函数综合练习题

合集下载

高考数学函数专题习题及详细答案

高考数学函数专题习题及详细答案

函数专题练习【1】1.函数1()x y ex R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1)(B )1(0,)3(C )11[,)73(D )1[,1)73.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有(A )1()f x x=(B )()||f x x = (C )()2xf x =(D )2()f x x =4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞B . 1(,1)3-C . 11(,)33-D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C . ,y x x R =∈D . x 1() ,2y x=∈7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A .4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈B .()2ln 2ln (0)f x x x =>)C .()22()xf x e x R =∈D .()2ln ln 2(0)f x x x =+>10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0(B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥ba b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0B .1C .2D .3 (一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。

《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷一.选择题1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1 B.1 C.D.3.设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为()A.2 B.﹣2 C.﹣1 D.04.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是()A.a>b>c B.a>c>b C.b>a>c D.c>a>b5.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或27.已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(0,﹣3),且对称轴为x=2,则这条抛物线的顶点坐标为()A.(2,3)B.(2,1)C.(﹣2,1)D.(2,﹣1)8.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+29.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④10.如表是一组二次函数y=x2+x﹣1的自变量x与函数值y的对应值.由上表可知,方程x2+x﹣1=0的一个近似解是()A.0.4 B.0.5 C.0.6 D.0.811.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B (3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x 的函数关系式是()A.y=﹣x2+x B.y=﹣x2+x C.y=﹣x2﹣x D.y=x2﹣x13.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m二.填空题14.有下列函数:①y=1﹣x2;②y=;③y=x(x﹣3);④y=ax2+bx+c;⑤y=2x+1.其中,是二次函数的有(填序号)15.二次函数y1=mx2、y2=nx2的图象如图所示,则m n(填“>”或“<”).16.若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小18.已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a0(用“>”或“<”连接).19.将抛物线y=﹣3x2向左平移一个单位后,得到的抛物线解析式是.20.函数y=﹣(x﹣1)2﹣7的最大值为.21.有一个二次函数的图象,甲、乙、丙三位同学分别说出了它的特点:甲:对称轴是直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形的面积为3.请你写出满足上述全部特点的一个二次函数解析式.22.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.23.已知抛物线y=ax2+bx+c的图象与x轴交于点A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和C (2m﹣4,m﹣6),抛物线y=ax2+bx+c与y轴交于点D,点P在抛物线的对称轴上,连PA,PD,当PA+PD的长最短时,点P的坐标为.24.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.25.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的说法有.(请填写正确说法的番号)26.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.27.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.28.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE ﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或;其中正确的结论是.参考答案一.选择题1.解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第三个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:∵对于任意负实数k,当x<m时,y随x的增大而增大,∵k为负数,即k<0,∴函数y=kx2+(3k+2)x+1表示的是开口向下的二次函数,∴在对称轴的左侧,y随x的增大而增大,∵对于任意负实数k,当x<m时,y随x的增大而增大,∴x=﹣=﹣∴m≤﹣=.