2019《考研数学接力题典1800.数学一》勘误表4.1
接力题典1800目录分析

科目章节序号章节题数合计科目章节序号一函数、极限、连续117一二导数与微分58二三中值定理与一元函数微分学的70三四不定积分79四五定积分及其应用90五六向量代数与空间解析几何37六七多元函数微分学65七八重积分49八九曲线积分与曲面积分57九一十无穷级数84一一十一常微分方程64二一行列式11三二矩阵44四三向量27五四线性方程组28六五矩阵的特征值和特征向量42一六二次型23二一随机事件与概率25三二随机变量及其分布30四三多维随机变量及其分布30五四随机变量的数字特征38六五大数定律和中心极限定理7七六数理统计的基本概念20八七参数估计13八假设检验4总计11121112按照重要性高低,依次填充为:红-橙-蓝-无综合比较,评定结果如下:特别重要函数、极限、连续一元函数积分学矩阵的特征值和特征向量多维随机变量及其分布随机变量的数字特征很重要中值定理与一元函数微分学的应用无穷级数矩阵随机事件与概率随机变量及其分布重要常微分方程线性方程组数理统计的基本概念一般上篇 基础篇线性代数概率论与数理统计770175167高等数学线性代数概率论与数理统计高等数学章节题数合计函数、极限、连续57一元函数微分学97一元函数积分学79向量代数与空间解析几何18多元函数微分学24重积分31曲线积分与曲面积分24无穷级数41常微分方程35行列式12矩阵23向量16线性方程组26矩阵的特征值和特征向量36二次型12随机事件与概率28随机变量及其分布16多维随机变量及其分布24随机变量的数字特征25大数定律和中心极限定理7数理统计的基本概念16参数估计9假设检验666266217741774下篇 强化篇406125131。
2019考研数学一真题及答案解析参考

2019年考研数学一真题一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0→x 时,若x x tan -与k x 是同阶无穷小,则=k A.1. B.2. C.3.D.4.2.设函数⎩⎨⎧>≤=,0,ln ,0,)(x x x x x x x f 则0=x 是)(x f 的A.C.3.设A.∞=n C.∞=1n 4.⎰Cy x P ,(A.y C.x 15.设Ax T 的规范形为A.3221y y y ++.B.321y y y -+.C.232221y y y --.D.232221y y y ---.6.如图所示,有3张平面两两相交,交线相互平行,它们的方程组成的线性方程组的系数矩阵和增广矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A rD..1)(,1)(==A r A r7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是 A.(P B.(P C.(P D.(P 8.A.与B.与C.与D.与9. 10. 11. n =0. 12. 设∑为曲面)0(44222≥=++z z y x 的上侧,则dxdy z x z⎰⎰--2244= .13. 设),,(321αααA =为3阶矩阵.若 21αα,线性无关,且2132ααα+-=,则线性方程组0=x A 的通解为 .14. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x x x f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )( . 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)设函数)(x y 是微分方程2'2x e xy y -=+满足条件0)0(=y 的特解.(1(216.设a ,的方向导(1(217.18.(1(219.. 20.标为c b ,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的一个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A 与⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012相似(1)求y x ,.(2)求可可逆矩阵P ,使得.1B AP P =-22.设随机变量X 与Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为{}{}),10(,11,1<<-===-=p p Y P p Y P 令XY Z =(1)求z 的概率密度.(2)p 为何值时,X 与Z 不相关. (3)X 与Z 是否相互独立?. (2)22221221221)1(x x x ex ex ey ----=-=',222221221321221)3()3()1(2x x x x ex x e x x xex xey -----=-=---='',令0=''y 得3,0±=x所以,曲线)(x y y =的凹区间为)0,3(-和),3(+∞,凸区间为)3,(--∞和)3,0(,拐点为)0,0(,)3,3(23---e ,)3,3(23-e .15. 解:(1))2,2(by ax z =grad ,)8,6()4,3(b a z =grad ,由题设可得,4836-=-ba ,即b a =,又()()108622=+=b a z grad ,=y x +217.18.19.由对称性,2x,=y,0=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--===ΩΩ102102101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ=.4131121)1()1(1212==--⎰⎰dz z dz z z20.(1)123=b c βααα++即11112311231b c a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 解得3a =⎧⎪(23R 的则P 21.(21=2λ2⎢⎥-⎣⎦B 的特征值与对应的特征向量分别为1=2λ,11=00ξ⎛⎫ ⎪ ⎪⎪⎝⎭;2=1λ-,21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭;3=2λ-,30=01ξ⎛⎫⎪ ⎪ ⎪⎝⎭. 所以存在()2123=P ξξξ,,,使得122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦.