苏教版七年级数学上册 期末试卷中考真题汇编[解析版]
苏教版数学七年级上册 期末试卷中考真题汇编[解析版]
![苏教版数学七年级上册 期末试卷中考真题汇编[解析版]](https://img.taocdn.com/s3/m/2de4e879964bcf84b8d57b0f.png)
苏教版数学七年级上册 期末试卷中考真题汇编[解析版]一、选择题1.下列单项式中,与2a b 是同类项的是( ) A .22a b B .22a b C .2ab D .3ab 2.若x 3=是方程3x a 0-=的解,则a 的值是( ) A .9B .6C .9-D .6-3.下列说法错误的是( ) A .2的相反数是2- B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是04.2019年12月15日开始投入使用的盐城铁路综合客运枢纽,建筑总面积约为324 000平方米.数据324 000用科学记数法可表示为( ) A .324×103B .32.4×104C .3.24×105D .0.324×1065.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 6.若a >b ,则下列不等式中成立的是( ) A .a +2<b +2B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b7.如图所示的几何体的左视图是( )A .B .C .D .8.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .3079.一个小菱形组成的装饰链断了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )A .3个B .4个C .5个D .6个10.2020的绝对值等于( ) A .2020B .-2020C .12020D .12020-11.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m 12.无论x 取什么值,代数式的值一定是正数的是( ) A .(x +2)2B .|x +2|C .x 2+2D .x 2-213.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay = C .若x y =,则x y a a = D .若a bc c=(c ≠0),则a b = 14.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .15.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y-的系数是2-,次数是3二、填空题16.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.17.一个数的绝对值是2,则这个数是_____.18.某下水管道工程由甲、乙两个工程队单独铺设分别需要 10 天、15 天完成,如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完工?设还需 x 天完成,列方程为__________.19.若2x =-是关于x 的方程23a x+=的解,则a 的值为_______. 20.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________ 21.用两钉子就能将一根细木条固定在墙上,其数学原理是______. 22.21°17′×5=_____.23.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .24.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).25.若线段AB =8cm ,BC =3cm ,且A 、B 、C 三点在同一条直线上,则AC =______cm .三、解答题26.先化简,再求值:若x =2,y =﹣1,求2(x 2y ﹣xy 2﹣1)﹣(2x 2y ﹣3xy 2﹣3)的值. 27.先化简,再求值:2211312()()2323x x y x y --+-+,其中,x y 满足22(2)03x y ++-= 28.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ; ()4线段AE 的长度是点______到直线______的距离; ()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)29.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a = ,b = ;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN =1?30.(1)如图①,OC 是AOE ∠内的一条射线,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,120AOE ∠=︒,求BOD ∠的度数;(2)如图②,点A 、O 、E 在一条直线上,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,请说明OB OD ⊥.31.已知:点A 、B 在数轴上表示的数分别是a 、b ,线段AB 的中点P 表示的数为m .请你结合所给数轴,解答下列各题:(1)填表:a 1- 1-2.5▲b13▲2-m▲▲4 4-(2)用含a 、b 的代数式表示m ,则m =___________.(3)当2021a =,2020m =时,求b 的值. 32.如图,点P 是∠AOB 的边OB 上的一点 (1)过点P 画OA 的平行线PQ (2)过点P 画OA 的垂线,垂足为H (3)过点P 画OB 的垂线,交OA 于点C(4)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离. (5)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC .PH 、OC 这三条线段大小关系是______(用“<“号连接).33.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表: 居民每月用电量 单价(元/度) 不超过50度的部分0.5 超过50度但不超过200度的部分 0.6 超过200度的部分0.8已知小智家上半年的用电情况如表(以200度为标准,超出200度记为正、低于200度记为负) 一月份 二月份 三月份 四月份 五月份 六月份 ﹣50+30﹣26﹣45+36+25根据上述数据,解答下列问题(1)小智家用电量最多的是 月份,该月份应交纳电费 元; (2)若小智家七月份应交纳的电费200.6元,则他家七月份的用电量是多少?四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
苏教版七年级上册数学 期末试卷中考真题汇编[解析版]
![苏教版七年级上册数学 期末试卷中考真题汇编[解析版]](https://img.taocdn.com/s3/m/2fcd8a0b561252d380eb6e80.png)
A. B. C. D.
12.若 ,则x+y的值为( ).
A. B. C. D.
13.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )
22.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.
23.点 、 、 在直线 上,若 ,则 __________.
24.如果 是方程 的解,那么 的值是_________
25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________
三、解答题
26.先化简,再求值:(3a2b-ab2)-2(ab2+3a2b),其中a=- ,b=2.
17.下图是计算机某计算程序,若开始输入 ,则最后输出的结果是____________.
18.如图,直线 ,则 _____________度
19.当 __时,方程 的解为 .
20.实数 , , 在数轴上的对应点的位置如图所示,化简 的结果是________.
21.如图,在三角形 中, , , ,点 是 的中点,点 从 点出发,先以每秒 的速度运动到 ,然后以每秒 的速度从 运动到 .当点 运动时间 _______秒时,三角形 的面积为 .
A.①②B.①③C.②④D.③④
14.数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为( )
A.﹣2B.0C.3D.5
苏教版七年级数学上册 期末试卷中考真题汇编[解析版]
![苏教版七年级数学上册 期末试卷中考真题汇编[解析版]](https://img.taocdn.com/s3/m/f0b838f9a8956bec0975e3f8.png)
苏教版七年级数学上册 期末试卷中考真题汇编[解析版]一、选择题1.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+ C .60101312x x +-= D .60101213x x+-= 2.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为15cm ,则四边形ABFD 的周长等于( )A .17 cmB .18 cmC .19 cmD .20 cm3.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养 4.无论x 取什么值,代数式的值一定是正数的是( ) A .(x +2)2B .|x +2|C .x 2+2D .x 2-25.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行6.下列各组代数式中,不是同类项的是( ) A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a7.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A.20 B.25 C.30 D.358.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是()A.B.C.D.9.如图所示的几何体的左视图是()A.B.C.D.10.一5的绝对值是()A.5 B.15C.15D.-511.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100 12.若关于x的一元一次方程mx=6的解为x=-2,则m的值为()A.-3 B.3 C.13D.1613.无论x取什么值,代数式的值一定是正数的是()A.(x+2)2B.|x+2| C.x2+2 D.x2-214.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是()A .81B .63C .54D .5515.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6 B .3(x -1)-2(2x +3)=1 C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.18.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=_____.19.比较大小: -0.4________12-. 20.若72α∠=︒,则α∠的补角为_________°.21.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.22.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是 .23.若a -2b =1,则3-2a +4b 的值是__.24.如图,已知直线AB 和CD 相交于点O ,射线OE 在COB ∠内部,OE OC ⊥,OF 平分AOE ∠,若40BOD ∠=,则COF ∠=__________度.25.32-的相反数是_________; 三、解答题26.点,,,A B C O 在数轴上位置如图所示,其中点O 表示的数是0, 点,,A B C 表示的数分别是,,a b c .(1)图中共有___________条线段; (2)若O 是BC 的中点,2,163AC OA AB ==,求,,a b c 的值.27.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.28.先化简,再求值:()()222223223a b ab a b a b ab +-+--,其中1a =-,2b =.29.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车.(1)求乙车出发多长时间追上甲车? (2)求乙车出发多长时间与甲车相距?30.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线,⑴写出所有∠EOC 的补角 ; ⑵如果∠AOD=40°,求∠POF 的度数.31.某校办工厂生产一批新产品,现有两种销售方案。
苏教版七年级数学上册 期末试卷中考真题汇编[解析版]
![苏教版七年级数学上册 期末试卷中考真题汇编[解析版]](https://img.taocdn.com/s3/m/c39aceb5f12d2af90342e625.png)