∵k<0,∴﹣>0∴,∵m≤对一切k<0均成立,∴m≤,∴m的最大整数值是m=﹣2.故选:B.4.解:∵二次函数y=x2﹣6x+c,∴该二次函数的抛物线开口向上,且对称轴为:x=3.∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,而三点横坐标离对称轴x=3的距离按由远到近为:(﹣1,a)、(5,c)、(2,b),∴a>c>b,故选:B.5.解:∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3)..因此将抛物线C向右平移4个单位.故选:B.6.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.7.解:根据题意得:,解得:a=﹣1,b=4,c=﹣3,∴抛物线解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,则抛物线顶点坐标为(2,1).故选:B.8.解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.9.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.10.解:观察表格得:方程x2+x﹣1=0的一个近似根为0.6,故选:C.11.解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=﹣∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y最大=a+b+c∴ax2+bx+c≤a+b+c故⑤正确故选:B.12.解:连接O1M,OO1,可得到直角三角形OO1M,依题意可知⊙O的半径为2,则OO1=2﹣y,OM=2﹣x,O1M=y.在Rt△OO1M中,由勾股定理得(2﹣y)2﹣(2﹣x)2=y2,解得y=﹣x2+x.故选:A.13.解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.二.填空题(共15小题)14.解:①y=1﹣x2;②y=,是反比例函数;③y=x(x﹣3);④y=ax2+bx+c,需要添加a≠0;⑤y=2x+1,是一次函数.其中,是二次函数的有:①y=1﹣x2;③y=x(x﹣3).故答案为:①③.15.解:根据抛物线的开口大小与二次函数的二次项系数的关系:系数越大,开口越小,故m>n,故答案为>.16.解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.17.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.18.解:∵二次函数的解析式为y=ax2﹣2ax﹣1,∴该抛物线对称轴为x=1,∵|﹣1﹣1|>|2﹣1|,且m>n,∴a>0.故答案为:>.19.解:∵抛物线y=﹣3x2向左平移一个单位后的顶点坐标为(﹣1,0),∴所得抛物线的解析式为y=﹣3(x+1)2,故答案为:y=﹣3(x+1)2.20.解:∵在函数y=﹣(x﹣1)2﹣7中a=﹣1<0,∴当x=1时,y取得最大值,最大值为﹣7,故答案为:﹣7.21.解:对称轴是直线x=2,则一次项系数与二次项系数的比是﹣4,因而可设函数解析式是y=ax2﹣4ax+ac,与y轴交点的纵坐标也是整数,因而ac是整数,y=ax2﹣4ax+ac=a(x2﹣4x+c),与x轴两个交点的横坐标都是整数,即方程x2﹣4x+c=0有两个整数解,设是﹣1和+5,则c=﹣5,则y=ax2﹣4ax+ac=a(x2﹣4x﹣5),∵以这三个交点为顶点的三角形的面积为3,∴a=±.则函数是:y=±(x+1)(x﹣5).(答案不唯一).22.解:y=x2+6x+5,=x2+6x+9﹣4,=(x2+6x+9)﹣4,=(x+3)2﹣4.故答案是:y=(x+3)2﹣4.23.解:∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:m=3,p=﹣1,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,对称轴EF为x=1,当x=0时y=﹣3,即D点的坐标为(0,﹣3),作D关于EF的对称点N,连接AN,交EF于P,则此时P为所求,根据对称得N的坐标为(2,﹣3),设直线AN的解析式为y=kx+e,把A、N的坐标代入得:,解得:k=﹣1,e=﹣1,即y=﹣x﹣1,把x=1代入得:y=﹣2,即P点的坐标为(1,﹣2),故答案为:(1,﹣2).24.解:∵一元二次方程的一个根为0,另一个根在1到2,∴设两个根分别为0和,∴此一元二次方程可以是:x(x﹣)=0,∴二次函数关系式为:y=x(x﹣)=x2﹣x.故答案为:y=x2﹣x.25.解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y;1∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y>y1;2=2+,x2=2﹣(舍去),当M=2,﹣x2+4x=2,x∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故答案为②③.26.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)227.解:设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.28.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度分别是1cm/秒、2cm/秒∴BC=BE=10,∴AD=BC=10.∴①错误;又∵从M到N的变化是4,∴ED=4,∴AE=AD﹣ED=10﹣4=6.∵AD∥BC,∴∠EBQ=∠AEB,∴cos∠EBQ=cos∠AEB=,故③错误;如图1,过点P作PF⊥BC于点F,∵AD∥BC,∴∠EBQ=∠AEB,∴sin∠EBQ=sin∠AEB==,∴PF=PB sin∠EBQ=t,∴当0<t≤5时,y=BQ×PF=×2t×t=t2,故②正确,如图4,当t=时,点P在CD上,∴PD=﹣BE﹣ED=﹣10﹣4=,PQ=CD﹣PD=8﹣=,∴,,∴∵∠A=∠Q=90°,∴△ABE∽△QBP,故④正确.由②知,y=t2当y=4时, t2=4,从而,故⑤错误综上所述,正确的结论是②④.。