所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当0z ≤时,()z F z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则(II D (III 12P X F ⎧≤⎨⎩⎛= ⎝P X ⎧≤⎨⎩P X ⎧≤⎨⎩23. 从而A(II )构造似然函数()()22112212,,1,2,,,,,,0,ni i n x i n A e x i nL x x x μσμσσ=--⎧∑⎛⎫⎪≥= ⎪=⎨⎝⎭⎪⎩L L 其他,当,1,2,,i x i n μ≥=L 时,取对数得()22211ln ln ln 22nii n L n A x σμσ==---∑,求导并令其为零,可得()22241ln 1022nii d L n x d μσσσ==-+-=∑,解得2σ的最大似然估计量为()211n i i x n μ=-∑.。
2019考研数学一真题及参考答案解析参考

2019年考研数学一真题一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0→x 时,若x x tan -与k x 是同阶无穷小,则=k A.1. B.2. C.3.D.4.5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+.C.232221y y y --.D.232221y y y ---.6.如图所示,有3张平面两两相交,交线相互平行,它们的方程组成的线性方程组的系数矩阵和增广矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A r9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx ∂∂⋅+∂∂⋅11= . 10. 微分方程02'22=--y y y 满足条件1)0(=y 的特解=y .11. 幂级数nn n n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S . 12. 设∑为曲面)0(44222≥=++z z y x 的上侧,则dxdy z x z⎰⎰--2244= .13. 设),,(321αααA =为3阶矩阵.若21αα,线性无关,且2132ααα+-=,则线性方程组0=x A 的通解为 .14. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )( . 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(2)求1lim-∞→n nn a .19.设Ω是锥面())10()1(2222≤≤-=-+z z y x 与平面0=z 围成的锥体,求Ω的形心坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的一个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的一个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A 与⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012相似(1)求y x ,.1.C2.B3.D4.D5.C6.A7.C8.A9.yxx y cos cos + 10.23-xe 11.x cos12.332 13. ,T)1,2,1(-k k 为任意常数.14. 解:(1))()()(2222c x ec dx e ee x y x xdxx xdx +=+⎰⎰=---⎰,又0)0(=y ,故0=c ,因此.)(221x xex y -=(2)22221221221)1(x x x ex ex ey ----=-=',17.1231 ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解得322a b c =⎧⎪=⎨⎪=-⎩.(2)()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的一个基.则()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,.其中112212004P PP -⎢⎥==--⎢⎥⎢⎥⎣⎦. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当0z ≤时,()zF z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0z zpez f z p e z -⎧<⎪=⎨->⎪⎩. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,又()()1,12D X E Y p ==-,从而当12p =时,(),0Cov X Z =,即,X Z 不相关. (III )由上知当12p ≠时,,X Z 相关,从而不独立;当12p =时,1111111111,,,,2P X Z P X X Y P X X P X X⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤为零,可得224122ii d σσσ=,解得的最大似然估计量为()211n ii x n μ=-∑.。
2019年全国硕士研究生入学统一考试数学一试题及答案共16页

2019年全国硕士研究生入学统一考试数学(一)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y . (2)已知xx xe e f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可。
【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。
【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d(4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可。
2019考研真题答案数学

