求极限的常用方法

合集下载

求极限的12种方法

求极限的12种方法

求极限的方法
1、利用极限的四则运算和幂指数的运算法则
2、利用函数的连续性
3、利用变量替换
4、利用等价无穷小
5、利用洛必达法则
6、分别求左右极限
7、把数列极限转化为函数极限
8、利用夹逼定理(极限存在两定理之一)
1)利用简单的放大、缩小函数法
2)利用不等式的性质进行放大或缩小【根据定义不等式求极限】
3)对积分的极限可以利用积分的性质进行放大缩小
9、利用递归数列先证明极限的存在(常用单调数列必有界),
再利用递归关系求出极限。

10、利用定积分求和式求极限
11、利用泰勒公式
12、利用导数定义求极限
附加:
1、 利用函数极限求数列极限 Example:
(1) n n
n ln lim +∞
→ 解:记:x x
n n x n ln ln lim lim +∞→+∞→= =0。

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版)初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。

极限方法就是研究变量的一种基本方法。

极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。

1.直接代入数值求极限例1 求极限1lim(21)x x →- 解 1lim(21)2111x x →-=⋅-=2.约去不能代入的零因子求极限例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1)lim lim lim(1)(1)411x x x x x x x x x x x →→→--++==++=--3.分子分母同除最高次幂求极限例3 求极限13lim323+-∞→x xx x 解3131lim 13lim 11323=+-=+-∞→∞→x xx x x x x注:一般地,分子分母同除x 的最高次幂有如下规律⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110114.分子(母)有理化求极限 例4 求极限)13(lim 22+-++∞→x x x解13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x132lim22=+++=+∞→x x x例5求极限x →解01)2x x x →→→===5.应用两个重要极限的公式求极限两个重要极限是1sin lim0=→x xx 和1lim(1)x x ex →∞+=,下面只介绍第二个公式的例子。

例6 求极限xx x x ⎪⎭⎫ ⎝⎛-++∞→11lim解 2221212112111lim 121lim 11lim e x x x x x x x xx x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→6.用等价无穷小量的代换求极限这可以称之为求极限最简便的方法。

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

(完整word版)高等数学求极限的常用方法(附例题和详解)

(完整word版)高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14 种方法一、极限的定义1. 极限的保号性很重要:设limf (x)A ,x x 0( i )若 A 0 ,则有0 ,使适当 0 | x x 0 |时, f (x) 0 ; ( ii )如有0, 使适当 0 | x x 0 |时, f (x)0,则A0 。

2. 极限分为函数极限、数列极限,此中函数极限又分为限能否存在在:x时函数的极限和 xx 0 的极限。

要特别注意判断极( i )数列 x n 收敛于 a 的充要条件 是它的全部子数列均收敛于 a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”( ii )limf (x)Alimf ( x)limAxxx(iii)lim f ( x)AlimlimAx xx x 0x x 0(iv) 单一有界准则 ( v )两边夹挤准则(夹逼定理 / 夹逼原理) ( vi ) 柯 西 收 敛 准 则 ( 不 需 要 掌 握 )。

极 限 limf ( x) 存 在 的 充 分 必 要 条 件 是 :x x 00,0, 使适当 x 1、 x 2U o ( x 0 )时,恒有 | f ( x 1 ) f ( x 2 ) |二.解决极限的方法以下:1. 等价无量小代换。