函数与三角函数综合算式练习题

函数与三角函数综合算式练习题

函数与三角函数综合算式练习题在学习数学的过程中,我们经常会遇到各种类型的算式练习题。

这些练习题的目的是让我们熟练掌握各种数学概念和方法,提高解题能力。

本文将为大家提供一些关于函数与三角函数综合的算式练习题,帮助大家巩固相关知识。

1. 函数综合练习题
(1) 已知函数f(x)=2x+1,求f(3)和f(-2)的值。

(2) 已知函数g(x)=3x^2-2x+1,求g(2)和g(-1)的值。

(3) 设函数h(x)满足h(2x)=x^2-1,求h(-1)和h(3)的值。

2. 三角函数综合练习题
(1) 已知sinα=1/2,cosβ=-1/2,求sin(α+β)的值。

(2) 已知tanθ=3/4,求sinθ的值。

(3) 已知sinx=3/5,x∈(π, 3π/2),求cosx的值。

3. 函数与三角函数综合练习题
(1) 已知函数f(x)=2x+1,求f(sinπ/4)的值。

(2) 已知函数g(x)=sin(2x+π/3),求g(π/4)的值。

(3) 设函数h(x)满足h(2x)=sin^2x,求h(π/4)的值。

以上就是关于函数与三角函数综合的算式练习题。

希望大家能够通过练习,加深对相关知识的理解和掌握。

在解题过程中,要善于运用已学知识,灵活应用各种数学概念和方法。

通过不断的练习和思考,相信大家能够在数学学习中取得更好的成绩!。

初中数学中考复习:17函数综合(含答案)

初中数学中考复习:17函数综合(含答案)

中考总复习:函数综合—巩固练习(基础)【巩固练习】一、选择题1. 函数中自变量x的取值范围是( )A.x≥-1B.x>0C.x>-1且x≠0D.x≥-1且x≠02.如图,直线和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1、△BOD面积是S2、△POE面积是S3、则( )A. S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S33.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是()4.已知一次函数的图象如图所示,那么a的取值范围是( )A.a>1 B.a<1 C.a>0 D.a<05.下列函数中,当x>0时,y值随x值增大而减小的是( )A.y=x2B.y=x-1 C.y=x D.y=6.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是( )A.y=-(x+1)2+2 B.y=-(x-1)2+4 C.y=-(x-1)2+2 D.y=-(x+1)2+4.函数的自变量____是双曲线在第二象限的分支上的任意一点,点轴的对称点,则四边形ABCD第8题第10题第11题.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点长为半径画弧交x轴于点A2;再经过A2作x轴的垂线交直线于点B2,以原点O为圆心,半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(________,________).已知二次函数(a为常数),当a取不同的值时,其图象构成一个下图分别是当a=-1,a=0,a=1,a析式是y=___ ____.三、解答题直线交反比例函数的图象于点求直线的函数解析式.(1)求抛物线的对称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论.15.已知如图所示,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.(1)求点A的坐标;(2)若直线AB交y轴于点C,求△AOC的面积.16.如图所示,等腰三角形ABC以2米/秒的速度沿直线向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为y平方米.(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?【答案与解析】一、选择题1.【答案】D;【解析】要使有意义,既要使分式有意义,又使偶次根式有意义,即x≠0且x+1≥0,得x≥-1且x≠0.2.【答案】D;【解析】S1=S△AOC=k,S2=S△BOD=k,S3=S△POE>k.所以S1=S2<S3.3.【答案】C;【解析】散步时用时较长,而跑步用时较短,打一会太极拳说明这一时间段离家的距离不变,因而只有C选项符合.4.【答案】A;【解析】由图象可知k>0,即a-1>0,所以a>1.5.【答案】D;【解析】y=分布第一、三象限,当x>0时,y随x的增大而减小.6.【答案】B;【解析】抛物线y=x2+2x+3的顶点为(-1,2),与y轴交于点(0,3),开口向上;旋转后其顶点为(1,4),开口向下. 所以y=-(x-1)2+4.二、填空题7.【答案】x≥3;【解析】根据题意得,即8.【答案】0.5;【解析】首先求出反比例函数的表达式,可由图中点的坐标(5,1)求出函数式中的待定系数k,然后利用反比例函数表达式即可得解.9.【答案】;【解析】由于y与x成反比例,则,当y=400时,x=0.25,所以k=400×0.25=100,焦距不能为负值.故.10.【答案】4;【解析】由题意得AD=2|x|,AB=,四边形ABCD是矩形,∴.11.【答案】(16,0);【解析】当x=1时,,所以B1(1,),OB1=,所以A2(2,0),当x=2时,y=,所以B2(2,,OB2=4,所以A3(4,0),依次类推A4(8,0),A5(16,0).12.【答案】.【解析】当a=0时,抛物线的顶点坐标是(0,-1),当a=1时,它的顶点坐标是(2,0),设该直线解析式为y=kx+b.则∴∴这条直线的解析式是.三、解答题13.【答案与解析】由题意可知直线与反比例函数的图象相切设A 点的横坐标为m,则由等边三角形△OAB得,纵坐标为,即A(m, ),因为点A在反比例函数的图象上,所以m×=,,A(1, )或(-1, -),则OB=OA=2m,所以B(2,0)、或B(-2,0),直线过A(1, )、B(2,0)的解析式为;直线过A(-1,- )、B(-2,0)的解析式为.14.【答案与解析】解:(1),∴抛物线的对称轴是直线.设点A的坐标为(x,0),,∴x=-3,A的坐标为(-3,0).(2)四边形ABCP是平行四边形.∵CP=2,AB=2,∴CP=AB.又∵CP∥AB,∴四边形ABCP是平行四边形.15.【答案与解析】解;(1)如图所示,过点A作AD⊥x轴,垂足为D.则OD=OA cos 60°=2×=1,(2)设直线AB的解析式为.令x=0,得,∴.∴.16.【答案与解析】解:(1)如图所示,设当△ABC移动x秒时,到达如图位置,则△ECM的面积为y.CE=2x,ME=2x,所以y=2x2(x≥0).(2)当x=2时,y=2×4=8,当x=3.5时,y=2×(3.5)2=24.5.(3)正方形面积为100,当y=50时,2x2=50,x=5.即三角形移动5秒时,重叠部分面积等于正方形面积的一半.。