2019考研真题答案数学2019年考研数学真题答案解析考研数学作为研究生入学考试的重要组成部分,对于广大考生来说,掌握真题的解题方法和技巧至关重要。
以下是2019年考研数学真题的答案解析,供考生参考。
一、选择题1. 根据题目所给的函数f(x)=x^2-4x+3,我们可以求出其导数f'(x)=2x-4。
令f'(x)=0,解得x=2,代入原函数求得极小值f(2)=-1。
因此,选项A为正确答案。
2. 根据题目所给的级数求和公式,我们可以利用等比数列求和公式进行计算。
经过计算,得到级数的和为S=1/(1-1/2)=2。
因此,选项C为正确答案。
3. 根据题目所给的矩阵A和B,我们可以进行矩阵乘法运算,得到C=A*B。
然后根据矩阵的特征值定义,求出矩阵C的特征值。
经过计算,得到特征值分别为1, 2, 3。
因此,选项B为正确答案。
...二、填空题1. 根据题目所给的微分方程,我们可以将其转化为一阶线性微分方程的标准形式。
然后利用变量分离法求解,得到通解y=Ce^(-x)。
因此,答案为y=Ce^(-x)。
2. 根据题目所给的曲线和点,我们可以利用定积分的几何意义,求出曲线与x轴所围成的面积。
经过计算,得到面积为S=1/2π。
因此,答案为S=1/2π。
...三、解答题1. 首先,我们需要求出函数的二阶导数,然后根据泰勒公式展开函数。
接着,利用拉格朗日中值定理,求出函数在区间[a,b]上的误差估计。
最后,根据误差估计的大小,判断函数的近似值是否满足精度要求。
2. 根据题目所给的线性方程组,我们可以利用高斯消元法进行求解。
首先,将方程组写成增广矩阵的形式,然后进行行变换,得到行最简形式。
接着,根据行最简形式,求出方程组的解。
...四、证明题1. 根据题目所给的函数和条件,我们可以利用函数的连续性和导数的性质,证明函数在区间上满足罗尔定理的条件。
然后,根据罗尔定理,求出函数在区间上的某个点的导数为0。
2. 根据题目所给的级数和条件,我们可以利用柯西收敛准则,证明级数的收敛性。
2019年全国硕士研究生入学统一考试数学(一)试题(Word版)

2019年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1、当0x →时,若tan x x -与kx 是同阶无穷小,则k =A. 1.B. 2.C. 3.D. 4.2、设函数,0,()ln ,0,x x x f x x x x ⎧⎪=⎨>⎪⎩则0x =是()f x 的A. 可导点,极值点.B. 不可导点,极值点.C. 可导点,非极值点.D. 不可导点,非极值点. 3、设{}n u 是单调增加的有解数列,则下列级数中收敛的是A. 1.n n un ∞=∑ B.11(1).nn nu ∞=-∑ C. 11(1).n n n uu ∞=+-∑ D.2211().n n n uu ∞+=-∑4、设函数2(,).xQ x y y =如果对上半平面(0)y >内的任意有向光滑封闭曲线C 都有(,)d (,)d 0CP x y x Q x y y +=⎰,那么函数(,)P x y 可取为A. 23.x y y -B. 231.x y y-C.11.x y - D. 1.x y- 5、设A 是3阶实对称矩阵,E 是3阶单位矩阵. 若22+=A A E ,且4=A ,则二次型T x Ax 规范形为A. 222123.y y y ++B. 222123.y y y +- C. 222123.y y y -- D. 222123.y y y ---6、如图所示,有3张平面两两相交,交线相互平行,它们的方程123(1,2,3)i i i i a x a y a z d i ++==组成的线性方程组的系数矩阵和增广矩阵分别记为,A A ,则 A. ()2,() 3.r r ==A A B. ()2,() 2.r r ==A A C. ()1,() 2.r r ==A A D. ()1,() 1.r r ==A A7、设,A B 为随机事件,则()()P A P B =充分必要条件是A. ()()().P AB P A P B =+ B. ()()().P AB P A P B =C. ()().P AB P B A =D. ()().P AB P AB =8、设随机变量X 和Y 相互独立,且都服从正态分布2(,)N μσ,则{1}P X Y -<A. 与μ无关,而与2σ有关. B. 与μ有关,而与2σ无关. C. 与μ,2σ都有关. D. 与μ,2σ都无关.二、填空题:9~14小题,每小题4分,共24分. 9、设函数()f u 可导,(sin sin )z f y x xy =-+,则11cos cos z z x x y y∂∂⋅+⋅=∂∂ . 10、微分方程2220yy y '--=满足条件(0)1y =的特解y = .11、幂级数0(1)(2)!n nn x n ∞=-∑在(0,)+∞内的和函数()S x = . 12、设∑为曲面22244(0)x y z z ++=的上侧,则2244d d x z x y ∑--=⎰⎰ .13、设123(,,)=A ααα为3阶矩阵. 若12,αα线性无关,且3122=-+ααα,则线性方程组=Ax 0的通解为 .14、设随机变量X 的概率密度为,02,()20,xx f x ⎧<<⎪=⎨⎪⎩其他,()F x 为X 的分布函数,EX 为X 的数学期望,则{()1}P F X EX >-= .三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分) 设函数()y x 是微分方程22e x y xy -'+=满足条件(0)0y =的特解.(1)求()y x ;(2)求曲线()y y x =凹凸区间及拐点. 16、(本题满分10分)设,a b 为实数,函数222z ax by =++在点(3,4)处的方向导数中,沿方向34=--l i j 的方向导数最大,最大值为10. (1)求,a b ;(2)求曲面222(0)z ax by z =++的面积.17、求曲线()e sin 0xy x x -=与x 轴之间图形的面积18、()⋅⋅⋅=-=⎰2,1,0112n dx x xa n π设(1)证明数列{}n a 单调递减;且()⋅⋅⋅=--=-3,2212n a n n a n n ()2求1lim-∞→n nn a a19、设Ω是由锥面()()()101222≤≤---+z z z y x 与平面z < 0围成的椎体,求Ω的形心坐标。
2019年全国硕士入学统考数学(一)试题及解析