只好在乘除 时候使用。

例题略。

..2. 洛必达( L ’ho spital )法例(大题目有时会有示意要你使用这个方法)它的使用有严格的使用前提。

第一一定是X 趋近,而不是 N 趋近,因此面对数列极限时候先要转变为求 x 趋近状况下的极限,数列极限的n 自然是趋近于正无量的,不行能是负无量。

其次 , 一定是函数的导数要存在,假如告诉 f (x )、g (x ), 没告诉能否可导, 不行直接用洛必达法例。

此外,一定是 “0 比 0”或“无量大比无量大” ,而且注意导数分母不可以为 0。

洛必达法例分为 3 种状况:(i )“ 0”“”时候直接用(ii) “0? ”“”,应为无量大和无量小成倒数的关系,因此无量多数写成了无量小的倒数形式了。

求极限的几种常用方法

求极限的几种常用方法

求极限的几种常用方法极限是数学中一个非常重要的概念,在计算和分析各种数学模型或问题时经常会遇到。

求极限的方法有很多种,我们来看一下其中几种常用的方法。

1.代入法代入法是求解极限的最基本方法。

当直接代入极限的值会导致不确定形式(比如0/0或无穷大/无穷大)时,可以尝试将这个函数做一些化简或变形,然后再进行代入。

2.夹逼准则夹逼准则也叫夹逼定理,是一种常用的求解极限的方法。

当我们要求解f(x)在x=a处的极限时,如果能够找到两个函数g(x)和h(x),使得g(x)≤f(x)≤h(x),且当x趋近于a时,g(x)和h(x)的极限都等于L,那么根据夹逼准则,f(x)的极限也等于L。

3.分别极限法当一个函数可以拆解为多个子函数的和、积或商时,可以使用分别极限法进行求解。

即求出每个子函数的极限,然后再根据所涉及的运算性质来得到整个函数的极限。

4.换元法换元法也是求解极限的一种常用方法。

当求解一个复杂函数的极限时,我们可以进行变量的替换,将原函数转化为一个更加简单的函数,从而更容易求解极限。

5.泰勒展开泰勒展开是一种利用泰勒公式来近似表示函数的方法。

通过将一个函数近似展开为多项式的形式,可以用这个多项式来计算函数在其中一点的极限。

当需要计算给定点附近的极限时,泰勒展开是一种常用的方法。

6.渐近线性当极限存在且无穷大或无穷小时,可以利用函数的渐近线性来求解极限。

根据函数在无穷远处的性质和斜率,可以通过观察渐近线的特征来判断极限的结果。

7.收敛性对于数列来说,如果数列的极限存在,那么我们可以通过观察数列的性质和规律来判断极限的结果。

一般可以利用单调有界原理、数列的递推关系、数列的特征和规律等方法来判断极限的收敛性。

8. L'Hopital法则L'Hopital法则是一种用于求解0/0或无穷大/无穷大形式的极限的方法。

根据这个法则,如果一个函数的极限形式为0/0或无穷大/无穷大,可以通过对分子和分母同时求导再次进行极限计算,直到得到极限的结果。

高数求极限的10个方法

高数求极限的10个方法

详解高数求极限的方法极限主要包括数列极限和函数极限,两者的求法大同小异,如果分开讨论,比较麻烦,其实数列也可以看作是以正整数n为自变量的函数,所以它们也是可以综合起来的。

接下来介绍求极限的常用方法:一、求极限最常用到的方法,还是利用极限的四则运算法则。

它是基于一些常见的极限,再根据下面的法则求极限,包括:1、相反的收敛数列极限相反;2、互为倒数的收敛数列极限也互为倒数,其中除数不为零;3、和差积商的极限等于极限的和差积商,前提是这些数列的极限都存在,且作为除数的数列及极限非0;4、收敛的正项数列的幂的极限等于极限的幂,不论是乘方还是开方;5、以及收敛数列的绝对值收敛于极限的绝对值等。

二、利用极限的单调有界定理。

其中有界性是数列收敛的必要条件,如果数列无界,就一定发散,但有界数列却不一定收敛。

三、利用两个常见的极限求极限,就是当x趋于0时,sinx/x 的极限和1的无穷次方类型的极限。

四、等价无穷小替换,要熟记常见的等价无穷小的类型。

面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!五、用洛必达法则,针对0/0型或无穷/无穷型,对分子分母同时求导后求极限的方法。

主要分三种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方:对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)六、利用泰勒公式求极限的方法。

(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助。

求极限lim的常用公式

求极限lim的常用公式

求极限lim的常用公式1、lim(f(x)+g(x))=limf(x)+limg(x);2、lim(f(x)-g(x))=limf(x)-limg(x);3、lim(f(x)×g(x))=limf(x)×limg(x);4、lim(f(x)/g(x))=limf(x)/limg(x)limg(x)不等于0;5、lim(f(x))^n=(limf(x))^n。