苏教版七年级数学上册 期末试卷中考真题汇编[解析版]一、选择题1.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x ﹣y 的值为( )A .-2B .6C .23-D .22.有理数-53的倒数是( ) A .53 B .53-C .35D .353.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养4.2-的相反数是( ) A .2-B .2C .12D .12-5.下列四个数:22,3.3030030003,,0.5,3.147π--,其中是无理数有( )A .1个B .2个C .3个D .4个 6.用代数式表示“a 的2倍与b 的差的平方”,正确的是( )A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)-7.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( )(1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格8.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .199.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种10.一5的绝对值是( ) A .5B .15C .15-D .-511.二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是( ) A .2,﹣3,﹣1 B .2,3,1C .2,3,﹣1D .2,﹣3,112.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个13.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐14.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a - 15.地球上陆地的面积约为1490000002km ,数149000000科学记数法可表示为( )A .90.14910⨯,B .81.4910⨯C .714.910⨯D .614910⨯二、填空题16.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.17.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.18.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.19.已知220x y +-=,则124x y --的值等于______.20.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .21.观察一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成如图所示形式.记ij a 对应的数为第i 行第j 列的数,如234a =,那么97a 对应的数为___________.22.计算t 3t t --=________.23.若单项式42m a b 与22n ab -是同类项,则m n -=_______. 24.如果单项式1b xy+-与23a xy -是同类项,那么()2019a b -=______.25.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)三、解答题26.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.27.《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出5文,则差45文;每人出7文,则差3文.(1)设人数为x ,则用含x 的代数式表示羊价为___________或___________;(2)求人数和羊价各是多少? 28.解方程(1)610129x x -=+; (2)21232x x x +--=-. 29.画出如图所示物体的主视图、左视图、俯视图.30.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线,⑴写出所有∠EOC 的补角 ; ⑵如果∠AOD=40°,求∠POF 的度数.31.已知同一平面内,∠AOB=90°,∠AOC=30°,(1)画出图形并求∠COB的度数;(2)若OD平分∠BOC,OE平分∠AOC,求∠DOE的度数.32.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A=80°,则∠A的半余角的度数为;(2)如图1,将一长方形纸片ABCD沿着MN折叠(点M在线段AD上,点N在线段CD 上)使点D落在点D′处,若∠AMD′与∠DMN互为“半余角”,求∠DMN的度数;(3)在(2)的条件下,再将纸片沿着PM折叠(点P在线段BC上),点A、B分别落在点A′、B′处,如图2.若∠AMP比∠DMN大5°,求∠A′MD′的度数.33.2020年8月连淮扬镇铁路正式通车,高邮迈入高铁时代,动车的平均速度为km h(高铁的长度不计),扬km h(动车的长度不计),高铁的平均速度为300/200/州市内依次设有6个站点,宝应站、高邮北站、高邮高铁站、邵伯站、江都站、扬州高铁站,假设每两个相邻站点之间的路程都相等,已知一列动车、一列高铁同时经过宝应站开往扬州高铁站,若中途不停靠任何站点,到达扬州高铁站时高铁比动车将早到10分钟(1)求宝应站到扬州高铁站的路程;(2)若一列动车6:00从宝应站出发,每个站点都停靠4分钟,一列高铁6:18从宝应站出发,只停靠高邮北站、江都站,每个站点都停靠4分钟.①求高铁经过多长时间追上动车;②求高铁经过多长时间后,与动车的距离相距20千米.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
苏教版七年级数学上册 期末试卷中考真题汇编[解析版]
![苏教版七年级数学上册 期末试卷中考真题汇编[解析版]](https://img.taocdn.com/s3/m/2aa84e460722192e4436f624.png)
苏教版七年级数学上册 期末试卷中考真题汇编[解析版]一、选择题1.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >02.自南京地铁四号线开通以来,最高单日线路客运量是 2017 年 12 月 7 日的 191000 人次,数字 191000 用科学计数法表示为( ) A .19.1×410 B .1.91×510C .19.1×510D .0.191×6103.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60°4.下列各式中与a b c --的值不相等的是( )A .()a b c -+B .()a b c --C .()()a b c -+-D .()()c b a ---5.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65°6.下列各图是正方体展开图的是( ) A .B .C .D .7.下列几何体中,是棱锥的为()A .B .C .D .8.若a ,b 互为倒数,则4ab -的值为 A .4-B .1-C .1D .09.若x >y ,则下列式子错误的是( )A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 3310.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是()A.13B.12C.23D.111.下列说法:①两点之间,直线最短;②若AC=BC,则点C是线段AB的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个12.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A.B.C.D.13.下列合并同类项正确的是()A.2x+3x=5x2B.3a+2b=6ab C.5ac﹣2ac=3 D.x2y﹣yx2=0 14.-3的相反数为()A.-3 B.3 C.0 D.不能确定15.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养二、填空题16.动点,A B 分别从数轴上表示10和2-的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,__________秒后,点,A B 间的距离为3个单位长度. 17.单项式213-xy 的次数是_______________. 18.已知x =1是方程ax -5=3a +3的解,则a =_________. 19.如图,直线//,1125∠=︒a b ,则2∠=_____________度20.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.21.0的绝对值是_____.22.用两钉子就能将一根细木条固定在墙上,其数学原理是______. 23.多项式234ab ab -的次数是______.24.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时. 25.已知a ﹣2b =3,则7﹣3a +6b =_____.三、解答题26.解下列方程:(1)2(2)6x --= . (2)121123x x -+=-. 27.如图,C 为线段AB 上一点,D 在线段AC 上,且23AD AC =,E 为BC 的中点,若6AC =,1BE =,求线段DE 的长.28.已知:如图,长方形ABCD 中,4AB =,8BC =,点M 是BC 边的中点,点P 从点A 出发,以1m/s 的速度沿着AB 方向运动再过点B 沿BM 方向运动,到点M 停止运动,点Q 以同样的速度从点D 出发沿着DA 方向运动,到点A 停止运动,设点P 运动的路程为x .(1)当2x =时,线段AQ 的长是 ;(2)当点P 在线段AB 上运动时,图中阴影部分的面积会发生改变吗?请你作出判断并说明理由.(3)在点,P Q 的运动过程中,是否存在某一时刻,使得13BP DQ =?若存在,求出点P 的运动路程,若不存在,请说明理由.29.计算: (1)(-23)-(+13)-|-34|-(-14) (2)-12-(1-0.5)×13×[3-(-3)2] 30.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.31.如图,在方格纸中,A 、B 、C 为3个格点,点C 在直线AB 外.(1)仅用直尺,过点C 画AB 的垂线m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系.32.我们定义:若两个角差的绝对值等于60,则称这两个角互为“正角”,其中一个角是另一个角的“正角”,如:1110∠=,250∠=,|12|60-=∠∠,则1∠和2∠互为“正角”.如图,已知120AOB ∠=,射线OC 平分AOB ∠, EOF ∠在AOB ∠的内部,若60EOF ∠=,则图中互为“正角”的共有___________对.33.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.37.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)38.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.39.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °; ②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).40.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .41.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数 42.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.43.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A 【解析】 【分析】根据图示知b <a <0,然后利用不等式的性质对以下选项进行一一分析、判断. 【详解】 解:如图:根据数轴可知,b <a <0, A 、a >b ,正确; B 、ab >0,故B 错误; C 、0b a -<,故C 错误; D 、0a b +<,故D 错误; 故选:A. 【点睛】本题考查了利用数轴比较大小,解题的关键是根据数轴得到b <a <0.2.B解析:B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】 191000=1.91×105, 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.B解析:B 【解析】 【分析】由角平分线的定义可得,∠COM=12∠AOC ,∠NOC=12∠BOC ,再根据∠MON=∠MOC-∠NOC 解答即可. 【详解】∵OM 平分AOC ∠,∴∠COM=12∠AOC ,∵ON 平分∠BOC ,∴∠NOC=12∠BOC , ∴∠MON=∠MOC-∠NOC=12 (∠AOC-∠BOC)=12∠AOB=45°. 故选B. 【点睛】本题考查角的相关计算,解题的关键是通过角平分线的定义将所求的角转化已知角.4.B解析:B 【解析】 【分析】根据去括号法逐一计算即可. 【详解】A. a b +c a b c -=--(),正确;B. ()a b c a b c --=-+,错误;C. ()()a b c a b c -+-=--,正确;D. ()()c b a a b c ---=--,正确; 故答案为:B . 【点睛】本题考查了去括号法的应用,掌握去括号法逐一计算是解题的关键.5.D解析:D 【解析】 【分析】根据方向角的定义和角平分线的定义即可得到结论. 【详解】∵OA 方向是北偏西40°方向, ∴∠AOC =40°+90°=130°. ∵OB 平分∠AOC , ∴∠BOC 12=∠AOC =65°. 故选:D. 【点睛】本题考查了方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.6.B解析:B 【解析】【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【详解】A.“田”字型,不是正方体的展开图,故选项错误;B.是正方体的展开图,故选项正确;C.不是正方体的展开图,故选项错误;D.不是正方体的展开图,故选项错误.故选:B.【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形. 7.D解析:D【解析】【分析】棱锥是有棱的锥体,侧面是三角形组成的,根据四个选项中的几何体可得答案.【详解】解:A、此几何体是四棱柱,故此选项错误;B、此几何体是圆锥,故此选项错误;C、此几何体是六棱柱,故此选项错误;D、此几何体是五棱锥,故此选项正确;故选:D.【点睛】此题主要考查了立体图形,关键是认识常见的立体图形.8.A解析:A【解析】【分析】根据互为倒数的两个数乘积为1即可得到答案.【详解】解:a,b互为倒数,则ab=1-4ab=-4故选A【点睛】此题重点考察学生对倒数的认识,掌握互为倒数的两个数乘积为1是解题的关键.9.B解析:B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A 、不等式两边都减3,不等号的方向不变,正确;B 、乘以一个负数,不等号的方向改变,错误;C 、不等式两边都加3,不等号的方向不变,正确;D 、不等式两边都除以一个正数,不等号的方向不变,正确.故选B .10.A解析:A【解析】【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343. 所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A.【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.11.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A.【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.12.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.13.D【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,结合选项即可得出答案.【详解】A、2x+3x=5x,故原题计算错误;B、3a和2b不是同类项,不能合并,故原题计算错误;C、5ac﹣2ac=3ac,故原题计算错误;D、x2y﹣yx2=0,故原题计算正确;故选:D.【点睛】此题考查了同类项的合并,属于基础题,掌握同类项的合并法则是关键.14.B解析:B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.15.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.二、填空题【解析】【分析】设经过t秒时间A、B间的距离为个单位长度,分两种情况:①B在A的右边;②B在A的左边.由BA=3分别列出方程,解方程即可;【详解】解:设经过t秒时间A、B间的距离为个单位解析:3或5【解析】【分析】设经过t秒时间A、B间的距离为3个单位长度,分两种情况:①B在A的右边;②B在A 的左边.由BA=3分别列出方程,解方程即可;【详解】解:设经过t秒时间A、B间的距离为3个单位长度,此时点A表示的数是:10-7t,点B 表示的数是:-2-4t.