G、F分别是△BCD的边BC、CD上的点,BD的延长线与GF的延长线相交于点A , DE∥BC交GA于点E,则下列结论错误的是()A. B. C. D.5、如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于()A.3:2B.3:1C.1:1D.1:26、已知=,那么下列等式中,不一定正确的是()A.2a=5bB. =C.a+b=7D. =7、如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O 的直径是( )A.2cmB.4cmC.6cmD.8cm8、如图,在中,于点,若,则的值为()A. B. C. D.9、如图,直线l1∥l2∥l3,直线AC分别交l1, l2, l3于点A , B ,C;直线DF分别交l1, l2, l3于点D , E , F . AC与DF相交于点H ,且AH=2,HB=1,BC=5,则的值为().A. B.2 C. D.10、已知x:y=3:2,则下列各式中不正确的是()A. B. C. D.11、下列各组图形中一定相似的有()A.两个矩形B.两个等腰梯形C.两个等腰三角形D.两个等边三角形12、如图,△ABC中,D是边AC上的一点,且∠DBC=∠A,BC=, AC=3,则CD的长是 ( )A.1B.C.2D.13、雨后初晴,一学生在运动场上玩耍,从他前面2米远一块小积水处,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40米,该生的眼部高度是1.5米,那么旗杆的高度是()A.30米B.40米C.25米D.35米14、已知,那么的值为()A. B. C. D.15、如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB,若AB=3BD。

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章相似形含答案一、单选题(共15题,共计45分)1、如图,AD是的一条角平分线,点E在AD上.若,,则与的面积比为()A.1:5B.5:1C.3:20D.20:32、如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=()A. B. C. D.3、下列两个图形一定相似的是)A.任意两个矩形B.任意两个等腰三角形C.任意两个正方形D.任意两个菱形4、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.5、如图,△ABC 与△A′B′C′是位似图形,点O 是位似中心,若OA=2AA′,S △ABC =8,则S △A′B′C′=( )A.18B.12C.32D.166、如图,Rt△ABC 中,∠BAC=90°,AD⊥BC 于点D ,若BD :CD=3:2,则= ( )A. B. C. D.7、如图,中,,则下列等式中不成立的是( )A.B.C.D.8、已知△ABC∽△DEF,且相似比为2:3,则△ABC 与△DEF 的对应高之比为( )A.2:3B.3:2C.4:9D.9:4 9、如图所示,不能判定△ABC∽△DAC 的条件是( )A.∠B=∠DACB.∠BAC=∠ADCC.AD 2=BD•BCD.AC 2=DC•BC10、如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=,则△ABC的边长是()A.3B.4C.5D.611、已知:,下列式子中错误的是()A. B. C. D.12、如图△ABC∽△ACD,则下列式子中不成立的是()A. =B. =C.AC 2=AD•ABD. =13、按100分制60分及格来算,满分是150分的及格分是()A.60分B.72分C.90分D.105分14、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,点P是AB上一动点.若△PAD与△PBC是相似三角形,则满足条件的点P的个数有()A.1个B.2个C.3个D.4个15、如图所示,E为□ABCD的边AD上的一点,且AE∶ED=3∶2,CE交BD于F,则BF∶FD ()A.3∶5B.5∶3C.2∶5D.5∶2二、填空题(共10题,共计30分)16、如图是的中线,是上一点,且,的延长线交于点,若,则________.17、在同一时刻,太阳光下身高1.6m的小强的影长是1.2m,学校旗杆的影长是15m,则旗杆高为________ m18、如图,已知顶点,以原点为位似中心,把缩小到原来的,则与点对应的点的坐标是________.19、如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为________时,△ADP和△ABC相似.20、如图,在方格纸中,以每个小方格的边长为单位1,△ABC和△EPD的顶点均在格点上,请你提供一个符合条件的点P,使△ABC与以E,P,D为顶点的三角形相似,则点P所在的格点坐标可以是________21、如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的是________ .22、如图,内接于,于点D,,若的半径,则的长为________.23、如图,某风景区在建设规划过程中,需要测量两岸码头A、B之间的距离.