注意:limf(x)limg(x)都存在时才成立。

lim是极限,是微积分中的基础概念,指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。

极限可分为数列极限和函数极限。

lim的基本计算公式:话务量公式为:a=c x t.a是话务量,单位为erl(爱尔兰),c是呼叫次数,单位是个,t是每次呼叫平均占用时长,单位是小时.一般话务量又称小时呼,统计的时间范围是1个小时.求极限的常见公式; (x^3+3x^2)^(1\3)-(x^4-2x^3)^(1\4)=x[(1+3\x)^(1\3)-(1-2\x)^(1\4)] 1\x→0 在0处泰勒公式有(1+x)^(1\m)=1+x\m+o(x) ∴原式为x[(1+3\3x+o(1\x))-(1-2\4x+o(1\x))]=3\2+xo(1\x) ∴极限为3\2求极限的4个重要公式;这个应该不难吧.是不是这个.lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x)limg(x)不等于0 lim(f(x))^n=(limf(x))^n极限有哪些运算公式;lim(f(x)+g(x))=limf(x)+limg(x)lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x)lim(f(x)/g(x))=limf(x)/limg(x) limg(x)不等于0lim(f(x))^n=(limf(x))^n 注意条件:以上limf(x) limg(x)都存在时才成立高等数学极限的几个重要公式;两个重要极限:来设{xn}为一源个无穷实数数列2113的集合.如果存在5261实数a,对于任意正4102数ε (不论其多1653么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn} 收敛于a.如...“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)
(ii)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x →∞
例4
lim
n→ ∞
n sin n! n3 + n
解:原式
1 1 1 = lim 2sin[ ln(1 + )]cos[ ln( x 2 + x)] x →∞ 2 x 2 = 0.
注:有界量×无穷小=无穷小 有界量×无穷小=
解:原式
lim
n n3 + n
=0
n →∞
sin n !
首页
上页
返回
下页
∞ 方法:用最大项除分子分母) 一、x → ∞时, 型(方法:用最大项除分子分母) ∞
(2 x + 3)2( x − 2)3 例1 lim x →∞ (2 x + 1)5
解:分子、分母除以x5 例2 lim
4 x2 + x − 1 + x + 1 x 2 + sin x
x →−∞
.
解:分子、分母除以-x,得
ln x + 1 1 = − lim =− x →1 ln x + 1 + 1 2
注: ∞ − ∞ 型不定式极限可
0 ∞ 通过通分变为 , 之一. 0 ∞ 之一.
下页 结束
六、利用罗比达法则求极限 例14 lim x ln x +
x →0
例15
−1
x ln x 解:原式 = lim e 解:原式 = lim −1 = lim −2 x→0+ + + x →0 − x x →0 x ( ex ln x −1)ln x
x x →0
=e
x→0+
lim x ln x
lim 2ln x −x
−1
2
=e
x→0+
lim
ln 2 x x −1
=e
上页 返回
x→0+
= e =1
0
下页
=e
结束
−2 lim x ln x
x→0+
首页
六、利用罗比达法则求极限 例16
x →0
lim (cot x) +
lim
1 ln x
.
例17 lim( x + e )
x →0
1 x x 1 ln( x + e x ) x
解:原式 =
e
1 ln cot x + ln x x →0
解:原式 = lim e
x →0
1 而 lim ⋅ ln(cot x) x →0+ ln x 1 1 − ⋅ 2 = lim cot x sin x x → 0+ 1 x
=e
=e
1 lim ln( x + e x ) x→0 x
1+ e x
x→0 x + e x
lim
=e
2
−x = lim =-1 + x → 0 cos x ⋅ sin x
故, 原式 = e −1.
首页 上页 返回 下页 结束
六、利用罗比达法则求极限
e x + e 2 x + e3 x 1 例18 lim( )x. x →0 3 x 2x
解:原式=
e
1 e + e + e3 x lim ln( ) +x 3 x →0
下页
结束
六、利用罗比达法则求极限 例12