①当B在A的右边时:(10-7t)-(-2-4t.)=3,解得:t=3;②当B在A的左边时:(-2-4t.)-(10-7t)=3,解得:t=5;故答案为:3或5【点睛】本题考查一元一次方程的应用和数轴,解题关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出等量关系列出方程,再求解.17.【解析】【分析】根据单项式的定义即可解题.【详解】解:的次数是指其所有字母的指数之和,故的次数是3,故答案是:3.【点睛】本题考查了单项式的知识,熟悉单项式的定义是解题关键.解析:3【解析】【分析】根据单项式的定义即可解题.解:213-xy 的次数是指其所有字母的指数之和, 故213-xy 的次数是3, 故答案是:3.【点睛】本题考查了单项式的知识,熟悉单项式的定义是解题关键.18.-4【解析】【分析】根据一元一次方程的定义和解法,将x=1代入方程,得到关于a 的一元一次方程,然后解这个方程即可.【详解】将x=1代入ax -5=3a+3得:解得:故答案是-4.【点解析:-4【解析】【分析】根据一元一次方程的定义和解法,将x=1代入方程,得到关于a 的一元一次方程,然后解这个方程即可.【详解】将x=1代入ax -5=3a +3得:533a a -=+解得:4a =-故答案是-4.【点睛】本题考查了一元一次方程中知道方程的解求特定字母的值,解决本题的关键是熟练掌握一元一次方程的定义和解法.19.55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.∵∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=1解析:55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.【详解】a b∵//∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=180°-∠3=180°-125°=55°故答案为55.【点睛】本题考查的是对顶角的性质和平行线的性质,知道两直线平行同旁内角互补是解题的关键. 20.【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵,,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB平分∠AOC,∴∠BOC=.故答案解析:【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵135AOD ∠=︒,75COD ∠=︒,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=1302AOC ∠=︒.故答案为:30.【点睛】本题考查角度的计算,关键在于结合图形进行计算. 21.0【解析】【分析】根据绝对值的意义求解即可.【详解】解:根据绝对值的意义,得|0|=0.【点睛】本题考查绝对值,比较基础,应熟练掌握基础知识.解析:0【解析】【分析】根据绝对值的意义求解即可.【详解】解:根据绝对值的意义,得|0|=0.【点睛】本题考查绝对值,比较基础,应熟练掌握基础知识.22.两点确定一条直线.【解析】【详解】解:两枚钉子就能将一根木条固定在墙上,原因是:两点确定一条直线, 故答案为两点确定一条直线.【点睛】本题考查两点确定一条直线.解析:两点确定一条直线.【解析】【详解】解:两枚钉子就能将一根木条固定在墙上,原因是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查两点确定一条直线.【解析】【分析】根据多项式中最高次项的次数叫做多项式的次数进行分析即可.【详解】解:多项式的次数是3故答案为:3.【点睛】此题主要考查了多项式,关键是掌握多项式次数的计算方法.解析:3【解析】【分析】根据多项式中最高次项的次数叫做多项式的次数进行分析即可.【详解】解:多项式234ab ab -的次数是3故答案为:3.【点睛】此题主要考查了多项式,关键是掌握多项式次数的计算方法.24.【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:解得:x =解析:【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:111()1669x ++= 解得:x =3,答:他们合作整理这批图书的时间是3h .故答案是:3.本题主要考查一元一次方程的应用,掌握工程问题的解法是解题的关键.25.-2【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a﹣2b =3,∴7﹣3a+6b =7﹣3(a ﹣2b )=7﹣3×3=﹣2.故答案为:﹣2.【点睛】本题考查的知解析:-2【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a ﹣2b =3,∴7﹣3a +6b =7﹣3(a ﹣2b )=7﹣3×3=﹣2.故答案为:﹣2.【点睛】本题考查的知识点是根据已知条件求代数式的值,此类题目往往先利用整体思想将原式变形,再代入已知条件求值.三、解答题26.(1)x=-1;(2)x =1【解析】【分析】(1)先去括号,然后移项合并,即可得到答案;(2)先去分母,然后去括号,移项合并,即可得到答案.【详解】解:(1)∵2(2)6x --=,∴-2x +4=6,∴-2x =2,∴x =-1;(2)∵121123x x -+=-,∴3x -3=6-2(2x +1),∴7x =7, ∴x =1;【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法.27.3DE =.【解析】【分析】根据线段中点求出CE 长,再求出DC 长,即可得出答案;【详解】E 为BC 的中点,且1BE =,1CE BE ==∴,23AD AC =∵,且6AC =, 123CD AC ==∴, 213DE DC CE ∴=+=+=.【点睛】本题考查了线段的中点,能根据图形求出各个线段之间的关系是解题的关键.28.(1)6;(2)阴影面积不变,理由见解析;(3)x=3或6.【解析】【分析】(1)根据AQ =AD ﹣DQ ,只要求出DQ 即可解决问题.(2)结论:阴影部分的面积不会发生改变.根据S 阴=S △APM +S △AQM 计算即可.(3)分两种情形分别构建方程求解即可解问题.【详解】(1)∵四边形ABCD 是矩形,∴AD =BC =8.AP=DQ =2,∴AQ =AD ﹣DQ =8﹣2=6.故答案为6.(2)结论:阴影部分的面积不会发生改变.理由如下:连结AM ,作MH ⊥AD 于H .则四边形ABMH 是矩形,MH =AB =4.∵S 阴=S △APM +S △AQM 12=⨯x ×412+(8﹣x )×4=16,∴阴影面积不变. (3)分两种情况讨论:①当点P 在线段AB 上时,BP =4﹣x ,DQ =x .∵BP 13=DQ ,∴4﹣x 13=x ,∴x =3. ②当点P 在线段BM 上时,BP =x ﹣4,DQ =x . ∵BP 13=DQ ,∴x ﹣413=x ,∴x =6. 综上所述:当x =3或6时,BP 13=DQ . 【点睛】 本题考查了矩形的性质,一元一次方程的应用,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.29.(1)-32;(2)0. 【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【详解】解:(1)(-23)-(+13)-|-34|-(-14) =(-23)+(-13)-34+14 =-32; (2)-12-(1-0.5)×13×[3-(-3)2] =-1-()113923⨯⨯- =-1-16×(-6) =-1+1=0.【点睛】 考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.30.∠2=65°,∠3=50°.【解析】【分析】首先根据平角以及∠FOC 和∠1的度数求出∠3的度数,然后根据∠3的度数求出∠AOD 的度数,根据角平分线的性质求出∠2的度数.【详解】∵AB 为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=40°,∴∠3=180°-90°-40°=50°.∵∠3与∠AOD 互补,∴ ∠AOD=180°-∠3=130°. ∵OE 平分∠AOD ,∴ ∠2=∠AOD=65°.【点睛】考点:角平分线的性质、角度的计算.31.(1)见解析;(2)直线m ⊥n .【解析】【分析】(1)如图,取格点E 、F ,作直线CF 和直线EC 即可;(2)根据所画图形直接解答即可.【详解】解:(1)如图,直线m ,直线n 即为所求;(2)直线m ⊥n .【点睛】本题考查了利用格点作已知直线的平行线和垂线,属于基本作图题型,熟练掌握网格中作平行线和垂线的方法是解题关键.32.7【解析】【分析】根据互为“正角”的定义进行解答即可.【详解】解:∵120AOB ∠=︒,射线OC 平分AOB ∠,∴1602AOC BOC AOB ∠=∠=∠=︒ ∵60,AOB AOC BOC ∠-∠=∠=︒ ∴AOB AOC ∠∠、互为“正角”;∵60AOB BOC AOC ∠-∠=∠=︒∴AOB BOC ∠∠、互为“正角”;∵1206060,AOB EOF ∠-∠=︒-︒=︒∴AOB EOF ∠∠、互为“正角”;∵60,AOF AOE EOF ∠-∠=∠=︒∴AOF AOE ∠∠、互为“正角”;∵60,AOF COF AOC ∠-∠=∠=︒∴AOF COF ∠∠、互为“正角”;∵60,BOE BOF EOF ∠-∠=∠=︒∴BOE BOF ∠∠、互为“正角”;∵60,BOE EOC BOC ∠-∠=∠=︒∴BOE EOC ∠∠、互为“正角”;故共有7对角互为“正角”故答案为:7【点睛】本题考查了新型定义及角的和差关系,掌握角的和差是解题的关键.33.45︒【解析】试题分析:设这个角的度数为x ,则其补角为(180)x -,其余角为(90)x -,再利用题中的已知条件“一个角的补角与它的余角的度数之比是3:1”可得:3(90)180x x -=-,解方程就可求得这个角的度数.试题解析:设这个角的度数为x ,由题意可得:3(90)180x x -=-,解得x 45=,∴这个角的度数为:45°.点睛:在解这类问题时,通常要设“一个角本身、它的补角、它的余角”中某一个为“未知数”,然后利用“互补两个角的和为180°,互余两个角的和为90°”把另外两个表达出来,再利用题中已知的数量关系列出方程就可求解.四、压轴题34.(1)8;(2)4或10;(3)t 的值为167和329 【解析】【分析】(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6∴AB =6﹣(﹣2)=8答:AB 的值为8.(2)设点C 表示的数为x ,由题意得|x ﹣(﹣2)|=3|x ﹣6|∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x∴x =10或x =4答:点C 表示的数为4或10.(3)∵点C 位于A ,B 两点之间,∴点C 表示的数为4,点A 运动t 秒后所表示的数为﹣2+t ,①点C 到达B 之前,即2<t <3时,点C 表示的数为4+2(t ﹣2)=2t∴AC =t +2,BC =6﹣2t∴t +2=3(2t ﹣6)解得t =167②点C 到达B 之后,即t >3时,点C 表示的数为6﹣2(t ﹣3)=12﹣2t∴AC =|﹣2+t ﹣(12﹣2t )|=|3t ﹣14|,BC =6﹣(12﹣2t )=2t ﹣6∴|3t ﹣14|=3(2t ﹣6)解得t =329或t =43,其中43<3不符合题意舍去 答:t 的值为167和329 【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.35.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10【解析】【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可,(2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可,(4)根据(3)的结果计算即可.【详解】(1)观察数轴可知,4a =-,1b =,6c =.故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =,则若将数轴在点B 处折叠,点A 与点C 能重合.故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,53BC b c t =-=+.故答案为:5t +;53t +.(4)5AB t =+,∴3153AB t =+.又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+--10=.故3AB BC -的值不会随时间t 的变化而变化,值为10.【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.36.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b 是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x )+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10。
苏教版七年级上册数学 期末试卷中考真题汇编[解析版]
![苏教版七年级上册数学 期末试卷中考真题汇编[解析版]](https://img.taocdn.com/s3/m/33d96db916fc700aba68fc9a.png)