专升本函数专项练习题

专升本函数专项练习题

专升本函数专项练习题一、选择题1. 函数f(x) = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (0, 2)2. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)3. 函数y = 2x - 3的斜率是多少?A. -2B. -3C. 2D. 34. 函数g(x) = √x 的定义域是什么?A. x > 0B. x ≥ 0C. x < 0D. x ≤ 05. 函数y = ln(x - 1)的渐近线是什么?A. x = 1B. x = 0C. y = 0D. y = 1二、填空题6. 函数f(x) = 3x^2 + 2x - 5的对称轴是________。

7. 函数f(x) = sin(x) + cos(x)的周期是________。

8. 函数f(x) = 1/x在x→0时的极限是________。

9. 函数y = 3x^2 + 5x - 2的最小值是________。

10. 函数y = e^x的导数是________。

三、解答题11. 求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点。

12. 证明函数f(x) = x^2 + 2x + 1在(-∞, -1)上是递减的。

13. 求解函数y = x^2 - 4x + 4在区间[0, 4]上的值域。

14. 给定函数f(x) = 2x - 5,求其反函数。

15. 利用导数求函数f(x) = x^3 - 3x^2 + 2x在x = 2处的切线方程。

四、综合题16. 已知函数f(x) = x^3 - 3x^2 + 2,求其在区间[-1, 3]上的最大值和最小值。

17. 函数y = x^2 + bx + c的图像与x轴相交于点(1, 0)和(2, 0),求b和c的值。

18. 已知函数f(x) = sin(x)和g(x) = cos(x),求f(x)g(x)的值域。

高一数学习题函数的综合运用

高一数学习题函数的综合运用

高一数学习题函数的综合运用在高一的数学学习中,函数是一个重要的概念和工具。

函数的综合运用则是展示学生对函数知识的掌握程度和应用能力的重要环节。

本文将通过几道具体的数学习题,展示高一学生如何运用函数进行综合问题求解。

1. 题目一:小明正在规划一个植物园,园中有两片草地A和B,其中草地A的面积是草地B的两倍。

小明想在这两片草地上分别种植玫瑰花和向日葵,使得两种花的总数量相等。

已知玫瑰花每平方米需要5株,向日葵每平方米需要3株。

请问小明应该在草地A和草地B分别种植多少面积的玫瑰花和向日葵,才能满足总数量相等的要求?解析:设草地A的面积为x平方米,则草地B的面积为2x平方米。

根据题意,可得到以下两个等式:5x = 3 * 2x接下来,我们解方程组:5x = 6x6x - 5x = 0x = 0根据解出的x值,我们可以得知草地A的面积为0平方米,草地B 的面积为0平方米。