设计人员在O点设桩,取OA、OB的三等分点C、D,测得CD=25m,则AB=________ .24、如图,A的坐标是(0,2),点C是x轴上的一个动点,点B与点O在直线AC两侧,∠BAC=∠OAC,BC⊥AC,点B的坐标为(x,y),y与x的函数关系式为________.25、如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为________.三、解答题(共5题,共计25分)26、已知a、b、c满足,且,分别求出a、b、c 的值.27、如图:已知等边三角形ABC,D为AC边上的一动点,CD=nDA,连线段BD,M为线段BD上一点,∠AMD=60°,AM交BC于E.(1)若n=1,则= .= ;(2)若n=2,求证:BM=6DM;(3)当n= 时,M为BD中点.(直接写结果,不要求证明)28、已知:如图,Rt△ABC中,∠ACB=90°,P是边AB上一点,AD⊥CP,BE⊥CP,垂足分别为D、E,已知AB=3, BC=3, BE=5.求DE的长.29、如图,小明在地面上放置一个平面镜来测量铁塔的高度,镜子与铁塔的距离米,镜子与小明的距离米时,小明刚好从镜子中看到铁塔顶端.已知小华的眼睛距地面的高度CD=1.6米,求铁塔的高度.(根据光的反射原理,)30、如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E。

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章相似形含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,,,若把线段扩大倍得线段,若,则的坐标可以是()A. B. C. D.2、若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为()A.2cmB.4cmC.5cmD.6cm3、如图,菱形ABCD中,点M,N在AC上,ME⊥AD, NF⊥AB. 若NF = NM = 2,ME = 3,则AN =()A.3B.4C.5D.64、如图,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是()A.(-3,-3)B.(-4,-4)C.(-4,-3)D.(-3,-4)5、如图,Rt△ABC中,∠ACB=90°,CD为斜边上的高,AC=2,AD=1,则BC的长是()A.4B.3C.D.6、如图,在平面直角坐标系中有一个四边形ABCD,现将四边形ABCD各顶点的横坐标和纵坐标都乘2,得到四边形A1B1C1D1,则四边形A1B1C1D1的面积与四边形ABCD的面积之比为()A.2:1B.3:1C.4:1D.5:17、如图所示,在正方形ABCD中,E是BC的中点,F是CD上的一点,AE⊥EF,下列结论:①∠BAE=30°;②CE2=AB CF;③CF=FD;④△ABE∽△AEF.其中正确的有()A.1个B.2个C.3个D.4个8、如图,在平面直角坐标系中,动点A、B分别在x轴上和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为()A.2 +2B.2 +4C.2D.2 +29、一个油桶高0.8m,桶内有油,一根长lm的木棒从桶盖小口插入桶内,一端到达桶底,另一端恰好在小口处,抽出木棒量得浸油部分长0.8m,则油桶内的油的高度是()A.0.8mB.0.64mC.1mD.0.7m10、如图,□ABCD中,EF∥AB,DE∶EA = 2∶3,EF = 4,则CD的长为()A. B.8 C.10 D.1611、将一副三角板如图叠放,交点为O则△AOB与△COD面积之比是().A. B. C. D.12、若一个图形的面积为2,那么将它与成中心对称的图形放大为原来的两倍后的图形面积为()A.8B.6C.4D.213、有以下命题:.①如果线段d是线段a、b、c的第四比例项,则有②如果点C是线段AB的中点,那么AC是AB、BC的比例中项③如果点C是线段AB的黄金分割点,且AC>BC,那么AC是AB、BC的比例中项④如果点C是线段AB的黄金分割点,且AC>BC,且AB=2,则AC= -1其中正确的有( )A.1个B.2个C.3个D.4个14、如图,一次函数的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接.有下列四个结论:①与的面积相等;②;③;④.其中正确的结论是()A.1个B.2个C.3个D.4个15、如图,在△ABC中,DE∥BC ,则下列比例式中,不成立的是().A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,D,E两点分别在边AB,AC上,AB=8cm,AC=6cm,AD=3cm,要使△ADE与△ABC相似,则线段AE的长为________17、如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是________.18、高6m的旗杆在水平地面上的影子长4m,同一时刻附近有一建筑物的影子长20米,则该建筑物的高为________19、在如图所示方格纸中,已知△DEF是由△ABC经相似变换所得的像,那么△DEF的每条边都扩大到原来的________ 倍.20、如图所示,△ABC中,DE∥BC,AE:EB=2:3,若△AED的面积是4m2,则四边形DEBC的面积为________21、如图,在平行四边形ABCD中,AB=3,AD=4 ,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为________.22、如图,在△ABC中,AD是BC上的高,且BC=9,AD=3,矩形EFGH的顶点F、G在边BC上,顶点E、H分别在边AB和AC上,如果设边EF的长为x(0<x <3),矩形EFGH的面积为y,那么y关于x的函数解析式是________.23、如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.24、如图,四边形ABCD与四边形EFGH的对应边平行,AD是△PHE的中位线,若四边形ABCD的面积4,则四边形EFGH面积是________.25、如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于点E, cos B=,则=________.