苏教版七年级上册数学期末试卷中考真题汇编[解析版]一、选择题1.一件毛衣先按成本提高50%标价,再以8折出售,获利70元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为( )A.0.8x+70=(1+50%)x B.0.8 x-70=(1+50%)xC.x+70=0.8×(1+50%)x D.x-70=0.8×(1+50%)x2.下列运算中,结果正确的是( )A.3a2+4a2=7a4B.4m2n+2mn2=6m2nC.2x﹣12x=32x D.2a2﹣a2=23.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A.B.C.D.4.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为15cm,则四边形ABFD的周长等于()A.17cm B.18cm C.19cm D.20cm5.下列几何体三视图相同的是()A.圆柱B.圆锥C.三棱柱D.球体6.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是()A.秦B.淮C.源D.头7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C .20°D .15°8.如图所示的正方体的展开图是( )A .B .C .D .9.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D10.下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )A .B .C .D .11.下列运算正确的是( ) A .332(2)-=- B .22(3)3-=- C .323233-⨯=-⨯D .2332-=-12.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23 D .113.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣12020 14.2-的相反数是( ) A .2-B .2C .12D .12-15.下列说法中正确的有( ) ①经过两点有且只有一条直线; ②连接两点的线段叫两点的距离; ③两点之间的所有连线中,垂线段最短; ④过直线外一点有且只有一条直线与已知直线平行. A .0个B .1个C .2个D .3个二、填空题16.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________. 17.已知关于x 的方程345m x -=的解是1x =,则m 的值为______.18.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____. 19.21°17′×5=_____.20.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同. 年级 课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数 七年级 17 6 8 八年级 14.5 57九年级12.5则九年级科技小组活动的次数是_____.21.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.22.写出一个关于三棱柱的正确结论________.23.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________24.216x -的系数是________ 25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+. 28.作图题:如图,已知平面上四点,,,A B C D .(1)画直线AD ;(2)画射线BC ,与直线AD 相交于O ;(3)连结,AC BD 相交于点F .29.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,是当时世界上最简练有效的应用数学.书中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?30.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-、31.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.32.如图所示方格纸中,点,,O A B 三点均在格点(格点指网格中水平线和竖直线的交点)上,直线,OB OA 交于格点O ,点C 是直线OB 上的格点,按要求画图并回答问题.(1)过点C 画直线OB 的垂线,交直线OA 于点D ;过点C 画直线OA 的垂线,垂足为E ;在图中找一格点F ,画直线DF ,使得//DF OB(2)线段CE 的长度是点C 到直线 的距离,线段CD 的长度是点 到直线OB 的距离. 33.解方程:(1)3541x x +=+ (2)x 1x 212 3-+-= 四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.35.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 36.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 37.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .38.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.39.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).40.综合与实践 问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)41.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l 上以A ,B ,C ,D 为端点的线段共有 条;②若AC =5cm ,BD =6cm ,BC =1cm ,点P 为直线l 上一点,则PA +PD 的最小值为 cm ;(2)若点A 在直线l 上向左运动,线段BD 在直线l 上向右运动,M ,N 分别为AC ,BD 的中点(如图2),请指出在此过程中线段AD ,BC ,MN 有何数量关系并说明理由; (3)若C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,E ,F 两点同时从C ,D 出发,分别以2cm/s ,1cm/s 的速度沿直线l 向左运动,Q 为EF 的中点,设运动时间为t ,当AQ+AE+AF=32AD 时,请直接写出t 的值. 42.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 43.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据等量关系列方程即可.【详解】∵成本为x元,根据题意列方程为x+70=0.8×(1+50%)x,故选C.【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找到等量关系.2.C解析:C【解析】【分析】将选项A,C,D合并同类项,判断出选项B中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A、3a2+4a2=7a2,故选项A不符合题意;B、4m2n与2mn2不是同类项,不能合并,故选项B不符合题意;C.、2x-12x=32x,故选项C符合题意;D、2a2-a2=a2,故选项D不符合题意;故选C.【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.3.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.4.C解析:C【解析】【分析】将四边形的边长分解成一个三角形的周长和AD与BE的长,加起来即可.【详解】由题意得,AB=DE,AD=BE=2;四边形ABFD的周长=EF+DF+AB+AD+BE= EF+DF+DE+AD+BE=△DEF周长+2+2=19cm;故选C.【点睛】本题考查三角形平移、周长算法,关键在于将四边形周长分解成已知条件.5.D解析:D【解析】【分析】根据几何体的主视图、左视图、俯视图的形状即可判断.【详解】解:A选项,圆柱的主视图和左视图为长方形,俯视图为圆,不相同,A错误;B选项,圆锥的主视图和左视图为三角形,俯视图为圆及圆心,不相同,B错误;C选项,三棱柱的三视图分别为三角形,三角形,三角形及中心与顶点的连线, C错误;D选项,球体的三视图均为相同的圆,D正确.故选:D【点睛】本题考查了三视图,熟练掌握基础几何体的三视图是解题的关键.6.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“秦”字对面的字是“灯”,“淮”字对面的字是“头”,“会”字对面的字是“源”.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.B解析:B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,8.A解析:A【解析】【分析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.9.A解析:A【解析】【分析】A、B、C、D四个点,哪个点离原点最远,则哪个点所对应的数的绝对值最大,据此判断即可.【详解】∵A、B、C、D四个点,点A离原点最远,∴点A所对应的数的绝对值最大;故答案为A.【点睛】本题考查绝对值的意义,绝对值表示数轴上的点到原点的距离,理解绝对值的意义是解题的关键.10.A解析:A【解析】【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【详解】解:A、是直角梯形绕高旋转形成的圆台,故A正确;B、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B错误;C、绕直径旋转形成球,故C错误;D、绕直角边旋转形成圆锥,故D错误.故选A.【点睛】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.11.A解析:A【解析】【分析】根据幂的乘法运算法则判断即可.【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误;故选A.【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.12.A解析:A【解析】【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343. 所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A.【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.13.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.14.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .15.C解析:C【解析】【分析】根据直线公理、平行线公理、以及垂线公理分析判断即可得出答案.解:①经过两点有且只有一条直线,即两点确定一条直线,说法正确;②连接两点的线段的长度叫两点的距离;说法错误;③两点之间的所有连线中,线段最短,说法错误;④过直线外一点有且只有一条直线与已知直线平行,说法正确.综上所述正确的是①④.故选:C .【点睛】本题考查了直线的性质,线段的性质,垂线的性质,平行线性质,是基础知识,需牢固掌握.二、填空题16.2x+8=3x-12【解析】试题解析:设共有x 位小朋友,根据两种分法的糖果数量相同可得: 2x+8=3x-12.故答案为:2x+8=3x-12.解析:2x+8=3x-12【解析】试题解析:设共有x 位小朋友,根据两种分法的糖果数量相同可得:2x+8=3x-12.故答案为:2x+8=3x-12.17.3【解析】【分析】方程的解满足方程,所以将代入方程可得的值.【详解】解:将代入方程得解得.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键 解析:3【解析】【分析】方程的解满足方程,所以将1x =代入方程可得m 的值.【详解】解:将1x =代入方程345m x -=得345m -=故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键.18.1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A 应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长解析:1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.19.106°25′.【解析】【分析】按照角的运算法则进行乘法运算即可,注意满60进1.【详解】解:21°17′×5=105°85′=106°25′.故答案为:106°25′.【点睛】本题解析:106°25′.【解析】【分析】按照角的运算法则进行乘法运算即可,注意满60进1.【详解】解:21°17′×5=105°85′=106°25′.故答案为:106°25′.【点睛】本题主要考查角的运算,掌握度分秒之间的换算关系是解题的关键.20.【解析】【分析】设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.构建方程组求出x,y即可解决问题.【详解】解:设每次文艺小组活动时间为x h解析:【解析】【分析】设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.构建方程组求出x,y即可解决问题.【详解】解:设每次文艺小组活动时间为x h,每次科技小组活动的时间为y h.九年级科技小组活动的次数是m次.由题意6817 5714.5x yx y+=⎧⎨+=⎩,解得1.51xy=⎧⎨=⎩,∴1.5m+m=12.5,解得m=5故答案为:5.【点睛】本题主要考查二元一次方程组的应用,能够根据题意列出方程组是解题的关键.21.静.【解析】【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“冷”与“心”是相对面,“细”与“解析:静.【解析】【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“冷”与“心”是相对面,“细”与“范”是相对面,“静”与“规”是相对面,在正方体中和“规”字相对的字是静;故答案为:静.【点睛】本题主要考查了正方形相对两个面上的文字,注意正方形的空间图形,从相对面入手,分析及解答问题.22.三棱柱有5个面(答案不唯一)【解析】【分析】根据三棱柱的特点,例如,三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱等写出一个即可.【详解】解:∵三棱柱的性质有:三棱柱有5个面,三棱柱有6解析:三棱柱有5个面(答案不唯一)【解析】【分析】根据三棱柱的特点,例如,三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱等写出一个即可.【详解】解:∵三棱柱的性质有:三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱,三棱柱的底面形状为三角形等等,∴关于三棱柱的正确结论是:三棱柱有5个面(答案不唯一)故答案为:三棱柱有5个面(答案不唯一)【点睛】本题考查了三棱柱的特点,具有空间想象能力,掌握了三棱柱的顶点、棱、面的性质是解答此题的关键.23.36cm【解析】【分析】根据题意即可求出QB=16cm和QB与AB的关系,从而求出AB.【详解】解:∵,剪断的各段绳子中最长的一段为,∴QB=16cm,QB=解得:AB=36即绳子的解析:36cm【解析】【分析】根据题意即可求出QB=16cm 和QB 与AB 的关系,从而求出AB .【详解】解:∵::2:3:4AP PQ QB =,剪断的各段绳子中最长的一段为16cm ,∴QB=16cm,QB=4234AB ++ 解得:AB=36即绳子的原长为36cm .故答案为: 36cm .【点睛】此题考查的是根据线段的比,求线段的长,根据线段的比求线段的关系是解决此题的关键. 24.【解析】【分析】根据单项式的系数的定义即可求解.【详解】解:的系数是.故答案为:.【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数. 解析:16- 【解析】【分析】根据单项式的系数的定义即可求解.【详解】 解:216x -的系数是16-. 故答案为:16-. 【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数.25.爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上解析:爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上的字.理解正方体的平面展开图的特点,是解决此题的关键.三、解答题26.(1)-5.5;(2)1 6 .【解析】【分析】根据有理数的计算法则计算即可.【详解】(1)解:原式=1 6.52--+=-5.5.(2)解:原式=111(29)23--⨯⨯-=7 16 -+=1 6 .【点睛】本题考查有理数的计算,关键在于熟练掌握计算方法. 