因此,无法满足总数量相等的要求。

2. 题目二:某超市在一次特价促销中,将原价为100元的商品打折出售。

打折后的价格与原价之间的关系如下:当购买数量小于等于5件时,每件商品打8折;当购买数量超过5件时,每件商品打7折。

若小明购买了x件商品,问他所购商品的总金额f(x)与x的函数关系是什么?解析:当购买数量小于等于5件时,每件商品打8折,即折扣后价格为100 * 0.8 = 80元。

当购买数量超过5件时,每件商品打7折,即折扣后价格为100 * 0.7 = 70元。

根据以上分析,可以列出下面的函数关系式:f(x) ={80x, 当 x <= 5,70x, 当 x > 5}通过这个函数关系式,我们可以计算出小明购买任意数量的商品后的总金额。

3. 题目三:某公司的年度利润(单位:亿元)与销售额(单位:亿元)之间的关系如下:当销售额不超过10亿元时,利润为销售额的5%;当销售额超过10亿元但不超过50亿元时,利润为销售额的8%;当销售额超过50亿元时,利润为销售额的10%。

函数练习题中职

函数练习题中职

函数练习题中职一、选择题(每题2分,共20分)1. 函数y=f(x)的定义域是所有实数,以下哪个选项是正确的?A. f(x) = 1/xB. f(x) = √xC. f(x) = log(x)D. f(x) = sin(x)2. 已知函数f(x) = 2x - 3,求f(5)的值。

A. 4B. 7C. 9D. 113. 函数f(x) = x^2 + 3x + 2的顶点坐标是?A. (-1, 0)B. (-3/2, -1/4)C. (-2, -3)D. (1, 2)4. 如果函数f(x)是奇函数,那么f(-x)等于?A. -f(x)B. f(x)C. xD. -x5. 函数f(x) = x^3 - 6x^2 + 9x + 2的零点个数是?A. 1B. 2C. 3D. 4二、填空题(每题2分,共20分)6. 函数y = 2x + 5的斜率是______。

7. 如果f(x) = x^2 + bx + c,且f(1) = 2,f(2) = 7,那么b的值是______。

8. 函数y = 3x - 1与x轴的交点坐标是______。

9. 如果f(x) = log(x),那么f(100)的值是______。

10. 函数y = sin(x)的周期是______。

三、解答题(每题10分,共30分)11. 已知函数f(x) = x^2 - 4x + 4,求其在x = 2处的导数值。

12. 给定函数g(x) = √x,求其在x = 9时的切线方程。

13. 函数h(x) = x^3 - 3x^2 + 2x,求其在区间[0, 3]上的最大值和最小值。

四、综合题(每题15分,共30分)14. 已知函数F(x) = 3x^2 - 6x + 5,求其在区间[0, 4]上的值域。

15. 函数G(x) = 2x^3 - 9x^2 + 6x + 1,求其在x = 2时的高阶导数G'''(2)。

五、证明题(共10分)16. 证明函数f(x) = x^3 - 3x^2 + 2x + 1在(-∞, +∞)上是单调递增的。

高考数学一轮复习专题2.10函数的综合运用练习(含解析)

高考数学一轮复习专题2.10函数的综合运用练习(含解析)