2019年全国硕士入学统考数学(一)试题及解析一、填空题〔此题共6小题,每题4分,总分值24分.把答案填在题中横线上〕〔1〕)1ln(12)(cos lim x x x +→=e1.【分析】∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】)1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而212cos sin lim cos ln lim )1ln(cos ln lim02020-=-==+→→→x x xx x x x x x x , 故原式=.121ee=-【详解2】因为2121lim)1ln(1)1(cos lim 22020-=-=+⋅-→→x xx x x x , 因此原式=.121ee=-〔2〕曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x . 【分析】待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程,而切点坐标可依照曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】令22),,(y x z z y x F --=,那么x F x 2-=',y F y 2-=',1='z F .设切点坐标为),,(000z y x ,那么切平面的法矢量为}1,2,2{00y x --,其与平面042=-+z y x 平行,因此有 11422200-=-=-y x , 可解得2,100==y x ,相应地有.520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即542=-+z y x .〔3〕设)(cos 02ππ≤≤-=∑∞=x nx ax n n,那么2a =1.【分析】将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx ax n n,其系数计算公式为⎰=ππ0cos )(2nxdx x f a n .【详解】依照余弦级数的定义,有x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1.〔4〕从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. 【分析】n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足 [nβββ,,,21 ]=[nααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】依照定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡- 〔5〕设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=那么=≤+}1{Y X P 41. 【分析】二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】由题设,有=≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x x y 1 D O211x 〔6〕)1,(μ,从中随机地抽取16个零件,得到长度的平均值为40(cm),那么μ的置信度为0.95的置信区间是)49.40,51.39(.(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 【分析】方差12=σ,对正态总体的数学期望μ进行可能,可依照)1,0(~1N nX μ-,由αμα-=<-1}1{2u nX P 确定临界值2αu ,进而确定相应的置信区间. 【详解】由题设,95.01=-α,可见.05.0=α因此查标准正态分布表知.96.12=αu 此题n=16,40=x ,因此,依照95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39(.【二】选择题〔此题共6小题,每题4分,总分值24分.每题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内〕〔1〕设函数f(x)在),(+∞-∞内连续,其导函数的图形如下图,那么f(x)有 (A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.[C]yOx【分析共4.【3个,而x=0那么是导数不存在的点.一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).〔2〕设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,那么必有(A)n n b a <对任意n 成立.(B)n n c b <对任意n 成立. (C)极限n n n c a ∞→lim 不存在.(D)极限n n n c b ∞→lim 不存在.[D]【分析】此题考查极限概念,极限值与数列前面有限项的大小无关,可马上排除(A),(B);而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,那么可马上排除(A),(B),(C),因此正确选项为(D).〔3〕函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,那么 (A)点(0,0)不是f(x,y)的极值点. (B)点(0,0)是f(x,y)的极大值点. (C)点(0,0)是f(x,y)的极小值点.(D)依照所给条件无法判断点(0,0)是否为f(x,y)的极值点.[A]【分析】由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零依旧变号.【详解】由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0,且222)(),(y x xy y x f +≈-y x ,(充分小时〕,因此.)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y=-x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f .故点(0,0)不是f(x,y)的极值点,应选(A).〔4〕设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,那么 (A)当s r <时,向量组II 必线性相关.