27.(1)-2a;(2)297mn m-.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a -7a=-2a .(2)解:原式=227324mn m mn m -+-=297mn m -.【点睛】本题考查整式的计算,关键在于掌握计算法则.28.图形见解析【解析】试题分析:(1)过点A 和点D 画一条直线即可;(2)以B 为端点,沿B 到C 的方向做一条射线,与直线AD 相交处标上字母O ; (3)做线段AC 和线段BD ,两条线段的交点处标上字母F .如图所示:点睛:本题考查了直线、射线、线段,主要是对文字语言转化为几何语言的能力的训练,是基础题.29.人数有7人.【解析】【分析】根据题意列出方程解出即可.【详解】解:设人数为x ,则可列方程为:8x -3=7x +4解得:x =7答:人数有7人.【点睛】本题考查一元一次方程的应用,关键在于理解题意列出方程.30.-2【解析】【分析】先根据整式的乘法去括号,再合并同类项,进行化简,再代入已知数求值即可.【详解】解:原式22226354a b ab a b ab =--+22=+a b ab()ab a b=+当a=2,b=-1时,=-⨯原式21=-2【点睛】本题考核知识点:整式化简求值. 解题关键点:掌握整式的基本运算法则.31.∠2=65°,∠3=50°.【解析】【分析】首先根据平角以及∠FOC和∠1的度数求出∠3的度数,然后根据∠3的度数求出∠AOD的度数,根据角平分线的性质求出∠2的度数.【详解】∵AB为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=40°,∴∠3=180°-90°-40°=50°.∵∠3与∠AOD互补,∴∠AOD=180°-∠3=130°.∵OE平分∠AOD,∴∠2=∠AOD=65°.【点睛】考点:角平分线的性质、角度的计算.32.(1)详见解析;(2)OA,D.【解析】【分析】(1)根据题意画出图象即可.(2)由图象即可得出结论.【详解】(1)由题意画图如下:(2)由图可以看出:线段CE 的长度是点C 到直线OA 的距离,线段CD 的长度是点D 到直线OB 的距离.【点睛】本题考查作图能力,关键在于掌握平行垂直等作图技巧.33.(1)4x =;(2)1x =【解析】【分析】(1)移项、合并同类项、系数化1即可;(2)去分母、去括号、移项、合并同类项、系数化1即可.【详解】解:(1)3541x x +=+移项,得3415x x -=-合并同类项,得4x -=-系数化1,得4x =(2)12123x x -+-= 去分母,得()()63122x x --=+ 去括号,得6334 2x x -+=+移项,得32436 x x --=--合并同类项,得55x -=-系数化1,得1x =【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.四、压轴题34.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;(1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++; (1)1111...12233420192020++++⨯⨯⨯⨯ =111111 (22320192020)-+-++- =112020- =20192020; (2)∵|2||4|0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4, ∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++ =111124466820182020++++⨯⨯⨯⨯ =1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭ =111222020⎛⎫- ⎪⎝⎭ =10094040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b 是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x )+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.36.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,。
苏教版数学七年级上册 期末试卷中考真题汇编[解析版]
![苏教版数学七年级上册 期末试卷中考真题汇编[解析版]](https://img.taocdn.com/s3/m/ef4fa76c4a7302768f99391c.png)
苏教版数学七年级上册 期末试卷中考真题汇编[解析版]一、选择题1.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-= B .20x 4x 5+= C .x x 5204+= D .x x5204204+=+- 2.下列比较大小正确的是( ) A .12-<13- B .4π-<2-C .()32--﹤0D .2-﹤5-3.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( )A .0B .1C .2D .34.下列运算正确的是A .325a b ab +=B .2a a a +=C .22ab ab -=D .22232a b ba a b -=-5.如图,给出下列说法:①∠B 和∠1是同位角;②∠1和∠3是对顶角;③ ∠2和∠4是内错角;④ ∠A 和∠BCD 是同旁内角. 其中说法正确的有( )A .0个B .1个C .2个D .3个6.2019年12月15日开始投入使用的盐城铁路综合客运枢纽,建筑总面积约为324 000平方米.数据324 000用科学记数法可表示为( ) A .324×103 B .32.4×104 C .3.24×105 D .0.324×106 7.已知23a +与5互为相反数,那么a 的值是( ) A .1 B .-3 C .-4 D .-18.把一个数a 增加2,然后再扩大2倍,其结果应是( )A .22a +⨯B .()22a +C .24a a ++D .()222a a +++9.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种10.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m11.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣112.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A .2B .3C .4D .513.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A14.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .15.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y-的系数是2-,次数是3二、填空题16.方程2x+1=0的解是_______________.17.如图是一个数值运算程序,若输出的数为1,则输入的数为__________.18.在2π,3.14,0,0.1010010001(每两个1之间依次增加1个0),23中,无理数有_________个.19.正方体切去一块,可得到如图几何体,这个几何体有______条棱.20.如图是一把剪刀,若∠AOB+∠COD =60°,则∠BOD =____°.21.如果向北走20米记作+20米,那么向南走120米记为______米. 22.若72α∠=︒,则α∠的补角为_________°.23.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.24.-6的相反数是 .25.已知长方形周长为12,长为x ,则宽用含x 的代数式表示为______;三、解答题26.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕? 若设小明今天计划买纸杯蛋糕的总价为x 元,请你根据题意完善表格中的信息,并列方程解答.单价 数量 总价 今天 12 x 明天27.如图,直线AB 与CD 相交于O ,OE 是COB ∠的平分线,OE OF ⊥,74AOD ∠=°,求COF ∠的度数.28.先化简,再求值:()()222227a b ab 4a b 2a b 3ab+---,其中a 、b 的值满足2a 1(2b 1)0-++=29.如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).30.如图,直线 l 上有 A 、 B 两点,线段 10AB cm =.点 C 在直线 l 上,且满足4BC cm =,点 P 为线段 AC 的中点,求线段BP 的长.31.学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而900元的制版费则六折优惠.问: (1)学校印制多少份节目单时两个印刷厂费用是相同的? (2)学校要印制1500份节目单,选哪个印刷厂所付费用少? 32.解方程(1)5x ﹣1=3(x +1) (2)2151136x x +--= 33.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.四、压轴题34.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.35.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?36.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.37.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.38.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?39.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °; ②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).40.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.43.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可. 【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x+=+-5. 故选D . 【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.2.A解析:A 【解析】 试题分析:A.∵12>13∴12-<13-,故A 正确; B .4π-<2-;此选项错误;C .()32(8)8--=--=>0,故此选项错误; D .∵2<5∴-2>-5,故此选项错误. 故选A.考点:有理数的大小比较.3.D解析:D 【解析】 【分析】由任意三个相邻数之和都是4,可知a 1、a 4、a 7、…a 3n+1相等,a 2、a 5、a 8、…a 3n+2相等,a 3、a 6、a 9、…a 3n 相等可以得出a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,求出x 问题得以解决. 【详解】解:由任意三个相邻数之和都是37可知: a 1+a 2+a 3=4 a 2+a 3+a 4=4 a 3+a 4+a 5=4 …可以推出:a 1=a 4=a 7=…=a 3n+1, a 2=a 5=a 8=…=a 3n+2, a 3=a 6=a 9=…=a 3n , ∴a 3n +a 3n+1+a 3n+2=4∵a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,21009004,1,2a a x a x =-=-= ∴a 2+ a 100+ a 900= a 2+ a 1+ a 3=4 即-4+x-1+2x=4 解得:x=3 故选:D. 【点睛】本题考查规律型中的数字的变化,解题的关键是找出数的变化规律“a 1=a 4=a 7=…=a 3n+1,a 2=a 5=a 8=…=a 3n+2,a 3=a 6=a 9=…=a 3n (n 为自然数)”.本题属于基础题,难度不大,解题关键是根据数列中数的变化找出变化规律.4.D解析:D 【解析】 【分析】根据整式的加减,合并同类项得出结果即可判断. 【详解】A. 32a b +不能计算,故错误;B. 2a a a +=,故错误;C. 2ab ab ab -=,故错误;D. 22232a b ba a b -=-,正确, 故选D. 【点睛】此题主要考察整式的加减,根据合并同类项的法则是解题的关键.5.B解析:B 【解析】 【分析】根据同位角、对顶角、内错角以及同旁内角的定义进行判断,即可得到答案. 【详解】 解:由图可知,∠B 和∠1是同旁内角,故①、②错误; ∠2和∠4是内错角,故③正确; ∠A 和∠BCD 不是同旁内角,故④错误; ∴正确的只有1个; 故选:B. 【点睛】本题考查了同位角、内错角、同旁内角、对顶角的定义,解题的关键是熟练掌握定义进行判断.6.C解析:C 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】 324 000=3.24×105.故选:C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.C解析:C【解析】【分析】由互为相反数的两个数和为0可得a的值.【详解】a+与5互为相反数解:23a∴++=2350a=-.解得4故选:C【点睛】本题考查了相反数,熟练掌握相反数的性质是解题的关键.8.B解析:B【解析】【分析】一个数a增加2为a+2,再扩大2倍为2(a+2),即可得出结果.【详解】解:一个数a增加2为:a+2,再扩大2倍,则为:2(a+2),故选:B.【点睛】本题考查了列代数式,正确理解题意是解题的关键.9.C解析:C【解析】【分析】利用立方体展开图的性质即可得出作图求解.【详解】如图,再添加1个小正方形拼接后就能使得整个图形能折叠成正方体纸盒故有4种,故选C.【点睛】此题主要考查了几何展开图的应用以及基本作图,解题的关键是熟知正方体的展开图特点. 10.D解析:D【解析】【分析】【详解】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.11.A解析:A【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】根据题意列得:(3x2+4x−1)−(3x2+9x)=3x2+4x-1−3x2−9x=−5x−1.故选A.【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.12.B解析:B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.13.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.14.D解析:D【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共三列,左边一列1个正方体,右边一列1个正方体,中间一列有3个正方体,故选D .【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15.A解析:A【解析】【分析】根据单项式与多项式的次数的定义以及多项式的项数的定义求解即可.【详解】解:A . 