tan x − x lim 2 . x →0 x tan x
x →0
解:原式 = lim tan x − x 3 sec 2 x − 1 = lim x →0 3x 2
x
1 x − ). 例13 lim( x →1 ln x x −1 x − 1 − x ln x 解:原式 = lim x →1 ( x − 1) ln x
结束
三、通过代数变形求极限 例5 lim x →0 解− 1 − x2
e x − esin x 例6 lim x →0 x − sin x
解:原式
x ( 1+ x + 1− x ) = lim x →0 2 x2 =1
2 2 2
= lim
x →0
e
sin x
注:如果出现根式差,先通过 如果出现根式差, 有理化化简,再求极限. 有理化化简,再求极限.
x 2x x→0+
+e
3x
= 2
首页
上页
返回
下页
结束
七、利用Taylor展开式求极限 利用 展开式求极限 例19
cos x − e lim x →0 x4
x2 − 2
x2 x4 x2 x4 1 − + + o( x 4 ) − (1 − + + o( x 4 )) 解:原式 2! 4! 2 4 ⋅ 2! lim x →0 x4
1 1 o( x 4 ) 1 = lim[( − )+ 4 ]= . x → 0 4! 4 ⋅ 2! x 4
首页
上页
返回
下页
结束
1 2 (2 + )2(1 − )3 x x 原式 = lim x →∞ 1 (2 + )5 x 1 = 8
原式
= lim
x →−∞
1 1 1 4 + − 2 −1− x x x sin x 1+ 2 x
1 = 2
首页 上页 返回 下页 结束
二、利用无穷小的性质 例3 lim[sin ln( x + 1) − sin ln x ]
x →0
lim x +
x x −1
( x x −1)ln x
= lim (− x) +
x →0
= lim e +
x→0
=0
注(1) 0 ⋅ ∞ 型不定式极限可通 过把一项的倒数放到分母上变
=e
x→0+
lim ( e x ln x −1)ln x
0 ∞ 之一. 为 , 之一. 0 ∞
(2) lim x = 1. +
esin x ( x − sin x) = lim =1 x →0 x − sin x
注:如果出现指数差,先提出 如果出现指数差, 一个因子, 一个因子,再寻求求极限的 方法. 方法.
(e − 1) x − sin x
x −sin x
首页
上页
返回
下页
结束
四、利用两个重要极限求极限 例7
lim (1 + 2 x )
1 − ln x − 1 x ln x = lim = − lim x →1 x →1 x ln x + x − 1 x −1 ln x + x
tan 2 x 1 = lim = 2 x →0 3 x 3
0 ∞ 注: , 型不定式极限可直 0 ∞
接使用罗比达法则. 接使用罗比达法则.
首页 上页 返回
sin x (1) lim =1 x →0 x
1 x (2) lim(1 + ) = e x →∞ x
首页 上页 返回
= . 2
x 2sin 2 = lim x →0 2 x 2 x 4sin cos 2 2 1
2
下页
结束
五、利用无穷小量等价代换求极限 例9 lim 1 − x − 1 2
2 x →0
例11 lim 解:原式
3 −1 x →0 1 − cos x
x2
x 2 ln 3 = lim = 2 ln 3 x →0 1 2 x 2
注:常用等价无穷小量
sin x ~ x
ln(1 + x) ~ x a − 1 ~ x ln a
x
n
tan x ~ x
x2 1 − cos x ~ 2
x 1+ x −1 ~ n
0 ∞ 注: , 型不定式极限可直 0 ∞
接使用罗比达法则. 接使用罗比达法则.
1 e x + e 2 x + e3 x 而 lim ln( ) 3 + x x→0
ln( e x + e2 x + e3 x ) − ln 3 = lim x x→0+
= lim e x + 2 e 2 x + 3 e3 x e +e
x→ 0
x→ 0
2 sin x
1 2x 4x sin x
解:原式 = lim [(1 + 2 x )
]
= e4
注:两个重要极限
tan x − sin x lim 例8 x →0 sin 3 x sin x − sin x 原式 = lim cos x 3 x →0 sin x 1 − cos x = lim 2 x →0 sin x cos x
sin 2 x 1 (− x 2 ) 1 解:原式 = lim 2 =− 2 x →0 8 (2 x) tan x − sin x 例10 lim x →0 sin 3 x tan x(1 − cos x) = lim x →0 x3 1 2 x⋅ x 2 =1 = lim x →0 x3 2
首页 上页 返回
相关文档
最新文档