第十讲 函数的综合运用考向一新概念题【例1】对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R)恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.【答案】 ⎝ ⎛⎭⎪⎫1-316,0【解析】 函数f (x )=⎩⎪⎨⎪⎧2x 2-x ,x ≤0,-x 2+x ,x >0的图象如图所示.设y =m 与y =f (x )图象交点的横坐标从小到大分别为x 1,x 2,x 3.由y =-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14,得顶点坐标为⎝ ⎛⎭⎪⎫12,14.当y =14时,代入y =2x 2-x ,得14=2x 2-x ,解得x =1-34(舍去正值),∴x 1∈⎝ ⎛⎭⎪⎫1-34,0.又∵y =-x 2+x 图象的对称轴为x =12,∴x 2+x 3=1,又x 2,x 3>0,∴0<x 2x 3<⎝ ⎛⎭⎪⎫x 2+x 322=14.又∵0<-x 1<3-14,∴0<-x 1x 2x 3<3-116,∴1-316<x 1x 2x 3<0. 【举一反三】1.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .]2,49(--B .[-1,0]C .(-∞,-2]D .),49(+∞-【答案】A【解析】令F (x )=f (x )-g (x )=x 2-3x +4-(2x +m )=x 2-5x +4-m ,则由题意知F (x )=0在[0,3]上有两个不同的实数根,因而2(0)0(3)054(4)0F F m ⎧≥⎪⎪≥⎨⎪∆=-->⎪⎩,即402049m m m -≥⎧⎪--≥⎨⎪>-⎩,解之得-94<m ≤-2,故选A考向二函数性质与零点定理综合运用【例2】已知偶函数 满足 ,当0 时, ,则函数 在区间 内的零点个数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.填空题1.如果反比例函数xk y 3-=的图象位于第二、第四象限内,那么满足条件的正整数k 可能的值是 .2.若一次函数y=a x+1―a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则 |a ―= .3.请写出一个开口向上,与y 轴交点纵坐标为-1,且经过点(1,3)的抛物线的解析式 . 4.一次函数5y x =+的图象经过点P (),a b 和Q (),c d ,则()()a c d b c d --- 的值为____________.5.矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是_______.6.如图,△P 1OA 1、△P 2OA 2是等腰直角三角形,点1P 、2P 在函数4(0)y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是________________.二.选择题 7.若代数式1x -在实数范围内有意义,则x 的取值范围为( ) A .x>0 B .x≥0 C.x ≠0 D.x≥0且x ≠18.反比例函数xy 1-=的图象位于( )A .第一、三象限B .第二、四象限C .第一、四象限D .第二、三象限9.如图,一次函数b kx y +=的图像经过A 、B 两点,则0>+b kx 解集是 ( ) A .0>x B .3>x C .2>x D .23<<-x 10.抛物线y=3(x-1)+1的顶点坐标是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1) 11.直线323+-=x y 与x 轴、y 轴所围成的三角形的面积为( ) (第6第5题图A .3B .6C .43 D .23 12.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( )A .37.2分钟B .48分钟C .30分钟D .33分钟 13.已知y 是x 的一次函数,下表中列出了部分对应值,则m 等于( )A .-1B .0C .21D .2 14.下列四个函数中,y 随x 增大而减小的是( )A .y=2xB .y=―2x+5C .y=―3xD .y=―x 2+2x ―115. 在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )16.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A .6 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x <<三.解答题17.(7分)如图,一次函数b kx y +=的图象与反比例函数xmy =图象交于A (-2,1)、B (1,n )A第12题图两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.18. (7分) 为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每用水量,x(吨)与应付水费(元)的函数关系如图.(1)求出当月用水量不超过5吨时,y 与x 之间的函数关系式; (2)某居民某月用水量为8吨,求应付的水费是多少?19. (9分)某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)之间存在正比例函数关系:y A =kx ,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系:y B =ax 2+bx ,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元. (1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.20.