单项式232ab -的次数是2,系数为92-,此选项正确; B . 2341x y x -+-是三次三项式,常数项是-1,此选项错误;C . 单项式a 的系数是1,次数是1,此选项错误;D . 单项式223x y -的系数是23-,次数是3,此选项错误. 故选:A .【点睛】本题考查的知识点是单项式与多项式的有关定义,熟记各定义是解此题的关键.二、填空题16.x=-【解析】【分析】先移项,再系数化1,可求出x 的值.【详解】移项得:2x=-1,系数化1得:x=-.故答案为:-.【点睛】解一元一次方程的一般步骤是去分母,去括号,移项,合并同解析:x=-12【解析】【分析】先移项,再系数化1,可求出x的值.【详解】移项得:2x=-1,系数化1得:x=-12.故答案为:-12.【点睛】解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号,最后系数化1.17.【解析】【分析】设输入的数是x,根据题意得出方程(x2-1)÷3=1,求出即可.【详解】解:设输入的数是x,则根据题意得:(x2-1)÷3=1,x2-1=3,x=±2,故答案为:±解析:2【解析】【分析】设输入的数是x,根据题意得出方程(x2-1)÷3=1,求出即可.【详解】解:设输入的数是x,则根据题意得:(x2-1)÷3=1,x2-1=3,x=±2,故答案为:±2.【点睛】本题考查平方根的意义及求一个数的平方根,解题关键是能根据题意得出方程.18.【解析】【分析】无理数就是无限不循环小数,由此即可解答.【详解】解:在,,,(每两个之间依次增加个),中,无理数有,,(每两个之间依次增加个)两个,故答案是:2. 【点睛】此题主要考查解析:2【解析】【分析】无理数就是无限不循环小数,由此即可解答.【详解】解:在2π,3.14,0,0.1010010001(每两个1之间依次增加1个0),23中,无理数有2π,0,0.1010010001(每两个1之间依次增加1个0)两个,故答案是:2.【点睛】 此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.此题主要考查了认识正方体,关键是看正方体切的位置.20.150【解析】【分析】根据对顶角相等得到∠AOB的度数,再根据邻补角的定义即可得出结论.【详解】∵∠AOB=∠COD,∠AOB+∠COD=60°,∴∠AOB=∠COD=30°,∴∠BOD=解析:150【解析】【分析】根据对顶角相等得到∠AOB的度数,再根据邻补角的定义即可得出结论.【详解】∵∠AOB=∠COD,∠AOB+∠COD=60°,∴∠AOB=∠COD=30°,∴∠BOD=180°-∠AOB=180°-30°=150°.故答案为150°.【点睛】本题考查了对顶角相等和邻补角的定义.求出∠AOB的度数是解题的关键.21.-120【解析】【分析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正解析:-120【解析】【分析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正负数的意义.22.108【解析】根据互补的定义即可求出的补角.【详解】解:∵∴的补角为180°-故答案为:108.【点睛】此题考查的是求一个角的补角,掌握互补的定义是解决此题的关键.解析:108【解析】【分析】根据互补的定义即可求出α∠的补角.【详解】解:∵72α∠=︒∴α∠的补角为180°-108α∠=︒故答案为:108.【点睛】此题考查的是求一个角的补角,掌握互补的定义是解决此题的关键.23.【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:∠AOC=∠AOB+∠BOC.x=45°.故答案解析:【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:90,BOC x ∠=︒-∠AOC=∠AOB+∠BOC.39090x x =︒+︒-x =45°.【点睛】本题考查角度的计算,关键在于利用方程的思想将题目简单化.24.6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.解析:6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.25.6-x【解析】【分析】据长方形的周长公式周长=2(长+宽),得出宽等于周长除以2减去长. 【详解】由题意得:宽=周长÷2-长=12÷2-x=6-x故填:6-x.【点睛】本题主要是灵活解析:6-x【解析】【分析】据长方形的周长公式周长=2(长+宽),得出宽等于周长除以2减去长.【详解】由题意得:宽=周长÷2-长=12÷2-x=6-x故填:6-x.【点睛】本题主要是灵活利用长方形的周长公式解答.三、解答题26.29个.【解析】【分析】根据单价×数量=总价可以表示出今天购买的数量为12x ,由题意可得明天的购买单价为12×0.9=10.8,总价为x-24,则明天的购买数量为-2410.8x ,然后根据明天比今天多买1个列方程求解即可【详解】表格中的填法不唯一,如:由题意,得10.8-12=1. 解得 x =348.348÷12=29 答:小明今天需购买29个纸杯蛋糕.【点睛】本题考查一元一次方程的应用,根据题意找准等量关系是本题的解题关键.27.53COF ︒∠=【解析】【分析】根据已知条件求出∠COE 的度数,再根据垂直的性质求出∠EOF 的度数,最后再根据余角的性质即可求出答案.【详解】直线AB 与CD 相较于O ,74BOC AOD ︒∴∠=∠=,OE 是COB ∠的平分线,1372COE BOC ︒∴∠=∠=; ,90OE OF EOF ︒⊥∴∠=90903753COF COE ︒︒︒︒∴∠=-∠=-=【点睛】本题考查了垂线的性质和角平分线,邻补角和余角的性质,求出∠COE 的度数是解题的关键.28.12 【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:由题意得,a 10-=,2b 10+=,解得,a 1=,1b 2=-, 原式222227a b ab 4a b 2a b 3ab =+--+22a b 4ab =+211141()22⎛⎫=⨯-+⨯⨯- ⎪⎝⎭12=. 故答案为:12. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.29.(1)见解析;(2)见解析;(3)OA , PC 的长度 , PH <PC <OC .【解析】【分析】(1)利用三角板过点P 画∠OPC=90°即可;(2)利用网格特点,过点P 画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH 的长度是点P 到OA 的距离,PC 是点C 到直线OB 的距离,根据垂线段最短即可确定线段PC 、PH 、OC 的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH 的长度是点P 到OA 的距离,PC 是点C 到直线OB 的距离,根据垂线段最短可知PH <PC <OC ,故答案为OA ,PC ,PH <PC <OC .【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.30.线段的BP 的长为7cm 或3cm .【解析】【分析】分两种情况画出图形,即点C 在线段AB 上和点C 在线段AB 的延长线上结合中点的性质求解即可.【详解】①C 在线段AB 上,如图,∵AB=10cm,BC=4cm,∴AC=AB-BC=10-4=6cm,∵P 是AC 中点,∴116322AP PC AC cm ===⨯= ∴347BP PC BC cm =+=+=②C 在线段AB 外,如图,∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14cm,∵P 是AC 中点,∴1114722AP PC AC cm ===⨯= ∴743BP PC BC cm =-=-=答:线段的BP 的长为7cm 或3cm .【点睛】本题考查线段的和差及线段中点的性质,分类讨论画出相应图形是解答此题的关键. 31.(1)设学校要印制x 份节目单时费用是相同的,根据题意,得0.8 1.5900 1.59000.6x x ⨯+=+⨯,解得1200x =,答:略(2)甲厂需:0.8×1.5×1500+900=2700(元),乙厂需:1.5×1500+900×0.6=2790(元),因为2700<2790,故选甲印刷厂所付费用较少.【解析】(1)根据两个印刷厂费用是相同的,找出关于节目单的数量等量关系,列出方程即可(2)准确计算甲、乙两家的费用,再比较即可32.(1)x=2;(2)x=﹣3.【解析】【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【详解】解:(1)去括号,可得:5x﹣1=3x+3,移项,合并同类项,可得:2x=4,系数化为1,可得:x=2.(2)去分母,可得:2(2x+1)﹣(5x﹣1)=6,去括号,可得:4x+2﹣5x+1=6,移项,合并同类项,可得:﹣x=3,系数化为1,可得:x=﹣3.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.33.(1)-2a;(2)297mn m-.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a-7a=-2a.(2)解:原式=227324mn m mn m-+-=297mn m-.【点睛】本题考查整式的计算,关键在于掌握计算法则.四、压轴题34.(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或180 11或1807,使得∠POQ=12∠AOQ.【解析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t≤15时,2t +40+6t=120, t=10;当15<t≤20时,2t +6t=120+40, t=20;当20<t≤30时,2t=6t-120+40, t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=12(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=12(120 -6t),t=18011.当20<t≤30时,2t–(6t -120)=12(6t -120),t=1807.答:存在t=12或18011或1807,使得∠POQ=12∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.35.(1)2;(2)1cm;(3)910秒或116秒【解析】【分析】(1)将x=﹣3代入原方程即可求解;(2)根据题意作出示意图,点C为线段AB上靠近A点的三等分点,根据线段的和与差关系即可求解;(3)求出D和B表示的数,然后设经过x秒后有PD=2QD,用x表示P和Q表示的数,然后分两种情况①当点D在PQ之间时,②当点Q在PD之间时讨论即可求解.(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k ,解得:k =2;故k =2;(2)当C 在线段AB 上时,如图,当k =2时,BC =2AC ,AB =6cm ,∴AC =2cm ,BC =4cm ,∵D 为AC 的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910 ②当点Q 在PD 之间时,∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.36.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【解析】【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a b MN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论.【详解】(1)6AC cm =,M 是AC 的中点,∴132CM AC ==(cm ), 4BC cm =,N 是CB 的中点,∴122CN CB ==(cm ), ∴325MN CM CN =+=+=(cm );(2)由AC a =,M 是AC 的中点,得1122CM AC a ==, 由BC b =,N 是CB 的中点,得1122CN CB b ==, 由线段的和差,得222a b a b MN CM CN +=+=+=; (3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知2a b MN +=, 当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点,∴1122CM AC a ==, BC b =,点N 是CB 的中点,∴1122CN BC b ==, ∴222a b a b MN CM CN -=-=-= 当点C 在线段BA 的延长线时,如图:则AC a BC b =<= ,同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b a MN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.37.13t =,233AP =或t =3,AP =11. 【解析】【分析】 根据题意可以分两种情况:①当P 向左、Q 向右运动时,根据PQ=OP+OQ+BO 列出关于t 的方程求解,再求出AP 的长;②当P 向右、Q 向左运动时,根据PQ=OP+OQ-BO 列出关于t 的方程求解,再求出AP 的长.【详解】解:∵12AB =,4OB =,∴8OA =.根据题意可知,OP=t ,OQ=2t .①当P 向左、Q 向右运动时,则PQ=OP+OQ+BO ,∴245t t ++=,∴13t =. 此时OP =13,123833AP AO OP =-=-=; ②当P 向右、Q 向左运动时,PQ=OP+OQ-BO ,∴245t t +-=,∴3t =.此时3OP =,8311AP AO OP =+=+=.【点睛】本题考查数轴、线段的计算以及一元一次方程的应用问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.38.(1)2;(2)52x MC =+;(3)当25x =-或6x =时,有2AP CM PC -=成立. 【解析】【分析】(1)根据中点的定义,即可求出点C 的坐标;(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值.解:(1)点A 表示的数为10-,点B 表示的数为14,∴线段AB=14(10)24--=,∴点C 表示的数为:142422-÷=;(2)根据题意,点M 表示的数为:142x +, ∴线段MC 的长度为:142522x x +-=+; (3)根据题意, 线段AP 的长度为:10x +,线段MC 的长度为:52x +, 线段PC 的长度为:2x -,∵2AP CM PC -=, ∴10(5)222x x x +-+=-, 整理得:15242x x -=+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242x x -=+, 解得:25x =-; ②当点P 与点C 重合时,2x =, ∴15042x +=, 解得:10x =-(不符合题意,舍去);③当点P 在点C 的右边时,2x >,则20x -<, ∴15242x x -=+, 解得:6x =. ∴当25x =-或6x =时,有2AP CM PC -=成立. 【点睛】本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离.39.(1)65°;(2)①25°;②35°;③1AON a 2∠=。