三、解答题(共5题,共计25分)26、如图,某测量人员的眼睛A与标杆顶端F、电视塔顶端E在同一条直线上,已知此人的眼睛到地面的距离AB=1.6m,标杆FC=2.2m,且BC=1m,CD=5m,标杆FC、ED垂直于地面.求电视塔的高ED.27、如图,在△ABC中,EF∥BC且EF= BC=2cm,△AEF的周长为10cm,求梯形BCFE的周长.=2,四边形A′28、如图,四边形ABCD和四边形A′B′C′D′位似,位似比k1B′C′D′和四边形A″B″C″D″位似,位似比k=1.四边形A″B″C″D″和2四边形ABCD是位似图形吗?位似比是多少?29、如图△ABC中,D、E是AB、AC上点,AB=7.8,AD=3,AC=6,AE=3.9,试判断△ADE与△ABC是否会相似.30、如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、C5、D6、C7、C8、A9、B10、C11、B12、A13、C14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第22章相似形一、选择题(每小题4分,共40分)1.已知2x=3y(y≠0),则下面结论成立的是()A. xy=32 B.x3=2y C.xy=23 D.x2=y32.如图22-Z-1,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E与B,D,F.若AC=4,CE=6,BD=3,则DF的长是()A.4 B.4.5 C.5 D.5.5图22-Z-13.若△ABC∽△DEF,相似比为3∶2,则对应高的比为()A.3∶2 B.3∶5 C.9∶4 D.4∶94.如图22-Z-2,在△ABC中,点D,E分别在边AB,AC上,DE∥BC.若BD=2AD,则()A. ADAB=12 B.AEEC=12 C.ADEC=12 D.DEBC=12图22-Z-25.如图22-Z-3,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC 与△DEF的面积之比为()A.1∶2 B.1∶4 C.1∶5 D.1∶6图22-Z-36.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,下列条件不能判定它们相似的是()A.∠A=∠B′B.AC=BC,A′C′=B′C′C.AB=3BC,A′B′=3B′C′D.△ABC中有两边长为3,4,△A′B′C′中有两边长为6,87.如图22-Z-4,某校数学兴趣小组利用标杆BE测量学校旗杆CD的高度,标杆BE 高1.5 m,测得AB=2 m,BC=14 m,则旗杆CD的高度是()A.9 m B.10.5 m C.12 m D.16 m图22-Z-48.如图22-Z-5,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC 的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. EABE=EGEF B.EGGH=AGGD C.ABAE=BCCF D.FHEH=CFAD图22-Z-59.如图22-Z-6,边长为12的正方形ABCD中有一个小正方形EFGH,其中点E,F,G分别在AB,BC,FD上.若BF=3,则小正方形的边长为()A.12B. 154C. 5 D.6图22-Z-610.如图22-Z-7,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD∶AB=3∶1,则点C的坐标是()A.(2,7)B.(3,7)C.(3,8)D.(4,8)图22-Z -7二、填空题(每小题5分,共20分)11.若4x =3y ,则y x +y=________. 12.如图22-Z -8,AE ,BD 相交于点C ,BA ⊥AE 于点A ,ED ⊥BD 于点D .若AC =4,AB =3,CD =2,则CE =________.图22-Z -813.如图22-Z -9,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40 cm ,EF =20 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =8 m ,则树高AB =________m.图22-Z -9三、解答题(共40分)14.如图22-Z -10,在矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB =12,△CEF 的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于________. 图22-Z -1015.