(9分)某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB 间,按相同的间距0.2米用5根立柱加固,拱高OC 为0.6米. (1) 以O 为原点,OC 所在的直线为y 轴建立平面直角坐标系,请根据以上的数据,求出抛物线 y=ax 2的解析式;(2)计算一段栅栏所需立柱的总长度.(精确到0.1米)21.(8分)如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点. (1)求抛物线的解析式. (2)求△MCB 的面积.22.(9分)已知抛物线2(4)24y x m x m =-+-++与x 轴交于1(,0)A x 、2(,0)B x ,与y 轴交于点C ,且1x 、2x 满足条件1212,20x x x x <+=(1)求抛物线的角析式;(2)能否找到直线y kx b =+与抛物线交于P 、Q 两点,使y 轴恰好平分△CPQ 的面积?求出k 、b 所满足的条件.23.已知:如图2-4-23,抛物线2y ax bx c=++经过原点(0,和A (-1,5).(1)求抛物线的解析式.(2)设抛物线与x 轴的另一个交点为C .以OC 为直径作⊙M 如果过抛物线上一点P 作⊙M 的切线PD ,切点为D ,且与y 正半轴交于点为E ,连结MD .已知点E 的坐标为(0,m )边形EOMD 的面积.(用含m 的代数式表示)(3)延长DM 交⊙M 于点N ,连结ON 、OD ,当点P 在(2件下运动到什么位置时,能使得DONEOMD S S ∆=四边形点P 的坐标.图2-4-2121、分析与解答 第(1)问,已知抛物线上三个点的坐标,利用待定系数法可求出其解析式.第(2)问,△MCB 不是一个特殊三角形,我们可利用面积分割的方法转化成特殊的面积求解.(1)设抛物线的解析式为2y ax bx c =++,根据题意,得058a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解之,得145a b c =-⎧⎪=⎨⎪=⎩.∴所求抛物线的解析式为245y x x =-++.(2)∵C 点的坐标为(0,5).∴OC=5.令0y =,则2450x x -++=解得121,5x x =-=.∴B 点坐标为(5,0).∴OB=5. ∵2245(2)9y x x x =-++=--+,∴顶点M 坐标为(2,9).过点M 用MN ⊥AB 于点N ,则ON=2,MN=9.∴11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形说明:以面积为纽带,以函数图象为背景,结合常见的平面几何图形而产生的函数图象与图形面积相结合型综合题是中考命题的热点.解决这类问题的关键是把相关线段的长与恰当的点的坐标联系起来,必要时要会灵活将待求图形的面积进行分割,转化为特殊几何图形的面积求解.22、分析与解答 (1)∵△=22(4)4(24)320m m m -++=+>,∴对一切实数m ,抛物线与x 轴恒有两个交点,由根与系数的关系得124x x m +=-…①,12(24)x x m =-+…②.由已知有1220x x +=…③.③-①,得2124,228.x m x x m =-=-=-由②得(28)(4)(24)m m m --=-+.化简,得29140m m -+=.解得121122,7.2,4,2m m m x x ====-=当时,满足12x x <.当27m =时,126,3x x ==-,不满足12x x <,∴抛物线的解析式为228y x x =--+.(2)如图2-4-22,设存在直线y kx b =+与抛物线交于点P 、Q ,使y 轴平分△CPQ 的面积,设点P 的横坐标为Q x,直线与y 轴交于点E .∵1122PCE QCE P QS S CE x CE x ∆∆==∙∙=∙∙,∴P Qx x =,由y 轴平分△CPQ 的面积得点P 、Q 在y 轴的两侧,即P Qx x =-,∴P Q x x +=,由228y kx b y x x =+⎧⎨=--+⎩得2(2)80x k x b +++-=.又∵Px 、Qx 是方程2(2)80x k x b +++-=的两根,∴(2)0P Q x x k +=-+=,∴2k =-.又直线与抛物线有两个交点,∴当28k b =-<且时,直线y kx b =+与抛物线的交点P 、Q ,使y 轴能平分△CPQ 的面积.故2(8)y x b b =-+<.说明 本题是一道方程与函数、几何相结合的综合题,这类题主要是以函数为主线.解题时要注意运用数形结合思想,将图象信息与方程的代信息相互转化.例如:二次函数与x 轴有交点.可转化为一元二次旗号有实数根,并且其交点的横坐标就是相应一元二次方程的解.点在函数图象上,点的坐标就满足该函数解析式等.23、分析与解答 (1)∵抛物线过O(0,0)、A (1,-3)、B (-1,5)三点,∴⎧⎪⎨⎪⎩c=0a+b+c=-3a-b+c=5,解得140a b c =⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为24y x x =-. (2)抛物线24y x x =-与x 轴的另一个交点坐标为C (4,0),连结EM .∴⊙M 的半径是2,即OM=DM=2.∵ED 、EO 都是的切线,∴EO=ED .∴△EOM ≌△EDM .∴12222OME EOMD S S OM OE m∆==⨯=四边形(3)设D 点的坐标为(0x ,0y ),则0012222OME EOMD S S OM y y ∆==⨯⨯=四边形.当DONEOMD S S ∆=四边形时,即022m y =,0m y =,故ED ∥x 轴,又∵ED 为切线,∴D 点的坐标为(2,3),∵点P 在直线ED 上,故设点P 的坐标为(x ,2),又P 在抛物线上,∴224x x =-.∴1222x x ==∴(2P或(2P 为所求.。

相关文档
最新文档