苏教版七年级上册数学 期末试卷中考真题汇编[解析版]
![苏教版七年级上册数学 期末试卷中考真题汇编[解析版]](https://img.taocdn.com/s3/m/2cfd3ac627284b73f342508a.png)
苏教版七年级上册数学 期末试卷中考真题汇编[解析版]一、选择题1.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .2.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+ C .60101312x x +-= D .60101213x x+-= 3.如图,AB ∥CD ,∠BAP =60°-α,∠APC =50°+2α,∠PCD =30°-α.则α为( )A .10°B .15°C .20°D .30°4.下列各图是正方体展开图的是( ) A .B .C .D .5.已知23a +与5互为相反数,那么a 的值是( ) A .1B .-3C .-4D .-16.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( )(1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格 7.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( )A .100.30千克B .99.51千克C .99.80千克D .100.70千克8.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个9.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣110.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .11.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或412.-3的相反数为( )A .-3B .3C .0D .不能确定13.3-的绝对值是( ) A .3-B .13-C .3D .3±14.对于任何有理数a ,下列各式中一定为负数的是( ) A .(3)a --+B .2a -C .1a -+D .1a --15.下列说法中正确的有( ) ①经过两点有且只有一条直线; ②连接两点的线段叫两点的距离; ③两点之间的所有连线中,垂线段最短; ④过直线外一点有且只有一条直线与已知直线平行. A .0个B .1个C .2个D .3个二、填空题16.一个几何体的主视图、左视图、俯视图都是相同的图形,这样的几何体可以是___________(写出一个符合条件的即可).17.在0,1,π,227-这些数中,无理数是___________ . 18.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.19.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数).“C 运算”不停地重复进行,例如,66n =时,其“C 运算”如下:…若35n =,则第2020次“C 运算”的结果是________.20.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”). 21.若一个多边形的内角和是900º,则这个多边形是 边形.22.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)23.请写出一个系数是-2,次数是3的单项式:________________. 24.计算t 3t t --=________.25.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.三、解答题26.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=.(1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.27.如图,过直线AB 上点O 作AB 的垂线OE ,三角尺的一条直角边OD 从与OB 重合的位置开始,绕点O 按逆时针方向旋转至与OA 重合时停止,在旋转过程中,设BOD ∠的度数为α,作DOE ∠的平分线OF .(1)当OD 在∠BOE 的内部时,BOD ∠的余角是___________;(填写所有符合条件的角)(2)在旋转过程中,若14EOF BOF ∠=∠,求α的值; (3)在旋转过程中,作AOD ∠的平分线,OG FOG ∠的度数是否会随着α的变化而变化?若不变,直接写出FOG ∠的度数;若变化,试用含有α的式子表示FOG ∠的度数.28.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元?29.如图,所有小正方形的边长都为1,点O 、P 均在格点上,点P 是∠AOB 的边 OB 上一点,直线PC ⊥OA ,垂足为点C .(1)过点 P 画 OB 的垂线,交OA 于点D ; (2)线段 的长度是点O 到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC (填“>”,“<”或“=”),理由是 .30.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线,⑴写出所有∠EOC 的补角 ; ⑵如果∠AOD=40°,求∠POF 的度数.31.计算: (1) 12(8)(7)15--+--;(2) ()241123522-+⨯--÷⨯ 32.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.33.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数;(1)若3与a 是关于2的关联数,则a =_______.(2)若21x - 与35x -是关于2的关联数,求x 的值.(3)若M 与N 是关于m 的关联数, 33M mn n =++,N 的值与m 无关,求N 的值.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版七年级数学上册期末试卷中考真题汇编[解析版]一、选择题1.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A.B.C.D.2.如果向北走2 m,记作+2 m,那么-5 m表示()A.向东走5 m B.向南走5 m C.向西走5 m D.向北走5 m3.如图,OA方向是北偏西40°方向,OB平分∠AOC,则∠BOC的度数为()A.50°B.55°C.60°D.65°4.如图,已知射线OA⊥射线OB, 射线OA表示北偏西25°的方向,则射线OB表示的方向为()A .北偏东65°B .北偏东55°C .北偏东75°D .东偏北75°5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( ) A .AC =BC B .AB =2AC C .AC +BC =AB D .12BC AB = 6.拖拉机加油50L 记作50L +,用去油30L 记作30L -,那么()5030++-等于( ) A .20 B .40 C .60 D .807.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°8.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a9.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数 10.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小 11.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .1312.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°13.下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )A .B .C .D .14.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A .()31003x x +-=100 B .10033x x -+ =100 C .()31001003x x --= D .10031003x x --= 15.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109 B .2.85×108 C .28.5×108 D .2.85×106二、填空题16.定义一种新运算“◎”:a ◎2b a b =-,例如 2◎32231=⨯-=,若(32)x -◎(1)5x +=,则 x 的值为__________.17.比较大小:π1-+ _________3-(填“<”或“=”或“>”).18.如图,AB ,CD 相交于点O ,EO AB ⊥,则1∠与2∠互为_______角.19.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).20.线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一条直线上,则AC=______.21.已知22m n -=-,则524m n -+的值是_______.22.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.23.单项式312xy -的次数是___. 24.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________.25.点A 、B 、C 在直线l 上,若3BC AC =,则AC AB=__________. 三、解答题26.如图,已知线段AB ,延长AB 到C ,点D 是线段AB 的中点,点E 是线段BC 的中点.(1)若5BD =,4BC =,求线段EC 、AC 的长;(2)试说明:2AC DE =.27.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形;(2)若30AOB ∠=︒,求出COD ∠的度数.28.如图,直线 l 上有 A 、 B 两点,线段 10AB cm =.点 C 在直线 l 上,且满足 4BC cm =,点 P 为线段 AC 的中点,求线段BP 的长.29.解方程:(1)()()23319x x --+=(2)2151146x x +--=- 30.在如图所示的方格纸中,点P 是∠AOC 的边OA 上一点,仅用无刻度的直尺完成如下操作:(1)过点P 画OC 的垂线,垂足为点H ;(2)过点P 画OA 的垂线,交射线OC 于点B ;(3)分别比较线段PB 与OB 的大小:PB OB (填“>”“<”或“=”),理由是 .31.如图,在方格纸中,A 、B 、C 为3个格点,点C 在直线AB 外.(1)仅用直尺,过点C 画AB 的垂线m 和平行线n ;(2)请直接写出(1)中直线m 、n 的位置关系.32.计算:(1)25)(277+-()-(-)-; (2)315(2)()3-⨯÷-. 33.画图题:已知平面上点A B C D 、、、,用刻度尺按下列要求画出图形:(保留画图痕迹,不要求写画法)(1)画直线BD ,射线 C B(2)连结AD 并延长线段AD 至点 F ,使得DF AD =.四、压轴题34.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______. ()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.35.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”.36.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.37.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数;(2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.38.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.39.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.40.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.41.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?42.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.43.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A 、设最小的数是x .x+x+7+x+7+1=19 ∴x=43,故本选项错误; B 、设最小的数是x .x+x+6+x+7=19,∴x=2,故本选项正确.C 、设最小的数是x .x+x+1+x+7=19, ∴x=113,故本选项错误. D 、设最小的数是x .x+x+1+x+8=19, ∴x=103,故本选项错误. 故选:B.【点睛】 本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.解析:B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】由题意知:向北走为“+”,则向南走为“﹣”,所以﹣5m表示向南走5m.故选:B.【点睛】本题考查了具有相反意义的量.解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.D解析:D【解析】【分析】根据方向角的定义和角平分线的定义即可得到结论.【详解】∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°.∵OB平分∠AOC,∴∠BOC12∠AOC=65°.故选:D.【点睛】本题考查了方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.4.A解析:A【解析】【分析】首先求得OB与正北方向的夹角,然后根据方向角的定义求解.【详解】∵OA与正北方向的夹角是25°,∴OB与正北方向的夹角是:90°-25°=65°,则OB的方向角为北偏东65°.故选:A.【点睛】本题考查了方向角的定义,理解定义是本题的关键.解析:C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.6.A解析:A【解析】【分析】根据有理数的实际意义即可求解.【详解】()5030++-表示拖拉机加油50L,再用去油30L,故剩下20L故选A.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性.7.C解析:C【解析】【分析】根据特殊直角三角形的角度即可解题.【详解】解:由特殊直角三角形可知,∠1=90°-30°=60°,故选C.【点睛】本题考查了特殊直角三角形的认识,属于简单题,熟悉特殊三角形的角度是解题关键. 8.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D、∵从数轴可知:-3<a<-2,∴3<1 –a<4,故本选项不符合题意;故选:C.