(8分)如图22-Z -11,已知菱形AMNP 内接于△ABC ,点M ,N ,P 分别在边AB ,BC ,AC 上,如果AB =21 cm ,CA =15 cm ,求菱形AMNP 的周长.图22-Z -1116.(10分)如图22-Z -12,在由边长为1的小正方形组成的网格中建立平面直角坐标系,已知△ABC 三个顶点分别为A (-1,2),B (2,1),C (4,5).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以原点O 为位似中心,在x 轴的上方画出扩大后的△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且相似比为2.图22-Z -1217.(10分)如图22-Z -13,正方形ABCD 的顶点A 在等腰直角三角形DEF 的斜边EF 上,EF 与BC 交于点G ,连接CF .(1)求证:△DAE ≌△DCF ;(2)求证:△ABG ∽△CFG .图22-Z -1318.(12分)如图22-Z -14,在△ABC 中,AB =AC ,P ,D 分别是BC ,AC 边上的点,且∠APD =∠B .(1)求证:AC ·CD =CP ·BP ;(2)若AB =10,BC =12,当PD ∥AB 时,求BP 的长.图22-Z -141.A2.B [解析] ∵a ∥b ∥c ,∴AC CE =BD DF ,即46=3DF,解得DF =4.5.故选B . 3.A [解析] 因为△ABC ∽△DEF ,根据相似三角形的性质“相似三角形对应高之比等于相似比”可知选A .4.B [解析] ∵点D ,E 分别在边AB ,AC 上,DE ∥BC ,∴AD BD =AE EC.∵BD =2AD ,∴AD BD =AE EC =12.故选B . 5.B6. D7.C [解析] 依题意得BE ∥CD ,∴△AEB ∽△ADC ,∴AB AC =BE CD ,即22+14=1.5CD,解得CD =12(m ).故选C .8.C9.B [解析] 先得出△BEF ∽△CFD ,再由勾股定理求出DF 的长,最后由相似三角形的对应边成比例得出边长EF.10.A [解析] 如图,作CE ⊥y 轴,垂足为E.∵OD =2OA =6,∴OA =3.易得Rt △CED ∽Rt △DOA ,∴CE DO =DE AO =CD AD. 又∵CD =AB ,∴CE 6=DE 3=13, ∴CE =2,DE =1,∴OE =7,∴C 点的坐标为(2,7).11. 37[解析] 设x =4k ,y =3k , ∴y x +y =3k 4k +3k =37. 12.2.5 [解析] ∵BA ⊥AE ,AC =4,AB =3,∴BC =32+42=5.∵BA ⊥AE ,ED ⊥BD ,∴∠A =∠D =90°.又∵∠ACB =∠DCE ,∴△ABC ∽△DEC ,∴AC BC =DC CE ,即45=2CE,∴CE =2.5.故答案为2.5.13.5.5 [解析] 利用Rt △DEF 和Rt △BCD 相似,求得BC 的长后加上AC 的长,即为树高AB.14. 116 [解析] ∵AD AB =12,∴设AD =BC =a ,则AB =CD =2a ,∴AC =5a.∵BF ⊥AC ,∴△CBE ∽△CAB ,△AEB ∽△ABC ,∴BC 2=CE·AC ,AB 2=AE·AC ,∴a 2=CE·5a ,(2a)2=AE·5a ,∴CE =5a 5,AE =4 5a 5, ∴CE AE =14. ∵△CEF ∽△AEB ,∴S 1S 2=(CE AE )2=116. 故答案为116. 15.解:∵四边形AMNP 是菱形,∴PN ∥AB ,∴△CPN ∽△CAB ,∴CP ∶CA =PN ∶AB.∵PN =PA ,∴CP ∶CA =PA ∶AB ,即CP ∶15=PA ∶21,从而CP ∶PA =15∶21=5∶7,∴(CP +PA)∶PA =(5+7)∶7,∴AC ∶PA =12∶7,即15∶PA =12∶7,解得PA =354, ∴菱形AMNP 的周长是354×4=35(cm ). 16.解:(1)如图所示,△A 1B 1C 1就是所求三角形.(2)如图所示,△A 2B 2C 2就是所求三角形.17.证明:(1)∵△DEF 是等腰直角三角形,四边形ABCD 是正方形,∴DE =DF ,DC =DA ,∠B =∠EDF =∠ADC =90°,∠EFD =∠DEF =45°. ∵∠CDF +∠ADF =∠ADE +∠ADF =90°,∴∠CDF =∠ADE.在△DAE 与△DCF 中,∵⎩⎨⎧DA =DC ,∠ADE =∠CDF ,DE =DF ,∴△DAE ≌△DCF.(2)由(1)中△DAE ≌△DCF ,得∠DFC =∠DEA =45°.又∵∠EFD =45°,∴∠CFG =∠DFC +∠EFD =90°,∴∠CFG =∠B.又∵∠CGF =∠AGB ,∴△ABG ∽△CFG .18.解:(1)证明:∵∠APC =∠APD +∠DPC =∠PAB +∠B ,且∠APD =∠B , ∴∠DPC =∠PAB.又∵AB =AC ,∴∠ABP =∠PCD ,∴△ABP ∽△PCD ,∴AB CP =BP CD. 又∵AB =AC , ∴AC CP =BP CD , 即AC·CD =CP·BP.(2)∵PD ∥AB ,∴∠DPC =∠B.由(1)中知∠DPC =∠PAB ,∴∠PAB =∠B. 又∵∠B =∠C , ∴∠PAB =∠C.又∵∠PBA =∠ABC , ∴△PBA ∽△ABC , ∴BP AB =AB BC, ∴BP =AB 2BC =10212=253.。

相关文档
最新文档