(B)当s r >时,向量组II 必线性相关. (C)当s r <时,向量组I 必线性相关.(D)当s r >时,向量组I 必线性相关. [D]【分析】此题为一般教材上均有的比较两组向量个数的定理:假设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,那么当s r >时,向量组I 必线性相关.或其逆否命题:假设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,那么必有s r ≤.可见正确选项为(D).此题也可通过举反例用排除法找到答案.【详解】用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,那么21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,那么21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).故正确选项为(D).〔5〕设有齐次线性方程组Ax=0和Bx=0,其中A,B 均为n m ⨯矩阵,现有4个命题: ①假设Ax=0的解均是Bx=0的解,那么秩(A)≥秩(B); ②假设秩(A)≥秩(B),那么Ax=0的解均是Bx=0的解; ③假设Ax=0与Bx=0同解,那么秩(A)=秩(B); ④假设秩(A)=秩(B),那么Ax=0与Bx=0同解. 以上命题中正确的选项是 (A)①②.(B)①③. (C)②④.(D)③④.[B]【分析】此题也可找反例用排除法进行分析,但①②两个命题的反例比较复杂一些,关键是抓住③与④,迅速排除不正确的选项.【详解】假设Ax=0与Bx=0同解,那么n-秩(A)=n-秩(B),即秩(A)=秩(B),命题③成立,可排除(A),(C);但反过来,假设秩(A)=秩(B),那么不能推出Ax=0与Bx=0同解,如⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,那么秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题④不成立,排除(D),故正确选项为(B).〔6〕设随机变量21),1)((~X Y n n t X =>,那么 (A))(~2n Y χ.(B))1(~2-n Y χ. (C))1,(~n F Y .(D)),1(~n F Y .[C] 【分析】先由t 分布的定义知nV U X =,其中)(~),1,0(~2n V N U χ,再将其代入21XY =,然后利用F 分布的定义即可. 【详解】由题设知,nV U X =,其中)(~),1,0(~2n V N U χ,因此21XY ==122U n V U n V =,那个地方)1(~22χU ,依照F 分布的定义知).1,(~12n F X Y =故应选(C). 三、〔此题总分值10分〕过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D. (1) 求D 的面积A;(2) 求D 绕直线x=e 旋转一周所得旋转体的体积V.【分析】先求出切点坐标及切线方程,再用定积分求面积A;旋转体体积可用一大立体〔圆锥〕体积减去一小立体体积进行计算,为了关心理解,可画一草图.【详解】(1)设切点的横坐标为0x ,那么曲线y=lnx 在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= 由该切线过原点知01ln 0=-x ,从而.0e x =因此该切线的方程为.1x ey =平面图形D 的面积⎰-=-=1.121)(e dy ey e A y 〔2〕切线x ey 1=与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为.3121e V π=曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为dy e e V y 212)(⎰-=π,因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππy1 D O1ex四、将函数x x f 21arctan )(+=∑∞=+-012)1(n n n 的和.【分析】幂级数展开有直截了当法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用幂级数展开的情形。
2019年数一考研真题及答案

2019年数一考研真题及答案2019年的数学一(数学基础)考研真题是考研考生备考的重要参考资料。
本文将为大家整理并解析2019年数学一考研真题及答案,以帮助考生更好地应对考试。
一、选择题部分1. 设函数$ f(x) $在$ x=a $处连续,则满足条件$ \lim\limits_{x \to a^-} f(x) = \lim\limits_{x \to a^+} f(x) = f(a) $的是()。
A. 可导函数B. 非单调函数C. 非奇异函数D. 周期函数正确答案:A解析:根据连续函数的定义可得,函数在$ x=a $处连续的充要条件是$ \lim\limits_{x \to a^-} f(x) = \lim\limits_{x \to a^+} f(x) = f(a) $。
故选项A为正确答案。
2. 曲面$ z = x^2 - y^2 $在点$ (1,1,0) $的切平面方程为()。
A. $ x+y=0 $B. $ x-y=0 $C. $ x+y=1 $D. $ x-y=1 $正确答案:B解析:切平面的法向量等于曲面的法向量,即$ \mathrm{n} = (2x, -2y, 1) $。
带入点$ (1,1,0) $,得到法向量$ \mathrm{n} = (2,-2,1) $,切平面方程为$ 2(x-1)-2(y-1)+0 = 0 $,化简得$ x - y = 0 $。
故选项B为正确答案。
二、填空题部分1. 线性方程组$ Ax = b $若有解,则齐次线性方程组$ Ax = 0 $必有()个线性无关的解。
正确答案:$ r $解析:线性方程组的解空间维数等于非齐次线性方程组的解空间维数减去齐次线性方程组的解空间维数。
根据线性方程组的基本定理,有$ r+m = n $,其中$ r $为非齐次线性方程组的秩,$ m $为齐次线性方程组的基础解系的维数,$ n $为未知量的个数。
所以齐次线性方程组的维数为$ m = n-r $,其有$ r $个线性无关的解。