【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a<-2是解此题的关键.9.C解析:C【解析】【分析】直接利用有理数、无理数、正负数的定义分析得出答案.【详解】0既不是正数也不是负数,0是有理数.故选C【点睛】此题主要考查了实数,正确把握实数有关定义是解题关键.10.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m大3.【详解】解:∵3+m=m+3,m+3表示比m大3,∴3+m比m大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.11.C解析:C【解析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.12.B解析:B【解析】【分析】由折叠的性质及平角等于180°可求出∠BEH的度数,由AB∥CD,利用“两直线平行,内错角相等”可求出∠DHE的度数,再利用对顶角相等可求出∠CHG的度数.【详解】由折叠的性质,可知:∠AEF=∠FEH.∵∠BEH=4∠AEF,∠AEF+∠FEH+∠BEH=180°,∴∠AEF=16×180°=30°,∠BEH=4∠AEF=120°.∵AB∥CD,∴∠DHE=∠BEH=120°,∴∠CHG=∠DHE=120°.故选:B.【点睛】本题考查了四边形的折叠问题,掌握折叠的性质以及平行的性质是解题的关键.13.A解析:A【解析】【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【详解】解:A、是直角梯形绕高旋转形成的圆台,故A正确;B、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B错误;C、绕直径旋转形成球,故C错误;D、绕直角边旋转形成圆锥,故D错误.【点睛】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.14.B解析:B【解析】【分析】设大和尚有x 人,则小和尚有(100﹣x )人,根据3×大和尚人数+小和尚人数÷3=100,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100﹣x )人,根据题意得:3x 1003x -+=100. 故选B .【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】285 000 000=2.85×108.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题16.【解析】【分析】已知等式利用题中新定义化简,整理即可求出x 的值.【详解】已知等式利用题中新定义整理得:2(3x-2)-(x+1)=5,去括号得:6x-4-x-1=5,移项合并得:5x=解析:2【解析】【分析】已知等式利用题中新定义化简,整理即可求出x 的值.【详解】已知等式利用题中新定义整理得:2(3x-2)-(x+1)=5,去括号得:6x-4-x-1=5,移项合并得:5x=10,解得:x=2.故答案为:2.【点睛】本题考查有理数的混合运算,解题关键是弄清题中的新定义.17.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则. 解析:>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.18.余【解析】【分析】根据EO⊥AB,可知∠EOB=90°,然后根据平角为180°,可求得∠1+∠2=90°,即可得出∠1和∠2的关系.【详解】解:∵EO⊥AB,∴∠EOB=90°,∵∠1解析:余【解析】【分析】根据EO⊥AB,可知∠EOB=90°,然后根据平角为180°,可求得∠1+∠2=90°,即可得出∠1和∠2的关系.【详解】解:∵EO⊥AB,∴∠EOB=90°,∵∠1+∠BOE+∠2=180°,∴∠1+∠2=90°,∴∠1和∠2互余.故答案为: 余.【点睛】本题考查了邻补角及余角的概念,解题的关键是掌握互余两角之和为90°.19.<.【解析】【分析】先化简各值然后再比较大小.【详解】,,∵-0.4<0.4,∴<.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.解析:<.【解析】【分析】先化简各值然后再比较大小.【详解】0.40.4--=-,(0.4)0.4--=,∵-0.4<0.4,∴0.4--<(0.4)--.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.20.cm 或15 cm【解析】【分析】【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1,=②当点C 在线段AB 的延长线上时,如图2,=故答案为:5 cm 或15 cm【点睛】解析:cm 或15 cm【解析】【分析】【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1,AC AB BC =-=1055;cm -=②当点C 在线段AB 的延长线上时,如图2,AC AB BC =+=10515.cm +=故答案为:5 cm 或15 cm【点睛】本题考查线段的和与差,注意分类讨论是本题的解题关键.21.9【解析】【分析】根据整体代入法即可求解.∵∴=5-2()=5+4=9故答案为:9.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.解析:9【解析】【分析】根据整体代入法即可求解.【详解】∵22m n -=-∴524m n -+=5-2(2m n -)=5+4=9故答案为:9.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.22.3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序解析:3【解析】【分析】将x =48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x =48代入运算程序中,得到输出结果为24,将x =24代入运算程序中,得到输出结果为12,将x =12代入运算程序中,得到输出结果为6,将x =6代入运算程序中,得到输出结果为3,将x =3代入运算程序中,得到输出结果为6.∵(2020-2)÷2=1009,∴第2020次输出结果为3.故答案为:3.本题考查了代数式求值,弄清题中的运算程序是解答本题的关键.23.【解析】【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,可得答案.【详解】的次数是4,故答案为:4.【点睛】本题考查了单项式.解题的关键是掌握单项式的次数的定义:单项式中 解析:【解析】【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,可得答案.【详解】312xy -的次数是4, 故答案为:4.【点睛】本题考查了单项式.解题的关键是掌握单项式的次数的定义:单项式中,所以字母的指数和叫做这个单项式的次数.24.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵ ,, ,,,, ,,∴商的最小值为.故答案为:.【点睛】本题考 解析:52-【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵1242,422,2255,5522,3344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.25.或【解析】【分析】分两种情况求解,当B在点A的左侧时可得出AB=2AC,当点B在点C的右侧时可得出AB=4AC,即可得解.【详解】解:B在点A的左侧时,画图如下,可得,;点B在点C的解析:14或12【解析】【分析】分两种情况求解,当B在点A的左侧时可得出AB=2AC,当点B在点C的右侧时可得出AB=4AC,即可得解.【详解】解:B在点A的左侧时,画图如下,可得,12 ACAB=;点B在点C的右侧时,画图如下:可得,14AC AB = 故答案为:14或12. 【点睛】本题考查的知识点是线段的和与差,通过画图可以更好的读懂题意,得出答案.三、解答题26.(1)2EC =,14AC =;(2)见解析. 【解析】 【分析】(1)由中点的性质可得解;(2)由图可知AC AB BC =+,利用中点的性质可知2,2AB DB BC BE ==,等量代换可得结论. 【详解】 解:(1)点E 是线段BC 的中点,4BC =122EC BC ∴== 点D 是线段AB 的中点,5BD =210AB BD ∴==10414AC AB BC ∴=+=+= 所以2EC =,14AC =.(2)点E 是线段BC 的中点,点D 是线段AB 的中点2,2AB DB BC BE ∴==222()2AC AB BC DB BE DB BE DE ∴=+=+=+=所以2AC DE =. 【点睛】本题考查了线段的中点,灵活利用中点的性质是解题的关键. 27.(1)详见解析;(2)COD ∠的度数为30或150︒. 【解析】 【分析】(1)按题目要求依次作出各种情况的图形,严格按照作图规则完成画图即可. (2)由题意知,∠AOB =30°,按照(1)中的图形,可分别写出各种情况的各角的度数. 【详解】解:(1)如图1,2,3,4即为所求;(2)OC OA ⊥,OD OB ⊥ 90AOC BOD ∴∠=∠=︒①如图1,90AOB BOC ∠+∠=︒90BOC COD ∠+∠=︒ COD AOB ∴∠=∠又30AOB ∠=︒30COD ∴∠=︒②如图2,90AOB AOD ∠+∠=︒30AOB ∠=︒60AOD ∴=︒∠9060150COD AOC AOD ∴∠=∠+∠=︒+︒=︒③如图3,360AOB BOD COD AOC ∠+∠+∠+∠=︒360COD AOB BOD AOC ∴∠=︒-∠-∠-∠360309090=︒-︒-︒-︒150=︒④如图4,90AOB AOD ∠+∠=︒90COD AOD ∠+∠=︒COD AOB ∴∠=∠又30AOB ∠=︒30COD ∴∠=︒因此,COD ∴∠的度数为30或150︒.【点睛】主要考查了学生在学习过程中对画图的充分认识和理解,以及扎实的实际动手操作能力. 28.线段的BP 的长为7cm 或3cm . 【解析】 【分析】分两种情况画出图形,即点C 在线段AB 上和点C 在线段AB 的延长线上结合中点的性质求解即可. 【详解】①C 在线段AB 上,如图, ∵AB=10cm,BC=4cm, ∴AC=AB-BC=10-4=6cm, ∵P 是AC 中点, ∴116322AP PC AC cm ===⨯= ∴347BP PC BC cm =+=+=②C 在线段AB 外,如图, ∵AB=10cm,BC=4cm, ∴AC=AB+BC=10+4=14cm, ∵P 是AC 中点, ∴1114722AP PC AC cm ===⨯= ∴743BP PC BC cm =-=-=答:线段的BP 的长为7cm 或3cm . 【点睛】本题考查线段的和差及线段中点的性质,分类讨论画出相应图形是解答此题的关键. 29.(1)x=-18;(2)174x = 【解析】 【分析】(1)根据解一元一次方程的解法,去括号,移项合并,系数化为1即可求解; (1)根据解一元一次方程的解法,去分母,去括号,移项合并,系数化为1即可求解. 【详解】解:(1)26339x x ---=99x --= 18x -=18x =-(2)解:()()32125112x x +--=-6310212x x +-+=- 6101232x x -=--- 417x -=-174x =【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知其解法.30.(1)如图所示:点H 即为所求;见解析;(2)如图所示:点B 即为所求;见解析;(3)<,直线外一点与直线上各点连接的所有线段中,垂线段最短. 【解析】 【分析】(1)直接利用垂线的作法得出答案;(2)结合网格得出过点P 的AO 垂线BP 即可; (3)利用垂线的性质得出答案. 【详解】(1)如图所示:点H 即为所求; (2)如图所示:点B 即为所求;(3)PB <OB ,理由是:直线外一点与直线上各点连接的所有线段中,垂线段最短. 故答案为:<,直线外一点与直线上各点连接的所有线段中,垂线段最短. 【点睛】此题主要考查了应用设计与作图,正确掌握垂线段的作法是解题关键. 31.(1)见解析;(2)直线m ⊥n . 【解析】 【分析】(1)如图,取格点E、F,作直线CF和直线EC即可;(2)根据所画图形直接解答即可.【详解】解:(1)如图,直线m,直线n即为所求;(2)直线m⊥n.【点睛】本题考查了利用格点作已知直线的平行线和垂线,属于基本作图题型,熟练掌握网格中作平行线和垂线的方法是解题关键.32.(1)1;(2)120.【解析】【分析】(1)根据有理数加减法混合运算法则计算即可;(2)根据有理数四则混合运算法则计算即可.【详解】(1)原式=25(+2 77+()-)-=-1+2=1;(2)原式=5(8)(3)⨯-⨯-=40(3)-⨯-=120.【点睛】本题考查了有理数的混合运算.熟练掌握运算法则和运算顺序是解答本题的关键. 33.(1)图见解析;(2)图见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)根据题意,画图即可.【详解】解:(1)根据直线和射线的定义:作直线BD和射线C B,如图所示:直线BD和射线C B即为所求;(2)连结AD并延长线段AD至点F,使得DF AD=,如下图所示,AD和DF即为所求.【点睛】此题考查的是画直线、射线和线段,掌握直线、射线和线段的定义及画法是解决此题的关键.四、压轴题34.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】 【分析】()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数24-,点C 表示数12,所以()PA 242t 242t =-+--=,PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后. 【详解】()1设A 表示的数为x ,设B 表示的数是y .x 24=,x 0<∴x 24=- 又y x 12-=y 241212.∴=-+=-故答案为24-;12-.()2由题意可知:t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C表示数12()PA 242t 242t ∴=-+--=,PC 242t 12362t =-+-=-.故答案为2t ;362t -.()3设点Q 运动了m 秒,则m 秒后点P 表示的数是122m -+.①当m 9≤,m 秒后点Q 表示的数是244m -+,则()PQ 24m 4m 122m 2=-+--+=,解得m 5=或7,当m=5时,-12+2m=-2, 当m=7时,-12+2m=2, ∴此时P 表示的是2-或2;②当m 9>时,m 秒后点Q 表示的数是()124m 9--,则()()PQ 124m 9122m 2=----+=, 解得2931m 33或=, 当m=293时,-12+2m=223, 当m=313时,-12+2m=263, 此时点P 表示的数是222633或. 答:P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【点睛】本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解. 35.(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析【解析】 【分析】(1)根据“相伴数对”的定义,将()1,b 代入2323a b a b++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b++=+得:。